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ON THE DISTRIBUTION OF NUMBERS OF THE FOR M
6(n)/n AND ON SOME RELATED QUESTION S

Dedicated to my friend I. Schoenberg on the occasion of his 70th birthda y

P. ERDÖs

A number theoretic function f(n) is called multiplicativ e
if f(ab) = f(a)f(b) for (a, b) = 1, it is called additive if f(a b) =
f(a) + f(b) for (a, b) = 1 . A function f(n) is said to have a
distribution function if for every c the density g(c) of integers

satisfying f(n) c exists and g(—oo) = 0, g(oo) = 1.

In this note we give some best possible estimates fo r
g(c + 1/t) — g(t), for the case of f(n) = v(n)/n.

More than 40 years ago I. Schoenberg proved that 93(n)/n (¢(n)

is Euler's ¢ function) has a continuous distribution function [12] . This

result was the starting point of a systematic theory of additive an d
multiplicative functions . Very soon Behrend, Chowla, and Davenpor t
[2] proved that ű(n)/n (a(n) _ ~di „ d) also has a continuous distribution

function . Thus it followed that the density of abundant numbers

g(2) exists . (An integer n if abundant if o(n)/n 2, otherwise it is
deficient.) The value g(2) of this density is known only with very
poor accuracy, it seems to be fairly close to 1/4 but is not equal to it [1] .

I do not discuss here general theory of the distribution of value s
of additive and multiplicative functions, just remark that necessar y
and sufficient conditions are known for the existence and continuity

of the distribution function of additive and multiplicative function s
[4], but relatively little is known about absolute continuity . In 1939,
Aurel Wintner called my attention to the problem of absolute con-
tinuity of the distribution function of additive and multiplicativ e
functions . I proved (among others) that the distribution function of
a(n)/n and Q(n)/n is purely singular, but that there are additive (an d
multiplicative) functions whose distribution function is an entire func-
tion [5 ] . No necessary and sufficient condition for the absolut e
continuity of the distribution function seems to be known and e .g . ,
it is not known if the distribution function of the additive function
f (p) = 1/log p is absolutely continuous .

Denote by g(c) the distribution function of aa (n)/n . Since g(c) i s
a purely singular monotonic function its derivative is almost every -

where 0. As far as I know it is not known if the derivative can tak e
any other value . It is easy to see that the derivative from the righ t
of g(c) for c = 6(n)/n is infinity, but it is doubtful if the derivativ e
from the left exists . I do not know if the derivative from the righ t
(or left) can take any value other than 0 or infinity . It is easy to see
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that there is a dense set of values of c for which the derivativ e
does not exist from the left and from the right .

Two numbers a and b are called amicable if 6(a) = a(b) = a + b .
I proved [6] that the density of integers which occur in an amicable
pair is 0 . On the other hand, it is not yet known if the number o f
amicable pairs is infinite . Rieger obtained an explicit upper boun d
for the number of integers not exceeding x which occur in an amicabl e
pair and in this connection asked me to obtain as sharp an estimatio n
as possible for F(x ; a, b) the number of integers n < x satisfying

a<6(n) <b .
n

I prove the following

THEOREM . There is an absolute constant c 1 so that for 0, x > t

(1) F(x;a, a+ 1) < c1	
x

t

	

log t

Apart from the value of c1 , this inequality is best possible .

This sharpens a result of Tyan [13] . The same results hold als o
if a(n) is replaced by Euler's ¢ function, in fact the proofs are a
little simpler . Incidentally with a little trouble we could prove
instead of (1) the following slightly stronge r

(1')

	

F(x ; a, a(l + 1
t
)) < c1 x 'log t .

Using (1) and (1') we can deduce (following Diamond [3]) tha t

(2)

	

F(x; 1, a) = xg(a) + of	
log
	 x	 ) .

x

(2) sharpens a a result of Feinleib [10] and the error term i n
(2) is best possible .

I proved [7] that if E. --> 0 then (7 is Euler's constant )

(3) F(x; 1, 1, + ) = (1 + o(1))c-Tx/log I

and (3) of course implies that (1) if true is best possible. Thus to
prove our Theorem we only have to prove (1) . The proof of (1) will
be similar to the one I used in estimating the number of primitiv e
abundant numbers not exceeding x [8] .

First I explain the need for the assumption x > t . If a <
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o-(n)/n < a + 1/t, n x and t is very large then clearly (1) can not
hold since 1 F(x; a, a + 1/t) is greater than c,x/log t .

As far as I know it has never been proved that for a suitabl e
a the number of solutions of u(n)/n = a is infinite — or even unbounded
in a. It follows by a method of Hornfeck and Wirsing [11] that th e
number of solutions of a(n)/n = a, n < x is o(x') for every s > 0 uni-
formly in a .

To prove (1) denote by B(x, t) the set of integers

( 4 )

	

1b l < . . . <bk <x, a<	 6(b <a+

t

.
b i

We have to show that for x > t

(5)

	

k<ctx/logt .

To prove (5) we show that if we neglect o(x/log t) of the integer s
b we can assume that the b's have various properties which mak e
the estimation of their number easier .

First of all we can assume that no b is divisible by a power o f
a prime pa , a > 1 which is greater than (log t) 2 . This is clear since
the number of such integers

	

x is less than

:
X

< c2x/log t .
na>llogt : `-' p 2

a> 1

Write now

(6 )

(7) b, = u,v,w,

where all prime factors of u, are < log t, all prime factors of v, ar e
in (log t, t 102 ) and all prime factors of w, are

Now we show that we can assume

(8) u < t1f10

For if (8) does not hold then u, must have at least r distinct prime
factors < log t where (log t) r > 1 1110 or r > log t/20 loglog t . Thus by
a simple computation the number of b's not satisfying (8) is less than

(9)

	

E 1 rx

	

< x (2loglog t) r < c x

	

P <log t p rt

	

r!

	

log t

Now we consider the b's with v; > 1, i .e., we consider the b's
which have at least one prime factor in (log t, t 112) . Let p,1 b i be such
a prime factor, then we must have pi,/ b, . Now we show that the
integers b t /p, are all distinct, thus the number of these b's is less
than x/log t .

To see this assume b ,/p, = b,/p;, p ; > pi . But then
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u(bilp i)

	

6(b,lp i)

bilpi

	

bJlp,

	

bia (b i)

	

p i(p; ± 1)

But a a(b)/b G a +

	

pi < t "2, p, < t 'l2 . Thus

(11) 1 <_ a( b i) b; < 1 + 1 and (p+1 )p' > 1 + 1
bia(b ;)

	

at

	

pi(p; + 1)

	

t

(10) and (11) clearly contradict each other . Thus we can henceforth
assume that our b's have no prime factor in (log t, t "2) . Thus finally
we can restrict ourselves to the b's of the form

bi =uiwi

where all prime factors of ui are < log t and ui < t 'í10 and all prim e
factors of wi

Next we show that we can restrict ourselves to the b's for which

(12) a(wi) < 1 +	 10
wi

	

t 'l 2

Consider first the b's which for some r = 0, 1, • • • have two o r
more prime factors in (2It" 2, 2"+'t '12) . The number of these b's is
clearly less than (in E r the summation is extended over the prime s
in (2rt112, 2r+'t112) )

r

	

1 2	 	 1	 1	 c i x
x E— <xE

	

xE	 G
r=o

	

p

	

r=o (log 2rt112)2

	

r=o (r log 2+ log t) 2

	

log t

For the b's which have only one prime factor in (2rt"2, 2 r+it' r2),
r = 0, 1, • • • we evidently have

a(w) G H (1 + 2rá1 ,2 ) < 1 + 100
wi

for t to . Thus henceforth we can assume that (12) holds .
Thus we obtained that if we neglect cx/log t integers than all

our integers bi < x satisfying

a < a(bi)
<a

±
b i

have the following properties . All their prime factors p', a > 1
satisfy p° < (log t)2, they have no factor in (log t, t 'l2) and if we put
b i = uiwi where all prime factors of u i are 5 log t then ui < t 'í10 and

a(wi) < 1 +
0

.
wi

(10) or a(b i) b , _ (p i +1 )p j

Now observe that for all the b's which remain we must have
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constant value a(ui)/u i

a(u2)/u2 then we have
= a. To see this assume that, say, a (u1)/u1 >

u(u1) _ a(u 2) 	 1 > 1
u 1

	

u2

	

u,u 2

	

t 1/ 5

6(u2)
<a+ t — tlo

but then by (12) and (14) for t > t o

ó(b2)
< (a ± t

	

t16 )(1 + t00 ) < ab2

	

/ \

an evident contradiction .
In view of what we just proved all the b's (neglecting perhaps

cx/log t of them) are of the for m

6	
uiwi,

(ui) = air ui <t 1/2 ,
u i

where all prime factors of ui are < log t and all prime factors o f
wi are > t 1 1 2 .

In a previous paper [9] I proved that there is an absolute con-
stant C so that

E 1 C .
n(u)/u=a u

In fact with more trouble we can show C = 1 [7], [9] .
Now we can complete the estimation of the number of b's not

exceeding x .
For fixed ui the number of wi for which uiwi can be a b is less

than the number of integers < x/u, all whose prime factors are t1 / 2 .
Thus by Brun's method that number is less tha n

cx
ui log t

summing for u i we obtain our statement from (15) . The restriction
t > t o is clearly irrelevant .

By somewhat more trouble we could prove

F(x; a, a + 1) < (1 + o(1))F(x ; 1, 1 + t) = (1 + o(1))e
- ;x/log t .

F(x; a, a + 1/t) < F(x; 1, 1 + 1/t) is easily seen to be false in

(15)
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general but for fixed a

Jim F(x ;a, a + a)
x=oF(x;1,1+a)

can be proved by the methods of this paper, or g(a + a) — g(a) <
g(1 + a) .

To see that

F(x ;a,a +) F(x ;1,1+ t)
fails choose t = 1 and let a < 1 + 1/x . There is no o'(n)/n, n < x, in

(1, a) . On the other hand, the perfect numbers 6, 28 etc . are counte d

in F(x; a, a + 1) but not in F(x, 1, 2) . The reader may with justice
consider this counterexample as dishonest and in fact by the method s

of this paper we can prov e

F(x; a, a + )KF(x ;1,1+ )

if a > 1 + 2/x but we supress the details .
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