ON THE STRUCTURE OF EDGE GRAPHS
BELA BOLLOBAS axp PAUL ERDOS

Every graph appearing in this note is a finite edge graph without loops and
multiple edges. Denote by G(n, m) a graph with n vertices and m edges. K, (i) denotes
a graph with r groups of t vertices each, in which two vertices are connected if and only
if they belong to different groups.

By dividing n vertices into r—1 almost equal groups and connecting the points
in different groups one obtains a graph on n vertices with ((r—2)/2(r—1)+c(1)) n*
edges which does not contain a K,(1). On the other hand, it was shown by Erdés
and Stone [7] that ((r—2)/2(r—1)+¢&)n*(e > 0) edges assure already the existence
of a K,(1), where t — o0 as n— oo. This result is the most essential part of the
theorems on the structure of extremal graphs, see e.g. [3], [4], [6], [9].

Let us formulate the result of Erdds and Stone more precisely. Given n, r and &,
put m = [((r—2)/2(r—1)+&)n*] ([x] denotes the integer part of x) and define

g(n,r, &) = min {t : every G(n, m) contains a K,(1)}.
Erdés and Stone proved that if # is large enough then
(Ir— l(n))i— < g(”? r, 8);

where [, denotes the s times iterated logarithm. They also stated that for any fixed
é > 0 and large enough 1 the same method gives

(1) % < gln, r, e).

In [7] Erdds and Stone also expected that I,_,(n) is, in fact, the proper order of
g(n,r, ) if g is small enough. Forr = 2 this was stated in [1]. In [2] Erd&s announced
that given ¢ > 0 and r = 2 there exists a constant ¢’ > 0 such that

c'(log )"~V < g(n, r, &),

and thought that g(n, r, €) will turn out to be of order (log n)"/¢ =1,

The aim of this note is to show that for » > 2 the situation is rather different from
what seemed likely. The two theorems we prove (of which the second is an easy
exercise in the vein of [5]) show that forany rand 0 < ¢ < 1/2(r— 1) there are constants
¢, and ¢, > 0 such that

c logn < g(nr,e) <c logn

if n is sufficiently large and ¢; = 0 as ¢ = 0.
The following lemma is needed in the proof of Theorem 1.
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LEMMA 1. Let G be a graph with n vertices. Suppose G does not contain a K,(t)
but it contains a K,_,(q), say K. Put N = n—(r—1)q. Then G has at most

((r=2)g+1f)N+2g N1 -0/

edges of the form (x, y), where x is a vertex of K and y is a vertex of G—K.
s a
For the sake of convenience we use the notation C(a, b) = ( b ) . Letg >t and

r—1
r = 2 be natural numbers. Suppose S = (J S,, |Si| =4¢,|S| = (r—1)q. Call a set
1

K = SaK,setif |[ K nS;| = tforalli. We prove Lemma 1 in the following equivalent
form.

Lemma 1°. Let A,, ..., Ay be (not necessarily distinct) subsets of S, such that
every K,-set is contained in at most t—1 sets A;. Then

N
2 |4, < (r—2)q+1)N+2g N4,

Proof. Suppose |4;| = (r—2)g+t for i < M and |4,] < (r—2)g+1 for i > M.
r—1

Fori<Mandj<r—1put|4;nS; = a;. Thena,; > tand 4; contains ] C(ay;, 1)
Jj=1

K,-sets. Therefore, by the assumption,

¥, TI, Clag. ) < (= (Cla, )

i=

r—1
Putting a; = 2 a;;—(r—2)q, one has
1=1

:1-::111 C(aij' !) Z (C(q’ l[))"_2 C(ah f},

SO M
2 Cla, 1) < (1—1)C(q, 1).
i=1
M
As C(x, t) is a convex function of x, on puttinga = 3" a;/M, this implies
1
MC(a, t) < (t—1) C(g, 1).
Thus
a< (t=-1)"gM V4t <2qM™ Vg,
M
S|4 <2gM ™V 4+ Mt+M(r—2)q.
1
Since

> 14 < (N=MY(r=2)q+1),

M+1

the lemma follows.
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THEOREM 1. Letr = 2 be aninteger and let € > 0. T hen there exists k = k(e,r) > 0
such that if n is sufficiently large and m = ({r—2};‘2(r~—l)+£) n* then every G(n, m)
contains a K, (t) with t > [k logn].

Proof. Letr = 2. We show that any k < —1/log(2¢) will do for k(g, 2). For put
Jj = j(n) = [k log n] and suppose that there are arbitrary large values of n for which
there is a graph G(n, m) without a K,(j), where m > en?. Then by a result of K&véri,
Sés and Turan [8] (improved by Znam [10]),

en® <3(j—=1)"Hn? =D 4] jn,

That is, after dividing by 4n? ~(!/?, we obtain that for any n > 1 there is an arbitrary
large n, such that

2en'li < 1,

which contradicts the choice of k. This proves the result for r = 2.

To prove the result for r > 2 we use induction on r. Suppose the theorem holds
for r =r'—1 and take r = ¥’. For the sake of convenience we denote by G,(n) a
graph with n vertices and at least n*((r—2)/2(r—1)+¢) edges. If x is any positive real
number, we also put K,(x) = K,([x]), where [x] is the smallest integer not less than x.
We suppose that ¢ < 1/2(r—1), for otherwise there is nothing to prove.

By the induction hypothesis there exists a positive number e,, depending on r,
such that every G,(n) contains a K,_,(q(n)), where g(n) = e, log n. We shall show that
every G,(n) contains a R (e(r—1)/4q(n)) = R,(d,elog n) = K(t(n)) if n is large
enough.

Suppose that, contrary to this assertion, there are arbitrarily large values of n for
which some G ,(n) does not contain a K (t(n)). Given any N, let

GG = Ga(”) = Ge("o)s i) ; N/E)

be such a graph. Define a sequence of graphs G, > G, o ..., G, = G,(,), as follows.
If G, has a vertex x, of degree less than n(r—2/r—1+¢), put G,,; = Gy—x;. One
can easily check that for kK = n—en the graph G, would be the complete graph, so the
sequence must stop with a graph G, = G,(n,), where n, > en > N. Furthermore,
G.(n,) does not contain a K,(t(n)) so it does not contain a K,(2t(n,)) either if N is
large enough (e.g. if t(N) < 21(N/e)).

Consequently there are arbitrarily large values of n for which some graph G = G (n)
does not contain a R (2t(n)) and has only vertices of degree at least n(r—2/r—1+¢).
Putq = q(n), t = 2t(n). Then G contains a K,_,(q), say K,_, but does not contain a
K, (1) and so by the result of K&vari, Sés and Turin [8] there are at most

A= (") e+ e-Dae-1g a0
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edges in the subgraph spanned by K,_,. Furthermore, by the lemma, at most
B = ((r=2)q+1)(n—(r—1)q)+2gn*~'"* edges connect K,_, to G—K,_,. Finally, as
every vertex of G has degree at least n(r—2/r—1+¢), we must have

244+B = (r—)gn (r—=2/r—1+-¢),
and so
2qn' U 4 (r—1)g* +tn < (r—1) egn.

As this inequality does not hold if # is sufficiently large, the theorem is proved.

THEOREM 2. Let 0 < g <4 and ¢ > —2[log (2&). Then for every sufficiently large n
there exists a graph G(n, m) not containing a K,(t), where m = [en*] and t = [c log n].

Proof. The number of K,(f) graphs on » distinguishable vertices is
C(n, 21) C(2t, 1)[2

and there are C(n(n—1)/2—1, m—1) graphs with m edges containing a given set of [
edges. Thus the result follows if we show that for large enough n one has

C(n(n—1)/2—1%, m—1*) C(n, 2t) C(2t, 1)/2 C(n(n—1)/2, m) < 1.
As the left hand side is bounded by
( 2en ) 2 n?
n—1

which tends to zero since ¢ > —2/log (2¢), the proof is complete.

(n(n—1)/2)"" m* n*

A

Remarks. 1. Denote by c,(¢) the supremum of the possible values for k(e, r)

Then Theorem 2 and the first part of the proof of Theorem 1 show that

—1/log (2&) < ¢,(e) < —2/log (2¢),
and
drg "‘<‘- C,(E),
where d, > 0 depends only on r.

Remarks. 2. 1f0 <& <3(r—1)> then c/(e) < c)((r—1)%¢)

< —2flog (2(r—1)*¢), (1)
so in particular ¢,(g) = 0 as ¢ — 0 for every r > 0. To prove (1) note that for every
n > 0 we can construct the following graph if n is sufficiently large. Take an (r—1)-
partite graph on n vertices with maximal number of edges (there are [n+i—1/r—1]
vertices in the ith class). Add en® = (r—1)? e(n/r—1)? edges to a class of it in such a
way that the class contains no K,(1) if t > (c,((r—1)? a)-l-n) logn/r—1. Then the
graph obtained in this way has no K,(¢) if

1> (cz (r=1)? £)+:}) log n.



ON THE STRUCTURE OF EDGE GRAPHS 321

Remarks. 3. 1t is very likely that inequality (1) gives, in fact, the right order of
c,(¢), i.e. there exists a ¢,* > 0 such that
—¢,*[loge <c,(e) (2)

as £¢— 0. For r =2 inequality (2) follows from Theorem 2, as we have already
remarked.
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