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Introduction. Let M denote the set of distinet values of Euler’s
g-function, that is, me M if and only if

=gt =T fr-2)

nin

for some positive integer n. Let g, my, m,, ... be the elements of M
arranged in increasing sequence.
Our main object in this paper is to estimate the sum

W=

from above. Note that V(x) > m(x), for M includes the sequence {p —1},
and it was shown by Erdos [1] that for each pogitive e,

Vig) = 0f-——r .
G (]n;:"' f.r')

THEOREM. For each B > 2V ",’10 2, we have that

We prove the following

V(¢) = O(x(x)exp{BVloglogr}).
We have not yet found a comparable estimate from below ; we remark
that it may be shown that
V(x) = Q(a(x) (logloga))

for every fixed ¢, and we hope to study this further perhaps in a later
paper.

An interesting problem is to investigate the gaps in the sequence
{m;}. Since this includes the sequence {p —1}, we have that

M, — My = O(m5)
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for every a > 3/5 by Montgomery’s estimate [2] for the difference between
consecutive primes. It is clear that our theorem gives

( logm;
My, —m; — £
exp{BYV loglng my}

for every B > 2V?2 /log‘?, and it is possible that in fact
my o, —m; = £2(logm,;),

although we cannot prove this. We now give the proof of our main result.

Lemma 1. Let w(n) denote the number of prime factors of n counted
according to multiplicity. Then the number of integers n < ® for which

2

ogﬂ

loglogax

w(n) = 1

is O (m(x)logloga).

Prootf. Let o'(n) denote the number of odd prime factors of n#, and
v(n) the number of distinet prime factors. Then for all y,

(L+4g)"® — 2 Y@ (1 y)2 D@
din

where 3" denotes a sum restricted to odd d. Hence for real, non-negative v,
|{d|
M (147 ™ < \ J )= I [ 1+4-
~ p— 1 —y
n=ir d=p=u

provided y < 2. This does not exceed

A
a(logx)?exp (2 )
—Y

where A is an absolute constant. Setting ¥y = ¢ —1 we have that

A
rm(n)/ l o
2 x(logw) ™ e;p(g_t)

n=x

provided 1 <1 < 3, and we deduce that for this range of values of t,

v f—1—tlogt A
1< z(logx) Bloxp——
& ¢ PA5—
w'(n) _:*-:ﬁog logr
Next, set o = 2/log2 < 3. If w(n)=ulogloge and 2%n, we must

have o'(n) > ulogloga — k. The number of integers » <<a for which
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k= luloglogz is O(x/logr) and so

\ \ \’ ]
,\ 1< Z Z 1+0 ( ad )
— g loga

n=r D=f=4uloglogr 'm:i;-.c,’2””
a{n)y=uloglog e w'(m)=ulogloger -k

ﬂ"’

Set k = hlogloge so that h wvaries in the range [0, 1u]. Certainly
< u—h < 3, and so the inner sum on the right is

< ;’E-'l:-'l-') (lng;c]““"”“” fiflog(u—h) - hlog 2 <{ :-'K(.'I')

since the maximum value of the exponent of loga is zero. Summing over
k< wlogloga we obtain our result.
LeMMA 2. The number of integers n < x which have wno prime factor

exceeding
:’l?l Ieloglogr

8
O (z(x)loglog :r!ji :

Proof. We divide the integers n < & into two classes. If o < Va or
w(n) = uloglogx, n belongs to the fu'».‘r class. Otherwise it belongs to the
second class.

By Lemma 1, the number of integers in the first class is O (= (w)loglog ).
If » belongs to the second class, its largest prime factor p must satisfy

puh»ghng.r‘ - l r

Since u < 3 this gives the result.
Proot of the Theorem. There exists an absolute constant ¢ such
that for all » = 1,
n/y(n) < cloglog 3y (n).

Let 1 = celoglog3a, so that if ¢(n) <@, then n < xl.
Let m be a value of ¢ not exceeding ». Either w(m) = wloglogr, or
m = q(n) where n < 2l and o {p(n)} < uloglogax. Therefore

T - 1
rae > 1+ ¥ L
= n=xl
w(m)=uloglog wig(n)}<uloglogs

The first sum is O (x(x)loglogx) by Lemma 1, and it remains ‘rn study
the second. Note that | = 1 for x» > 1, moreover that for » > ¢", which
we may assume, the function

i‘! 6logloge

is inereasing. We may therefore restrict our attention to those » in the
gecond sum with at least one prime factor larger than this; by Lemma 2
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the number of integers » << »l not counted is
O (z(x) (loglogx)?).
In the remaining sum, we may write n — mp where

1/6loglog e “l—l (aloglogx
)

P> " <

Then

Viz) < y 'r( I?) + O (z(«) (loglogx)’)

wip(m)}<uloglog.r m

2 x(loglogx) \ 1
< =—— / o
o fraath W

IO*‘ wip(m)}<uloglogx %

We do not restrict the size of m in this sum, as the series is convergent,
as we will show.
Consider the function

Zole(n)])

°_°
P = ¥~
"= 1

We are only concerned with real 2z in the range 0 < z < 1, and we show

that for these values of z the series is convergent. lnr,-ulentally, it is there-

fore absolutely convergent, and so f(2) is well-defined, for |z| < 1. The

behaviour of this series on the unit eirele |z| = 1 is an interesting and
complicated problem.

Sinee o {p(n)} is additive z

~w(p—1) 1 ‘:r;[p 1)

2 [[fr 5 <3
P j]_"’

P

for 0 - - 1, provided the series on the right converges.
\\c (l]}pl}- the following result of Erdos [1]. For every & > ( there
exists a positive 0 = d(e) such that the number of primes p < & for which

et} i multiplicative and

v(p—1)—loglogz| = eloglogx

) e
() — .

Let & and H be positive numbers. Then

- Z 1) at.

p=t
rip-1)=k

18

\’ 1 & -
=% !

vip—1)=k p= H
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Lo
=
ot

We select

k
H = H(k) = expexp ( — —)
1l—e&

80 that in the integrand, the condition »(p —1) < k implies that
r(p—1) < (1L-—¢)loglogt.

The integral is therefore convergent, and we have that for ¢ > 0,

1 k :
— = FC(e)
vip-1)=k P &
where (&) is independent of k. Therefore for 0 < z < 1,
p—-1) " no
\ | “ ¥ = ¥ A " —~ 1
> YRR M C=(1-z) Y& Z =
5 ¥ oo S e i B e U e
Y’v‘ kA,fx‘- -
<(1—2) Y |—— 1)) < > 4 COfe).
. );i—..f(1~s @ ) A—aa—g @

Sinee o(p—1) = »(p—1), this gives

\ z”‘”’"” _\ 2P=) VY 1 .

Lip—a &l p &l p(p-T) (L—e)(1—2)

P n

and so

Jl2) = ( (E)BL}J{(]— a2 for 0<z<l1,

where ('(¢) and " (¢) depend on & only. We are now ready to estimate

the sum
vl
-~ R
wig(m)}<uloglogr m

For 2z < 1, this does not exceed
f{z) ~—uloglog e

We may choose z optimally, and we select the value which gives

(13:_3) = (L—e)uloglogm.

Therefore

\ 1 ' / ] lU"“lO,Q.J’
- ( Jex
— m P l ]/

e
a{g(m)) < uloglog e
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and so for every B > 2V Q-/l@, we have that
V(x) = O(n(x)exp{BVloglogu}).

This completes the proof.
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