
ON THE STRUCTURE OF EDGE GRAPHS
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Every graph appearing in this note is a finite edge graph without loops and
multiple edges. Denote by G(n, m) a graph with n vertices and ni edges . K r (t) denotes
a graph with r groups of t vertices each, in which two vertices are connected if and only
if they belong to different groups .

By dividing n vertices into r-1 almost equal groups and connecting the points
in different groups one obtains a graph on n vertices with ((r - 2)/2(r - 1) + u (1)) 11 2

edges which does not contain a Kr(l) . On the other hand, it was shown by Erdős
and Stone [7] that ((r - 2)/2(r - 1) + s) n2 (e > 0) edges assure already the existence
of a Kr(t), where t -~ oo as n -p co . This result is the inost essential part of the
theorems on the structure of extremal graphs, see e .g. [3], [4], [6], [9] .

Let us formulate the result of Erdős and Stone more precisely . Given n, r and e,
put rn = [((r-2)/2(r-1)+e)n2] ([x] denotes the integer part of x) and define

g(n, r, e) = min {t : every G(n, in) contains a K r (t)} .

Erdős and Stone proved that if n is large enough then

(1r _ i (n))' < g(n, r, c),

where i s denotes the s times iterated logarithm. They also stated that for any fixed
S > 0 and large enough n the same method gives

(lr- 1(n))'
-ó C g(71, 1', e) .

In [7] Erdős and Stone also expected that l r _ 1 (n) is, in fact, the proper order of
g(n, r, e) if e is small enough . For r = 2 this was stated in [1] . In [2] Erdős announced
that given e > 0 and r > 2 there exists a constant c' > 0 such that

c ' (log n) 1 l ( r -1) < g(n, r, c),

and thought that g(n, r, a) will turn out to be of order (log n) 1 1( r -1)
The aim of this note is to show that for r > 2 the situation is rather different from

what seeined likely. The two theorems we prove (of which the second is an easy
exercise in the vein of [5]) show that for any r and 0 < e < 112(r -1) there are constants
c, and c 2 > 0 such that

CI log 11

	

g01, r, e) s c2 log n

if n is sufficiently large and c 2 -> 0 as a --, 0 .
The following lemma is needed in the proof of Theorem 1 .
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LEMMA 1 . Let G be a graph with n vertices . Suppose G does not contain a K r(t)
but it contains a Kr - 1 (q), say K. Put N = n-(r-1)q. Then G has at most

((r-2)q+t)N+2gN1-(1~I)

edges of the form (x, y), tivhere x is a vertex of K and y is a vertex of G-K .

For the sake of convenience we use the notation C(a, b) _ ( b ) . Let q > t and

r- 1
r > 2 be natural numbers . Suppose S = U S i, IS i I =q, ISI _ (r-1) q. Call a set

1
K c S a K,-set if IK n S il = t for all i . We prove Lemma 1 in the following equivalent
form .

LEMMA 1'. Let A 1 , . . ., AN be (not necessarily distinct) subsets of S, such that
every K,-set is contained in at most t-1 sets Ai . Then

N
~JAil <((r-2)q+t)N+2gN 1-(1iq

Proof. Suppose JAJ > (r-2)q+t for i < M and JAJ < (r-2)q+t for i > M.
r- 1

For i < M and j < r-1 put IA, n SjI = a i j. Thena ij > t and A i contains jj C(a ij , t)
j=1

K,-sets . Therefore, by the assumption,
~M+ r11-1L

	

C(aij, t) < (t-1)(C(q,
t))r-1

i=1i=1

r-,
Putting ai = Y_ aij-(r-2)q, onehas

j=1

r-1
II C(aij, t) > (C(q, t»r z C(ai, t),
i=1

so

	

M

E C(ai, t) < (t-1) C(q, t) .
i=1

M
As C(x, t) is a convex function of x, on putting a = 57 a,/M, this implies

Thus

Since

the lemma follows .

1

MC(a, t) < (t-1) C(q, t) .

a < (t-1)'il gM -li'+t < 2qM-1 it +t,

M
JÁ i l < 2qM -lir+Mt+M(r-2)q .

1

N

M1 JA i l < (N-M)((r-2)q+t),
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THEOREM 1 . Let r > 2 be an integer and let s > 0 . Then there exists k = k(E, r) > 0
such that if n is sufficiently large and m > ((r - 2)/2(r - 1) + E) n2 then every G(n, m)
contains a K,(t) with t > [k log n] .

Proof. Let r = 2. We show that any k < -1/log(2E) will do for k(s, 2) . For put
j = j(n) _ [k log n] and suppose that there are arbitrary large values of 11 for which
there is a graph G(n, m) without a K20), where m > En2 . Then by a result of Kővári,
Sós and Turán [8] (improved by Znám [10]),

En2 <i(j-1)'1jn2-('lj)+iin .

That is, after dividing by In 2-('1j), we obtain that for any q > 1 there is an arbitrary
large n, such that

2 sn'li -< q,

which contradicts the choice of k . This proves the result for r = 2 .
To prove the result for r > 2 we use induction on r . Suppose the theorem holds

for r = r'-1 and take r = r' . For the sake of convenience we denote by 0,(n) a
graph with n vertices and at least n2 ((r-2)/2(r-1)+E) edges . If x is any positive real
number, we also put K,(x) = K,([x]), where [x] is the smallest integer not less than x .
We suppose that s < 1/2(r-1), for otherwise there is nothing to prove .

By the induction hypothesis there exists a positive number e„ depending on r,
such that every C,(n) contains a K,_,(q(n)), where q(n) = e, log n . We shall show that
every GE(n) contains a Kr(E(r- l)/4q(n)) = 9,(d,.c log n) = K,(t(n)) if n is large
enough .

Suppose that, contrary to this assertion, there are arbitrarily large values of n for
which some G£(n) does not contain a Kr(t(n)) . Given any N, let

Go = GE(n) = CE(no), no > N/E,

be such a graph. Define a sequence of graphs Go G, . . ., Gk = oe(nk), as follows .
If Gk has a vertex xk of degree less than nk(r-2/r-1 +E), put Gk + 1 = Gk -xk . One
can easily check that for k > n-En the graph Gk would be the complete graph, so the
sequence must stop with a graph Gk = GE(nk), where nk > En > N . Furthermore,
G,(nk) does not contain a K,(t(n)) so it does not contain a K,(2t(nk)) either if N is
large enough (e .g . if t(N) < 2t(N/E)) .

Consequently there are arbitrarily large values of n for which some graph C = 6,(n)
does not contain a K,(2t(n)) and has only vertices of degree at least n(r-2/r-1+ E) .
Put q = q(n), t = 2t(n). Then 0 contains a Kr-,(q), say Kr_, but does not contain a
IZ2(t) and so by the result of Kővári, Sós and Turán [8] there are at most

A = ( r 21 ) q2 + (r-1){- (t-1)llrg2-Ilt+jqt}
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edges in the subgraph spanned by K,_ 1 . Furthermore, by the lemma, at most
B = ((r-2)q+t)(it-(r-1)q)+2qn'-'I` edges connect K,_ i to

	

Finally, as
every vertex of C has degree at least n(r-2/r-1 +e), we must have

2A +B > (r-1)gn(r-2/r-1+e),
and so

2gnl-MO +(r-1) q2 +tn < (r-1)egn .

As this inequality does not hold if n is sufficiently large, the theorem is proved .

THEOREM 2 . Let 0 < e < i and c > -2/log (2e) . Then for every sufficiently large n
there exists a graph G(n, ni) not containing a KAO, where m = [en2 ] and t = [c log n] .

Proof. The number of K2 (t) graphs on n distinguishable vertices is

C(n, 2t) C(2t, t)/2

and there are C(n(n - 1)/2- 1, m-1) graphs with m edges containing a given set of 1
edges . Thus the result follows if we show that for large enough n one has

C(n (n - 1)/2 - t2, m- t2) C(n, 2t) C(2t, t)/2 C(n(n-1)/2, m) < 1 .

As the left hand side is bounded by
\ (	

(n(n-1)/2)-`Z m` 2 n2t

	

2En
<

	

t 2 i2 2 %
n-1

	 )

which tends to zero since c > -2/log (2e), the proof is complete .

Remarks . 1 . Denote by c,(s) the supremum of the possible values for k(e, r)

Then Theorem 2 and the first part of the proof of Theorem 1 show that

-1/log (2a) < 0200 < - 2/log (2e),
and

d, e < c, (E),
where d, > 0 depends only on r .

Rernarks. 2 . If 0 < r < z(r-1) 2 then cr e< c2((r-1)2 a)

-2/log (2(r-1)2 e),

	

(1)
so in particular cr(e) -> 0 as e --> 0 for every r > 0 . To prove (1) note that for every
q > 0 we can construct the following graph if n is sufficiently large . Take an (r-1)-
partite graph on n vertices with maximal number of edges (there are [n+i-i/r-1]
vertices in the ith class) . Add en' = (r-1) 2 e(n/r-1) 2 edges to a class of it in such a
way that the class contains no K 2(t) if t > (c2((r-1)28)+,, ) log n/r-1 . Then the
graph obtained in this way has no K,(t) if

t > (c 2 ((r-1) 2 e)+> ) log n .
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Remarks. 3 . It is very likely that inequality (1) gives, in fact, the right order of
c,(e), i .e . there exists a c,* > 0 such that

-c,*/loge <' c'(8)

	

(2)

as a --> 0. For r = 2 inequality (2) follows from Theorem 2, as we have already
remarked .
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