ON REFINING PARTITIONS
P. ERDOS, RICHARD K. GUY AND J. W. MOON

1. Introduction

If P is a partition of a set into disjoint subsets, we refine P by splitting one of the
subsets into two smaller subsets. Let f(r) denote the number of ways of transforming
a set of n indistinguishable objects into # singletons via a sequence of n— 1 refinements.
Our main object is to establish the following bounds for f(#).

THEOREM 1. There exist constants ¢y and c, such that
c,"nt" < f(n) < c," n*".

We also solve exactly the corresponding problem in which the » objects are distin-
guished by labels. The problem to determine f(») is due to B. J. T. Morgan.

2. Numerical Calculations

Figure 1 illustrates the problem for » = 7. The numbers by the partitions are the
numbers of distinct paths from the original set of 7, so that f(7) = 33. We have
calculated the following values of f(n).

1 2 3 4 5 6 7 8 9 10

n
fn) 1 1 1 2 4 11 33 116 435 1832
n 11 12 13 14 15 16

S(n) 8167 39700 201785 1099449 6237505 37406458

3. A lower bound

To obtain a lower bound we count only those sequences of refinements which
include the partition 1.2.3 ...d.r of ninto d or d +1 parts, d of which are of different
size, where 0 <r =n—3d(d+1) <d, so that /(2n) >d > /(2n)—%. Moreover
we only count sequences in which we split off 1 from each of the d — 1 parts of different
size greater than 1. These d—1 steps can be made in (d—1)! ways and result in the
partition 19712.3 ... (d—1).r of n into 2d—1 or 2d parts, d—1 (or possibly d) of
which are of different size. We deal with this in the same way, making splits of size 1
from each of the d—2 parts of different size greater than 1, in (d—2)! possible ways.
If we continue, we see that the number of sequences of refinements is at least

d—1
Il !,
m=1
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whose logarithm, by Stirling’s formula, is

d—1 L
dg (m Inm—m)+0(d Ind) = f x(1n x—1)dx+0(d Ind)

= [3x* Inx—3x%]4"1 +0(d Ind)
=3 d=1*In(d—1)—3(d-1)*+0(d Ind)
=$.2n.% In (2n)—3$n+0(J/(n) Inn)

= 4n In (2n/e’) +0(/(n) 1nn),
so that, for sufficiently large n,
f(n) > c,"n?"
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where ¢, > (2/¢®)* > 0-31555. Our numerical results suggest that {f(n)}'"/n*
increases steadily after a minimum at n = 3; so probably ¢; is 1/3/(3) > 0:57735,
and, for n > 16, may be replaced by 0-75.

4. An upper bound
Each refinement partitions a set of cardinality s+t into 2 sets of cardinalities
s and t, where we may assume s < t; such a refinement will be called a split of size s.
We show that in a sequence of n— 1 refinements, at most

[n/s]—1 (1)

of them are splits of size s or larger. For, imagine the » members of the original set
to be ordered from left to right, and adopt the convention that in any split, the smaller
set will be the one on the left. At each split of size s or larger, we mark the s members
immediately to the left of the split. We will never mark a member twice, so, after u
such splits, regardless of what smaller splits are made, there will be exactly us marked
members and at least s unmarked on the right; so us+s < » and the result follows.

We say that a sequence of n—1 refinements is of type (sy, Sz, ..., 5,—) if the ith
refinement is a split of size s;. If there are parts of d different sizes in a partition, then
142+...+d <n and d < /(2n). It follows that if there are S sequences of n—1
refinements of a given type, then

S < (V@m)t < @2y, Q)

since at each stage in the refinement we have to choose one part to split, and we have
fewer than ./(2n) distinguishably different parts to choose from.

We say that a type (s, Sy, --., S,—1) has pattern (ng, ny, ...) if exactly n; of the
numbers s; satisfy the inequality ;

2 < 5, < 2% 3)

forj=0,1,.... Notethat 3n; = n—1, and that by (1),
j “
m< T ny < max([n2]-1,0) = m, @
iZk

say, for k=0,1,...; in particular n,=m, =0 for k >log,n—1, ie. for
k > 1= [log, n]—1.

For a fixed j there are just 2/ distinct possible integer values that s; may take in
the interval (3). If there are P types (Sy,Ss,...,S,—;) With a given pattern
(nO’ Ryyenny f’l[), then :

P< ( n—1 ) 20n0+1n1»+...+ln,. i (5)
Hoslishe sl
The exponent satisfies
1 [ l
=% ¥ < B (m29-)<n,
0 k=1 k=1 b

ik

j_

by (4); the multinomial coefficient

( n—1 ) i (n—l) (n—l—no) (n-—l—no-nl) (n—l—no—...—n,_l\)
T Hiyeives 0 ve il n ny ~ n
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(o) G ) () ()

k=1 !
z nj = Z nj<mk.
i=0 i=k

P< (m") (ml)(m’)z ©)
Mo ny n
The total number of sequences of refinements is equal to the number of sequences
of a given type, summed over all possible types, so

fin) <3S < Q)" T

is at most

also by (4), since
n—1—

So

by (2), where T is the number of types. In turn, T is the number of types of a given
pattern, summed over all patterns (ng, 7y, ..., ,);

o S ot

by (6). Now each term of the sum appears in the product

(5] #+ G 03] e G} () #o ()

so T < 2n+m0+m1+...+ml < 23n and f(n) < 27n/2nn/2, ie.

f(n) < cZn n%n s
where ¢, = 8./2 < 11-31371.

5. A generdlization

Let 182"3" ... denote a partition of n = g+2h+3i+... into g parts of size 1,
h parts of size 2, etc. and let /(12 2" 3° ...) denote the number of sequences of n—g—h—i-...
refinements of the partition into # singletons. Clearly /(122" ...) = f(2"...) and it is
easy to write a general recurrence relation for /(122" ...); this was the basis of one of
our methods of calculation. We can only solve the relation in simple cases.

THEOREM 2. If h, i are non-negative

2431y = (hJirzi) ¢ (1;:21)

: h+2i+4 (h+2i+4
h i A1\ __ (3 —
re 34)'_0+4):( i4+2 ) - Al )}’
- f(2"4) = L (h+1)(B® +19h% +118h +228),
(2" 31 4%) = L (h+1)(h+6)(h> +26h> +225h +636),
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f@2"5Y) = 3(h+1)(h+3)(h+8),
f(2" 31 5Y) = L (h+1)(3h> +59h% +358h +648),
(23251 = A (h+1)(2h* +63R° +T17h* 43458k 4 5800),
f(2" 41 5Y) = L (h+1)(h* +30A3 +323h* + 1458k +2376),
f2"6') = S (h+1)(h+3)(h* +22h +88),
f(2" 31 6Y) = L (h+1)(h* +34h° +386h +1784h +2910),
F@" 7Yy = A5 (h+1)(h* +49h3 +606h> 42764k -+3960).

6. The labelled case

Let g(n) denote the number of ways of transforming a set of distinguished objects
into n singletons via a sequence of n—1 refinements.

THEOREM 3. g(n) = nl(n—1)1/2" "1,

Proof. If we classify the sequences according to the size of the subsets in the first
refinement, we find that

s =1 (1) (12}) ereta—n;

(2)=+((2)+(,2)

o ; ’ n
ways to split the original set into subsets of sizes r and n—r and there are (

for, there are

_2) orders
-1
in which the remaining n—2 refinements may be carried out, r—1 on the first part,
and n—r—1 on the second. The formula for g(n) follows by induction.

The following derivation is even easier. We consolidate a partition by replacing
any two parts by their union; then g(n) is the number of ways of transforming a
collection of 7 distinguished singletons into one set via a sequence of #—1 consolida-

n
tions. There are ( » ) ways of performing the first consolidation, so

s = () so-

and the result follows by iteration or induction.
More generally, if P denotes a partition of » distinguished objects into k& subsets
of sizes s, ..., S, then it is not difficult to show that there are

k
(n—k)! T s; /25"
j=1

ways to transform P into n singletons via a sequence of n—k refinements.
The lattice of partitions is the subject of a monograph by Kreweras [1], but he
does not give the results of the present paper. We are indebted to E. C. Milner and
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the referee for clarifying discussions and remarks. Preparation of the paper was
assisted by grants from the National Research Council of Canada.
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