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Let {eg be a sequeénce of nonncgative numbers and f{n) = T e, the sum
being over divisors o of n. We say that £ has the distribution function F if for
all ¢ == 0, the number of integers o < x for which fir) = & 13 asymplotic to
xFie), and we investigate when Fexists and when it is continuous,

Let {e;] be a sequence of nonnegative numbers and

f[!ﬂ == E £ -
|
Is it true that for all ¢ =0,
Y, 1 ~xF()
LG
Find=g

for some function F{c) depending only on the value of ¢7 If so, it is plain
that O = Fle) = 1; moreover, Fis nonincreasing. 1T e, is large enough, say
es = | for all ¢ so that f(n) = 7(n), then F{c) = 1 identically. Therefore,
it is interesting to ask under what circumstances F exists and

Lt F(c) = 0.

In this case, we say that f has the distribution function F. We prove the
following:
52
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TueoreMm. The result holds if*

e = 1/{log d)y or £ = F-Inglogd—i1+1i2 loglog ¢ioglogloglog )1

Sor every & = log 2 and 8 = 0. F is conrinwous and rends to zero as o fends
to infinity; in fact, as 8 — 0, we have that

F(e — 8) — F(c) < (log(1/8))17,

Here the eonstant implied by Vinogradov's notation << is independent af ¢.
The lower bound log 2 is best possible: if o = log 2, then the normal order
of () tends to infinity with n. The second form of eq shaws precisely how
large it can be; in this case. the normal order of f(n) tends to infinity if
B=10

We also show that in the case

fln; g, a) = E L (a, ) =1,
i mufﬁ?ud i)
we have
Y 1 ~xFei g, a),

ﬁn?ui;gi}r
where Fle; g, a) has similar properties to Fle). It would be interesting to
know how Fic; ¢, a) varies with g and a, and we hope to investigate this
question in a later paper. We now give the

Proof of the Thearem. Welet

film) =% e;, o has no prime factor = k.

dln

Since
- 1

E]_ F_ E{ ) l_[ (l _F) mm‘iﬂ:.trjm_"1

Feln)=e
where My(c) is the set of integers m having no prime factor = & and for
which f(m) = fu(m) = ¢, we have

Y 1 ~xFe)
Titmime

1T ensure that the iteraled logarithm is well-defined for small valaes of the variable,
moreover that « is finite, it is understood throughoot that log v is to be interpreted
as -maxflog x, 1)
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for all ¢ = 0, and

F;‘{c}=ﬂ(l—l) 5t

sk r o Myled i

The sequence {Fi(c)} is monotonic increasing and bounded above by 1.
Hence,

0 < F*e) = Lt Fie) <1

is well-defined and is the intuitive value of Fic) if F exists, We start by
Ieoking for upper and lower bounds for the sum

R

ﬂ"nﬁ!':-vr.
As it 1s rather easier, we begin with the

Lower Bound, Since f(n) = fuln), we have for all k that

1> 3o
G g
Flray e Splry=e

=3 ¥ &
ngE | 0
meMle)
o fm PR =1

I

where P(k) is the product of all primes = k. This is

X ( 1
1> 2 G I-p-=)
meMglel r E 3 Z i U P
& =8 m e Mlol Pk
e Pk =1 g H

for any value of H. We choose this rather less than x to limit the error
term arising {rom the 27, This is

| = i
= oxbife) — g — ] —= —.
= xFyc) xIl( ,,) “)_:H —

mnM‘[r.i

The last sum on the right does not exceed

Flr [1 {t = ;:Ti) - }‘jliTn' exp (%'g;)

Pk

where A, is an absolute constant. We select H = 2*%, and we deduce that

z | = xFilc) + O(x883=180,
!;‘n‘?;c
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If now & — o0 with x so that 274 = o(x1'%), we have

Y 1 = xF%e) + o) + olx) = xF*(c) -+ olx).

s
Fin}z=i

As a particular case, if F*(c) = | identically, then F exists and Fic) = |
for all ¢. Note that so far we have only used the fact that €, = 0 for all 4.

Upper Bound. For all k > 0 and & > 0, we have
e Y A )l
ﬂ'ﬂ - .I'ﬂ:'l“;:lll.‘—ﬂ rml‘ﬁ?mi

Examining the first sum on the right, we have

Y 1= 3 ¥ 1

ntxise weryle—41 (e PbiI-1
<.y (.’I.n(|_.;.j_.=. zﬂ;lrl) +xY L‘
T L wop M
e

the last sum being restricted to m's having no prime factor exceeding k.
This is

1
= xhde — B) + WK L H"iﬂ exp ["L‘k )

log &
and, as before, we select A = x%® and require that
2710 = o),
For this range of values of &, we deduce that
Y 1< xFYe)+ x{Fle—8) —Fdelt+ ¥ 1+ alx).

o noE
flakme Fin)=g iy

We have to show that if k— o and §—0 as x— =5, then
File — 8) — File) = ofl), and our methed also shows that Fis continuous.
Now

Fde =8 — Ko =T 1 —1}

Pk P eacrimige

1
mi
all the prime factors of m being = k. Since

Jomdy = fmy+ % e,

|
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il d has any prime factor not dividing m for which ¢, == 8, not both m
and md contribute to 3", Let

Ok, 8) = {p: p = k and €, = &}

and R(k, &) be the maximal sum of the form

Y 1d

where every prime factor of 4 belongs to Q(k, 6) and if &, and 4, both
contribute to ¥ and o, | . , then @, has no prime factor not dividing d, .
Then

Y Um< ] (1—;)_1%,31

e—S<fimilgn Pk
Pk, 8
and

Fle—8—Flo< Tl (1-%)1:(&.3}.

QR E)

Now let #i{n) denote the number of divisors d of n which contribute
to the maximal sum R(k, 8). Then for y =0,

YRk, 8) = T Tiln) = ¥ ["' ]

LEST] i

>y Rl 8 — Yol — 31

&>w gy

: . Ea
> yRU6 8 =20 T (1—55)

PEQIRA)

and therefore

Rik,8) = Lt - E wiin).

. Mgy

Now let n = mh, where mn is the largest divisor of n all of whose prime
factors belong to @(k, &). Thus

i) = i),

By a result of de Bruijn, Tengbergen, and Kruyswijk [2], we may split
the divisors of m into disjoint symmetric chains. A chain is a sequence
of integers each dividing the next, the guotient being a prime; it is
symmetric in the sense that the total number of prime factors of its first
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and last members equals the number of prime factors of m. Ian Ander-
son [3] showed that the number of chains is

<= 7(m)fewlm)L®,

MNow suppose that two divisors o, , & of n (and so of m) contributing
to Rik, &) belong to the same chain, so that one divides the other, say
dy | dy. Then d; and 4. have the same prime factors. Hence, +i(m) does
not exceed the number of chains times the maximal number of divisors
of m all of which have the same prime Factors. IT

m=P;_1 2?...p:r. ”‘7=P1Pn At - T

this is geea = o, = 7(m/m), Therefore

) () i)
rk[ﬂj { {m{m]}i I

Hence for any H == 0,
z TR‘{".} { ')H‘ + Hllrg E f{m} T("Hfﬁ}

WY ney
Now
T(m}r{ma’#ﬁ} VS i
"E-:i :i"il_![k.ﬂ( pr) ﬁglj:.‘ﬂ[ + P 1 P#u i )
Ligpe oy 460 B
= e .l
g{s}pe{l.::]t,m( i T Pt + P 5 )
- . 1 e B e
m%ﬂﬁ'w)“+w+w=w-]
a0 that
i [ L T |
L rrmm~y 11 (=" (1 2=5)
Setting

H = 2
-nea%:.shp

we deduce that

sam<y( T 5 @ -y

new we gt F B2 OUE, A1 P
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so that

File — 8) — Fyle) < T(k, 8) = ( 2. 1)_1!2'

o o, oy
We now have that
Y L=xF¥)+ ¥ 1+ O(xTtk, 8) + o(x).
Tt nea
iRy FIET R Ty

To ensure that 71k, 8) — 0 as & — 0and k — oo with x, we reguire only

Condition 1. The series

oot P

is divergent.
This is of course satisfied by the sequence {e;} in the theorem, We also
introduce

Condition 2. 1f p is a prime, then ¢,,, < e, for all integers m.

This is convenient and requires rathér less than that the sequence
{e4] is nonincreasing, although both these under consideration are.

Now let  be a divisor of n whose prime factors all exceed %, and 1 a
divisor none of whose prime factors exceed £, Clearly, every divisor of n
can be written uniguely in the form 7, and so

fi —fm) =% ¥ €.

im dn
0 ]

Mext, assume that » has no repeated prime factor exceeding k. The
number of exceptional n == x is

=

if & — oowith x. If
) =¥ 1

(1)
then by Condition 2, we have

Flny — fuln) = mlmdies, + 2e,, + dey, + o0+ 20le, |
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where py . pg ooy po are the prime factors of n exceeding & in any order;
naturally, it is advantageous to select the order for which

S - "o
Epy == Epy == Egyaer = Engs

50 that in the present application, p; , py ..., P, are simply in increasing
order.

We need the following lemma, which is an application of Theorem VI
of Erdds [1].

LEMMA.  Ler vyin) denore the mumber of distinct prime factors of n not
exceeding v and A be fixed = 0. Then provided v, = vy(A), the numbers n
for witlch

| vy(m) — loglog v | = (1 -+ A)2 loglog v - loglogloglog y)!#

Jorall y, vy =y = n, have a positive densiry; moreover, as v, — o0, this
density tends ro |,

We apply this as follows: We let 3, = & which tends to infinity with x;
therefore, the lemma applies to almost all n = x. Wetake py, po o P

to be in increasing order. Then for almost all n < x and each /, { < m,
we have

i+ vyln) = v, (n) = loglog p; + (1 + AN2 logs p; - logy pi)**

using the notation log, ., x = log(log,x) for iterated logarithms. We choose
A strictly less than the £ given in the theorem; say A = B/2,

We will prove the theorem only for the second form of e; as the other
is treated similarly, except that we may use a weaker version of the above
lemma which cun be obtained from the familiar vanance argument due
to Turdn. In the present case. since

_ - loglor p— (i) (alor, s 102, pia
ey =17 .

we hiave

L L
3 PN = 771100108 5, (1 2AMalog, 5 - Log )1 10

=1 =1

i
s z—vktn:l E l—a.igluqn,-lumriﬁa :

=l
We may assume that for each §
2 loglog p; = i + wyln),

Bg1]6/1-5
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and since
gi-—ﬂiw}‘ Mg J:m y=e < g-luaatt J:: St uﬂ!’l {z_‘;ih |
setling
¥ o= ), £ = Mlogap > A(loglog we(m)t,
we obtain

™
A
Z 2‘_1!,,‘ < h. z—r.{u:r—umj.{v,,{ullmmp.mslﬂ_

LES §

It follows that if wy(n) denotes the number of prime factors of n not
exceeding k and counted according to multiplicity, then for almost all
noE X,

fin) — filn) < (A,"":"I,:I piinln) -rgfu'!-vl[lfi}iliu{nﬂﬂﬂmu;[ﬂfll"'_
Since k& — oo with x, for almost all # = x, we have that

vfn) > (1/2) loglog k.
AESD!

(i) — viln) = (A/20)(logok - Togek 'Y < (A/8)(wu(n) loglog v, (m)' 12,
To see this, note that

w%{w,,{n} —nli = [%] + [%] + <3k Rﬁ <x

Therefore, the number of integers # = x for which wy(n) — vn) = h
does not exceed x/kh. IF

h = (A/20)(logk - log ),
this is o{x) as k — o0 with x. Therefore, for almaost all n = x,
Fl) — film) < (AJA%) {1 (a0) (108, k-log i}
If & — 0 more slowly than this, we deduce that

Y =l

n
ﬂﬂl—.l"fllﬂiﬂ
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We deduce that
T 1< xFHe) + ofx),

L
fisp=e

and combining this with the lower bound result, we get
Y 1 ~=xF), F=F~
e
Tiny=e
Mext, we show that F is continuous. We know that
Fife — 8) — Fylc) < Tik, 8),

the constant implied by Vinogradov's notation == being uniform in
k, ¢, and 8. Letting k — o0, Ok, 8) becomes
{p; e, = 8.
Hence
kl_-.L Tk, 8) <= (log(1/8))-1/

for either form of {e,]. Therefore F is continuous, indeed uniformly. It
remains to show that

L Ao = 0.

We do this by a treatment of f(n) — fi(n) similar to the above, but
replacing “almost all n <= £ by “for all but at mest ex integers n < x"
~at each step. Given any « = (), there exists a k so large that on a sequence

of integers of density at least 1 — &, we have

Fln) — fuln) < (Ay)28) 2~ 0o oegelonal™ — (g 12y,

—1
) < A.xlog k.

Y omdm) < =[] (

foed
[ ey ik P

Hence, the integers for which
Tuln) = (As/e) log k

have density not exceeding e. Therefore, on a sequence of density
=1 — 2¢, we have

fln) < mu(n) + (f(m) — film)) < (Ay/4%) + (4;/e) log k.
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Setting
e == ¢le) = {AyN) + (dy/e) log k, k= kie),
we deduce that
Fle) = 2e,
giving the result stated.
We conclude by deducing a similar result for f(n; g, a). We set

el — € if d = a(mod g),
4 = ln otherwise.

The treatment ol the lower bound goes through as before, and that of the
upper bound is largely unaltered, for we have

flns g, a) — films g, a) < fin) — feln).
and so it is clear that

3 g X 1=

ngm e
Flmzgaml—F gl gon) ol Sinl=Fpin) A

from the above. In the treatment of Fi(c — 8; ¢, a) — Fi(¢; g, a), we have
to consider

Ok, 8, ¢, @) = {p:p < kand €, = 8, p = a (mod q)}.

The argument goes through as before: we require that the series

yo=

:,':mzu weatmod q) P

diverges. and since (a, g¢) = 1, this is the case.
A similar argument gives the following more general result: If

- " i L
00y 22 loglog d—{1-+0) lgloglog 4 loglogloglog) “ B =0,

and Conditicn 1 holds, then f has a continuous distribution function.

It seems possible that Condition 1 may be weakened; also, we should
like to consider the case where ; may be negative, We leave these questions
to a later paper.
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