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ON THE EXISTENCE OF TRIANGULATED SPHERES IN
3-GRAPHS, AND RELATED PROBLEMS

by
V. T. BOS, P. ERDOS (Budapest) and W. G. BROWN (Montreal)

To the memory of A, Rényi

1. An r-graph, H consists of a set V{H"™) of vertices, and a class B(HY
of r-subsets of V(H") (i.e. unordered r-tuples of vertices). We ghall use various
letters (in place of H) to name r-graphs, but the superseript (r) will always be
included; except possibly when r=2 — a 2-graph is simply a graph. If we
follow the symbol H™ by (n) or {n; &) it will mean that the r-graph has exactly
n vertices, and, in the second case, af leasf & r-fuples (ns we shall name the
members of E[Hm}}, The letter 7 iz reserved to denote all r-graphs with the
properties indicated by any appendices to the symbol: thus G represents any
regraph; G7(n) any G with n vertices; and G"(n; k) any G"'(n) with at
Teast & r-tuples.

The extremul theory of graphs was initiated by . Toudw [20, 21]: he
determined for every positive integer ¢ the smallest integer & for which every

f + t A
(n; &) contains a complete f-gon (m a @ [#: [ 2” l Extremal problems for

ordinary graphs have been studied extensively [2—9, eto.]; many general
results have been obtained, but many unsolved problems remain. For r-graphs
very little is known [5, 11]. Even the original problem of Turdx [20] (to deter-

|
¥

r-tuples which can be formed from some 7 vertices) remains unsolved
[14, 16].

In this paper we shall confing our interest to 3-graphs. The problem
deseribed in the title represents an analogue of the well known property of
graphs that any /(n;n) containeg a polvgon. That result could be restated, in
topological terms, as saying that any simplicial 1-complex with at least as
many l-simplexes as 0-simplexes must contain a triangulation of the 1-sphere.
(It is best possible in the sense that there exist G{n;n — 1)’s containing no
polygon.) In Theorem 3 we shall determine asymptotically the maximum
number of 2-simplexes a simplicial 2-complex may contain without containing

mine the smallest & for which for fixed /, every G"n; k) contains all
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a subcomplex which is a triangulation of the 2-sphere. More precisely, we shall
prove that there exist constants e, and ey such that every G%m; ¢y n'7) con-
taing a double pyramid (i.e. 0 polytope whose faces are all triangles having
two of their vertices as adjocent vertices of a fixed polygon, and whese third
vertex is one of two fixed points): but that some {i‘"-‘-’[ﬂ;f:l '] contains no
trinngulation of the sphere. Also, we disouss several reluted results.

2. Extremal numbers. let H be any lixed family of r-graphs. Then
ex(n: H) will denote the largest integer & for which there exists a 6"'(n: &)
containing none of the members of H as a sub-r-graph. (When H consists of a
single r-graph H" we may abbreviate ex(n; {H""}} to exin: H"'}}. For s less
than r the s-fuples of an r-graph will be any set of & vertices; in paeticular, the
edges will be any unordered pair of vertices, The star of an s-tuple 8 in o 647
{# <= r) will be the (r — #)-graph whose vertices are all vertices of the &' ot
in 8, and whose (r — #)-tuples are all sets {7 8§ where U ranges over the
r-tuples of the @' which contain 8 as a subset: the ralency of an s-tuple i= the
number of (r — #)-tuples in its star. The produet of an r-graph A" and an
s-graph B® will be an (r + s)-graph whose vertex set is the union of those of
A" and B and whose (r + s)-tuples are all unions of an r-tuple of the fimst
und a digjoint s-tuple of the second; in partioular, o cone over A is a product
of A" with a digjoint G (1; 1); a double pyramid (mentioned above) is o
product of a polygon {(graph) with a digjoint 6'7(2:2).

1t will be helpful to use geometrieal language from time to time inter-
preting the triples of a 3-graph as the 2-simplexes of a simplicial Z-complox
(which contains all possible 1-simplexes). A wheel will be a cone over a polygon.
An octahedron will be o double pyramid over o 4-gon.

3. An clementary result on wheels. Lot W denote the sot of all wheels.

TasoreM 1. lim n 2ex (nm: W) = 1/3.
P

Proor.

#. In any Gm{ﬂ.: [ — 2) -+ 11/3) soune vertex must have valonoy ni
least n — 1, hence its star must contain a polygon. Thus for all &, ex (n: W)
< (n — 10%8.

b. We construct for every integer a a 3-graph A" (n; a(n — 1)/3) con-
taining no wheels. The vertices will be the residues modulo »; [&, y, =} &
selected as a triple if and only if 2 + g + 2 == O or 1 (mod a). and x, ¥, = are
distinet. For fixed x, the number of solutions (. y. =) of these congroences =
2n; of these, at most four are of the form (r, y. »). and ot mest two of each of
the forms (x, y, #) and (2, x, 2). Thus the number of triples in the 3-graph i
at least n(2r — 8)/31. In the star of any vertex x, every vertex hus valenoy it
most 2. Any polygon there is of the form y, g - . oy 3 Whereay -+ yy ¥,
hht+=1—=z paty,= —z ete. i
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coompy = = l=mgn =Y W= . But this im-
plics thnt all vertices, including » are in the polvgon, \shir.-h i= 1m|m1hh: We
vonclude that the star is a union of open ares,

As a related result we have the following, Lot X' denote the V(4 2
with two triples having an edge in common, i.e, the produet of a 6'%(2; 1)
and o disjoint GV (2;2),

TaroreMm 2. lim n? ex(n: X™) = 1/6.

Proor.

a. In any G [n. [:| ,.-'f 3 I.' some edge lies in more than one triple;

this yields an upper bound of
A texins X <= s Yle

b. The Steiner triple svstems [12, 17] which exist for n = 1 or 3 (mod 6)
(n = 7), are example of a G n:nln — 1)/6) where every edge has unit
v nlmw_t Lower bounds for the other congruence classes of »n are easily obtained
from these 3-graphs by erasing up to three vertices (and all triples containing
them) from these 3-graphs.

4. Trinngulations of the 2-sphere. Let 7' denote the set of trinngulations
of the 2-aphere. (We rely on geometrie intuition in part of the following dis-
cussion. A rigorous definition of a triangulation of the 2-sphere might be:
G"(n; 1) such that

(i) the star of every vertex is a polyzon

{ii) every edee is in gero of two triples;

(iil) (orientability) the triples can be each ovolically ordered so that the

two orientations induced on any edge of valeney two are in opposite
directions;

{iv) (genus 0) the number of edges of valency 2 is exactly n - £ — 2.)
Turonres 3. There exisl posilive constants ¢y and ey such that for all n,
< n texin:T) <
(In fact we prove that for ¢ = 0 and n sufficiently large, ¢, > 37"% - ¢
- 1EHE ),
Proop,
. The upper bosnd: Let ¢ be u constant (to be further specified below).

The sum of the valencies of the edges of & 6™ (n, en®?) is at least 3en®?; hence
the number of unordered pairs of triples having an edge in common must be nt
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1 3 i ; W
least: 5 [{3m“-’}2 / (2 ]— Sr-ﬂﬁ'f*l which is greater than (n — 3) [ﬂ] when ¢ =

= (nt 4 (8n2 — 31n + 24))/12n, in particular when ¢ > 18—F 4 (144n)~ 3,
For guch e there must exist an edge zy whose star contains at least n — 2 edges.
hence contains a polygon. The produet of this polygon with the 6% (2; 2)
formed by = and ¥ is a double pyramid.

b. The lower bound: Let ¢ be a prime power and m =g¢* 4+ ¢4+ 1. We
construct a 3-graph S§(3m, m(y + 1)) as follows. Let 4 denote the set of
residues modulo m. By a well known theorem of SINGER [19] there exists a
perfect difference set D for 4, i.e. a subeet D of 4 such that every non-zero
element of A4 is uniquely representable modulo m ag a difference d;, — o, where
d,, d, € D. The vertex set of 85" will be the union of three disjoint copies of A,
labelled 4,, 4,, 4;. The triples will be precisely those (a,, ay, g;) with a; € 4,
(i=1,8 8)anda, + a, + as € D. (As always, addition is modulo m.) Buppose
now that M is a sub-8-graph of Sf:-r” whose every vertex has a pelygon for its
star. Without limiting generality, consider a vertex a, in A4,. Its star must be
an even polygon of the form ay, ay, a3, a3, . . ., a4, a5, a3 where ay € Ay, @y € Aj.
Suppose r — 2, Le. that a, has valency 4. Then the following triples must have
their sums in D; a, ay a3, a, a a3, a, ai a3, a, a; ay. Distinctness of the vertices
of the polygon forees the four sums here to be distinet. But then a — a} =
= {a; + ay + a3) — (g, -+ as + ai) (i = 1, 2) & contradiction, in that & non-
zero element eannot be expresgible in two ways as a difference of elements of
the difference set. Thus the only triangulations M of surfaces contained in
SE.’} must have all vertices of valeney at least 6. But it is well known ([18], p.
104) that any trisngulation of the sphere must include vertices of valency less
than 6. Thus ex (3m, T) = m>*,

Let now & be given between () and 1. For s sufficiently large thers exista
a prime p between ({1 — £)** n/3 — 3/4)'* —1/2 and (n/3 — 3/4)"* — 1/2, ie.
(1 —ef*m<dlpt+p+1)<n We may construct a 3-graph with =
vertices by adjoining isolated vertices to 8%, The resulting ¢(n) has more
than (1 — #£)83=%% a*? triples and contains no triangulation of the sphere.

5. Further extremal problems for 3-graphs. We now commence a study
similar to that begun for graphs in [4], Namely, if §”(; k) denote the set of
all r-graphs G(1; k), we inquire as to value of ex (n, G (I; &), which value
we denote by f“Nn; 1, &) — 1 to be consistent with [4], Below we determine
the asymptotic behavior of some of these numbers for [ < 6.

Tagonem 4. (The symbols ey, ¢4, . . ., will denote posifive consfants whose
value we may estimate in the course of our progfs.)

a. lim n—?f@n; 4, 2) = 1/6

I =+ ==

esm® < fOn; 4, 3) < 9 (n; 4, 4)
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b. f¥n:5,2) = 8]+ 1
en? < f9n; 5, 8) = ot
gt < fn: 5 4) < et
emd < FNni 5, 8) <. ., < f9m; 5 10)
o, [ n; 6,2) =2
e’ = f®(n; 6, 3)
en® < f@(n; 6, 4) = (1/4)n?
T 6, 6) < on®*
f®n; 6, B) = g n't?

ean® < s 8, 0) <. < s 6, 20) .

Proor. a.The first statement is simply Theorem 2. To prove the second
we need only consider the 3-graph we call 7(n, [r%/27]) defined as follows:
the vertices are partitioned into clagses A, B, €, containing respectively [n/3],
[{n — 1)/3], and [{(n + 2)/3] members; the triples are all {a, b, ¢} 2uch that
a€d, bEB, c€0. The gase | = k —4 is the first ppen case of Turin’s
problem [207.

b. &k = 2. The lower bound follows from the G'¥(n, [n/3]) which has no
two triples sharing a vertex. And, in any @®(n, [n/3] + 1), some vertex
must have valeney exceeding 1.

# = 3. The lower bound follows from Theorem 2; the upper from Theorem
1. However, some improvement in the constant of the upper bound is possible;
ef, the techniques used in proving the case [ = 6 F = 4.

k= 4. The lower bound follows from the 8-graphs .‘:',53} congtructed in
the proof of Theorem 3. Any G (5; 4) contained in ﬁ’f} must have the prop-
erty that its vertices can be partitioned into three classes so that every
triple contains one vertex from each class. 1t s eagily seen by inspection that
the only @'9(5; 4) with this property is a cone over a quadrangle. But we
saw in the proof of Theorem 3 that :S'ff} eannot contain such a wheel. The
remainder of the proof of the lower bound, viz. the passage from special values
of n to all n sufficiently large, is analogous to that used in the proof of Theorem 3.

In any G%n; en®*) some vertex x must have valency more than
3¢(n — 1)"*. By a result of K&viri 868 TuriwN [15] a sufficiently large
comstant ¢ ensures the existence in the star of  of a 4-gon; hence the 3-graph
containg a cone over a 4-gon. (The other examples of a G%(5; 4) can all be
shown to require (constant) n® triples — by the examples T constructed in
the proof of a. above.)
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t = 5. The lower bound follows from the examples 7' of a, above,

¢. The ease £ = 2 [u trivial. -

k = 3. To prove the lower bound we construet a family of examples
% m) for n =¢ +— g + 1 (g any odd prilme power) having for ¢ sufficiently
large, more than (1/6)n" ® triples but containing nofA3%6; 3); the proof then
may be completed as in the proof of the lower bound in Theorem 4. Our example
i the 3-graph “spanned’ by the graph exploited in [17, § 3 and [6], Theorem 1.
The vertices will be the points of a linite projective plane PG{2, q). Let 4 be
an orthogonal polarity. A triple [, », 2} of points is selected if and only if the
points are distinet and pairwise conjugate with respect to 4 ie. each is in-
cident with the polars of the other two, (sometimes called a self-polar triangle).
It is easily =een that no triple selected can contain an absolute point of the
polarity. (We could "improve” our example by discarding these points, but
this improvement will be of no importance asymptotically.) No two distinet
triples can have two vertices in common, for the polar line of any point of a
triple is determined by the other two. Hence, il this 3-graph is to contain a
G'9Y6; 3), that 3-graph must be of the following form: ¥ = (1,2, 3,17, 2, 3"}
E = (1728, 1273, 123"}, The existence of such a sub-3-graph would imply that
1, 2and 2, 3 and 3, 1 are onch conjugate pairs, i.e. that 123 is a triple. But that
would vield several pairs of triples sharing an edge; which, us we have remarked
uboye, cannot exist. Every line 7 of the geometry which is not incident with its
pole contains at least ¢ — 1 points not on the conie of the polarity. Any two
of these points, together with the pole of [ form & selected teiple. The number

2
of non-sell-conjugate lines is ¢%: the number of such triples s (¢%/3) r e I =

(LB — o)y Tor g sufficiently Jarge (0 <7 ¢ <7 1 arbiteary),

We have not suceeeded in establishing an upper bound better than
{eonstant ) n®.

k= 4. To establish a lower bound (probally eapable of some improve-
ment in the constant) let the vertices of a ('%(n) be the residues modulo n.
A triple xyz is selected if and only if o, y. 2z are distinet, and 2 + y + z2=10
modulo a. This 3-gruph has at least o~ 2 admissible triples containing r,
henee at least nin— 2)/6 triples in all. No two triples share two vertices, since
the third is uniquely determined by any two. Thus the only type of GY(6; 4)
which could be present would be of the following form:

V= {1 238,1,%,3)
E = {1723, 12'3, 143", 172'3°} .

However, the four congruences implied by the existence of these four triples
imply the congruence for 124, which is impossible since no two triples share an
el gre!
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For an upper hound we apply (4) of [4] In any G a; (n[{3/4) (n — 1)] 4
+ 1)/8) some vertex has a Gln — 1, [{(8/4)(n - 1)] 4+ 1) as a star; henee the
star contains a 61{5; 4). It seems likely that the lower bound could be improved
to allow the establishment of lim n2 f%n; 6, 4) = 1/4.

A

k= 6. Let a G (n; ¢\, n* ) be given, where the constant is to be further
specified below, By the same sort of reasoning as used in the proof of the
upper bound of Theorem 3, there nre at least 9e* w®(1 — (6 | n) 1) (pairs of
triples sharing an edge, which is more than 9¢%(1 — #)a® when n = (36654
(¢ being any real number strietly between 0 and 1), Henee for such n there
exist two vertices whose stars have more than 1821 — &)n edges in common;
by ([4] (4]) these stars have a G{4; 3) in comumen if 1831 — &) = 2/3, with
n restricted, for example, to exesed o5

ko= 8. Lot a ' (n, e n'' ') be given, where the constant is to be further
specified below. As in the case F =6 above, there are at least 9e257 % (1

{6 |m)—') pairs of triples sharing an edge. Hence for 0 < ¢ < 1

and m = (36e® &) there exist two wertices whose stars have more than
18e21—¢)n' * edger in commen. The proof concludes as in the earlier case.
using the result of Kivin: —8ds Turiw [15] cited earlier.

k= 9. Any 3-graph G(6) with vertices in three classes such that any
triple has one vertex in each class ean have no more than eight triples. Thus
the 3-graphs T construeted in the proof of n. yvield a lower hound.
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