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ON THE EXISTENCE OF TRIANGULATED SPHERES IN
3-GRAPHS, AND RELATED PROBLEMS

by

V. T. SÖS, P . ERDŐS (Budapest) and W. G. BROWN (Montreal)

To the memory o f A . RÉNYI

1. An r-graph, H (') consists of a set T7(H ( ') ) o I' vertices, and a class E(H( ' )
of r-subsets of V(H( ' ) ) (i .e . unordered r-tuples of vertices) . We shall use various
letters (in place of H) to name r-graphs, but the superscript (r) will always be
included; except possibly when r = 2 - a 2-graph is simply a graph . If we
follow the symbol H(r) by (n) or (n ; k) it will mean that the r-graph has exactly
n vertices, and, in the second case, at least Ic r-tuples (as we shall name the
members of E(H( ' ) )) . The letter G is reserved to denote all r-graphs with the
properties indicated by any appendices to the symbol : thus G (') represents any
r-graph ; G( ' ) (n) any G(') with n vertices ; and G( ' )(n ; k) any G( ') (n) with at
least k r-tuples .

The extrenial theory of graphs was initiated by P . TURAN [20, 21] : he
determined for every positive integer t the smallest integer k for which every

G(n ; Ic) contains a complete t-gon (i .e . a G It ; ()1t

	

. Extremal problems for
2

ordinary graphs have been studied extensively [2--9, etc .]; many general
results have been obtained, but many unsolved problems remain . For r-graphs
very little is known [5, 11 ] . Even the original problem of TURAN [20] (to deter-

mine the smallest k for which for fixed t, every G( ' ) (n ; k) contains all
r

r-tuples which can be formed from some t vertices) remains unsolved
[14, 16] .

In this paper we shall confine our interest to 3-graphs . The problem
described in the title represents an analogue of the well known property of
graphs that any G(n; n) contains a polygon . That result could be restated, in
topological terms, as saying that any simplicial 1-complex with at least as
many 1-simplexes as 0-simplexes must contain a triangulation of the 1-sphere .
(It is best possible in the sense that there exist G(n; n - 1)'s containing no
polygon.) In Theorem 3 we shall determine asymptotically the maximum
number of 2-simplexes a simplicial 2-complex may contain without containing
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a subcomplex which is a triangulation of the 2-sphere . More precisely, we shall
prove that there exist constants c i and c, such that every G(3) (n ; c 2 jai ') con-
tains a double pyramid (i .e . a polytope whose faces are all triangles having
two of their vertices as adjacent vertices of a fixed polygon, and where third
vertex is one of two fixed points) ; but that some G (3 )(n ; Ca 113 2 ) contains no
triangulation of the sphere . Also, we discuss several related results .

2. Extremal numbers . Let H be any fixed family of r-graphs . Then
ex(n ; H) will denote the largest integer k for which there exists a G( ' )(n ; !c)
containing none of the members of H as a sub-r-graph . (When H consists of a
single r-graph H( ' ) we may abbreviate ex(n ; {H( ' ) }) to ex(n ; For s less
than r the s-fuples of an r-graph will be any set of s vertices ; in particular, the
edges will be any unordered pair of vertices . The star of an s-trple S in a G(r)

(s < r) will be the (r - s)-graph whose vertices are all vertices of the G ( ' ) not
in S, and whose (r -- s)-tuples are all sets U S where U ranges over the
r-tuples of the G(') which contain S as a subset ; the valency of an s-tuple is the
number of (r - s)-tuples in its star. The product of an r-graph A ( ') and an
s-graph B(s) will be an (r --- s)-graph whose vertex set is the union of those of
A( ' ) and B(s) and whose (r +tuples are all unions of an r-tuple of the first
and a disjoint s-tuple of the second ; in particular, a cone over A ( ') is a product
of A( ' ) with a disjoint G ( ' ) (1 ; 1) ; a double pyramid (mentioned above) is a
product of a polygon (graph) with a disjoint G( ' ) (2 ;2) .

It will be helpful to use, geometrical language from time to timee inter-
preting the triples of a 3-graph as the 2-simplexes of a simplicial 2-colltelex
(which contains all possible 1-simplexes) . A wheel will be a cone over a polygon .
An octahedron will be a double pyramid over a 4-gon .

3. An elementary result on wheels . Let W denote the set of all wheels .

THEOREM 1 . 1im n-2 ex (n ; W) - 1/3 .

PROOF.

a. In any G(3)(n ; [n(n - - 2) -}- ]]/3) some vertex must have valeney '11

least n 1, hence its star must contain a polygon . Thus for all a, ex ( ,n,, W) -
< (n - 1) 2 3 .

b . We construct for every integer ra, a 3-graph A (30 (n ; n(n - 4)~3) con-
taining no wheels . The vertices will be the residues modulo n ; {x, y, s} is
selected as a triple if and only if x + y -- z - 0 or 1 (mod n), and z, y, z are
distinct. For fixed x, the number of solutions (x, y, ~.) of these congruences is
2n ; of these, at most four are of the form (x, y, y), and at most two of each of
the forms (x, y, x) and (x, x, z) . Thus the number of triples in the 3-graph is
at least n(2n - 8)/3! . In the star of any vertex x, every vertex has valeney at
most 2. Any polygon there is of the form yi, y 2 , . . ., y r , y, where y, + y ., x,

y2 + y3 - 1 - x, y3 + y4 - x etc . i .e .

t
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• • - Y5 - ' Js - J3 y i - 1 - y2 -- y4 - y4 - ys
-

. . . • But this im-
plies that all vertices, including x are in the polygon, which is impossible . We
conclude that the star is a union of open arcs .

As a related result we have the following . Let X (3) denote the G ( 3 )(4 ; 2)
with two triples having an edge in common, i .e . the product of a G ( 2 )(2 ; 1)
and a disjoint G (O (2 ; 2) .

TI-n,oREA 2. lim n-2 ex(rz ; X (3) ) = 1/6 .
n--

22 3

PROOF .

a . In any G" n, l n / 3 + 1 some edge lies in more than one triple ;
2

this yields an upper bound of

n-2 ex(ra ; X (3) )

	

(1

	

n-I)/6 .

b . The Steiner triple systems [12, 1 .7] which exist for n - 1 or 3 (mod 6)
(n > 7), are example of a G (3)(n n(n - 1)/6) where every edge has unit
valency . Lower bounds for the other congruence classes of -n, are easily obtained
from these 3-graphs by erasing up to three vertices (and all triples containing
them) from these 3-graphs .

4. Triangulations of the 2-sphere. Let T denote the set of triangulations
of the 2-sphere. (We rely on geometric intuition in part of the following dis-
cussion . A rigorous definition of a triangulation of the 2-sphere might be : a
G (3) (n ; t) such that

(i) the star of every vertex is a polygon ;

(ü) every edge is in zero or two triples ;

(iii) (orientability) the triples can be each cyclically ordered so that the
two orientations induced on any edge of valency two are in opposite
directions :
(iv) (genus 0) the number of edges of valency 2 is exactly n + t - 2 .)

TxroREm 3 . There exist positive constants c4 and c,such that for all n,

ta- s 2 ex(n; T) < c 2 .

(In fact we prove that for f

	

0 and it sufficiently large, c,

	

3 -5 2

	

s
c,

	

18-i 2 + F) .

1-~ ROOF .

a . The upper bound : Let c be a constant (to be further specified below) .
The sum of the valencies of the edges of a G (3) (n, cn5 2 ) is at least 3cn 5 2 ; hence
the number of unordered pairs of triples having an edge in common must be at
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least2 ((3cn5 ' 2)2 ' l 2 ~- 3cn 5 ' 2 which is greater than (n

	

3)
1n

when c
21

(nom + ( 8n 2 - 31n + 24)')/12n, in particular when c > 18 + (144n) -',
For such c there must exist an edge xy whose star contains at least?? . - 2 edges .
Hence contains a polygon . The product of this polygon with the G(1) (2 ; 2)
formed by x and y is a double pyramid .

b . The lower bound : Let q be a prime power and m = q2 + q + 1 . We
construct a 3-graph Sg3)(3m, m(q + 1)) as follows . Let A denote the set of
residues modulo m . By a well known theorem Of SINGER [19] there exists a
perfect difference set D for A, i .e. a subset D of A such that every non-zero
element of A is uniquely representable modulo m as a difference dl - d2 where
dl , d2 E D. The vertex set Of Sq3) will be the union of three disjoint copies of A,
labelled Al , A 2 , A 3 . The triples will be precisely those (a,, a2 , a3 ) with a ; E A ;

(i - 1, 2, 3) and a, + a 2 + a3 E D . (As always, addition is modulo m .) Suppose
now that M (3) is a sub-3-graph of Sq3) whose every vertex has a polygon for its
star. Without limiting generality, consider a vertex al in A, . Its star must be
an even polygon of the form a2, a3, a2, a3, . . ., a2, a2, a2 where a2 E A2, a3 E A3 .
Suppose r = 2, i .e. that a, has valency 4 . Then the following triples must have
their sums in D : a, a2 a3, a l a3 a2, a l a2 a3, a l a3 a2 . Distinctness of the vertices
of the polygon forces the four sums here to be distinct . But then a3 - a3 =

_ (a, + a2 + a3) - (a, + a2 + a3) (i = 1, 2) a contradiction, in that a non-
zero element cannot be expressible in two ways as a difference of elements of
the difference set . Thus the only triangulations M (3) of surfaces contained in
Sq3) must have all vertices of valency at least 6 . But it is well known ([13], p .
104) that any triangulation of the sphere must include vertices of valency less
than 6 . Thus ex (3m, T) > m 5 2

Lot now e be given between 0 and 1 . For n sufficiently large there exists
a prime p between ((1 -- £ ) 2 ;5 n/3 34) 1 ' 3 - 1/2 and (n/ 3 -- 34) 1 ;2 - 1/ 2, i .e .
(1 - 8)2/5 n < 3(p2 + p 1) < n . We may construct a 3-graph with n
vertices by adjoining isolated vertices to S (3) . The resulting G(3) (n) has more
than (1 - e)3-5'2 n5,2 triples and contains no triangulation of the sphere .

5. Further extremal problems for 3-graphs . We now commence a study
similar to that begun for graphs in [4] . Namely, if q(r) (l ; k) denote the set of
all r-graphs G( r) ( l ; k), we inquire as to value of ex (n, q(3) (l ; k)), which value
we denote by f (3) (n ; l, k) - 1 to be consistent with [4] . Below we determine
the asymptotic behavior of some of these numbers for l G 6 .

THEOREM 4 . (The symbols c3 , c4 , . . ., will denote positive constants whose
value we may estimate in the course of our proofs .)

a . lim n-2 f(3)(n ; 4, 2) = 1 /6
n--

c3 n3 < f(3)(n ; 4 , 3) <- f(3) (n ; 4 , 4)
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b .

	

f(3)(n ; 5, 2) - [n 13] -F- 1

c4n2 ` f(3)(n ; 5 , 3) l C5n2

esn5/2 ` f(3)(n ; 5 4) ! c7n5/2

c,n3 < f(3)(n ; 5, 5) <. . . < f(3)(n ; 5 10)

f(3)(n ; 6 , 2) = 2

c9n3/2 < f(3)(n ; 6 , 3)

cioyz2 < f(3)(n ; 6 , 4) < (1'4)n2

f(3)(n ; 6 , 6) < C1I
n5S

f(3)(n ; 6 , $) V ci2n
ll/4

c13n3 < f(3)(n ; 6 9) <- . . .

	

f(3)(n ; 6, 20)

225

PROOF . a . The first statement is simply Theorem 2 . To prove the second
we need only consider the 3-graph we call T (3)(n, [n3/27]) defined as follows
the vertices are partitioned into classes A, B, C, containing respectively [n/3],
[(n + 1)/3], and [(n + 2) / 3] members ; the triples are all {a, b, c} such that
a E A, b E B, c E C. The case d = Tc = 4 is the first open case of Turán's
problem [20] .

b. k = 2. The lower bound follows from the G(3)(n, [n /3]) which has no
two triples sharing a vertex . And, in any G (3)(n, [n / 3] + 1), some vertex
must have valency exceeding 1 .

k = 3 . The lower bound follows from Theorem 2 ; the upper from Theorem
1 . However, some improvement in the constant of the upper bound is possible ;
cf. the techniques used in proving the case l = 6 k = 4 .

k = 4 . The lower bound follows from the 3-graphs Sq3) constructed in
the proof of Theorem 3 . Any G (3) (5 ; 4) contained in Sq3) must have the prop-
erty that its vertices can be partitioned into three classes so that every
triple contains one vertex from each class . It is easily seen by inspection that
the only G (3)(5 ; 4) with this property is a cone over a quadrangle . But we
saw in the proof of Theorem 3 that S(q3) cannot contain such a wheel . The
remainder of the proof of the lower bound, viz . the passage from special values
of n to all n sufficiently large, is analogous to that used in the proof of Theorem 3 .

In any G(3) (n; en' ; ') some vertex x must have valency more than
3c(n - 1)3/2 . By a result of Kő im--Sós--TURÁN [15] a sufficiently large
constant c ensures the existence in the star of x of a 4-goo ; hence the 3-graph
contains a cone over a 4-goo . (The other examples of a G(3) (5 ; 4) can all be
shown to require (constant) n3 triples - by the examples T (3) constructed in
the proof of a. above .)
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A- - 5 . The lower bound follows from the examples TW of a. above .

e. The case b- = 2 is trivial .

k = 3 . To prove the lower bound we construct a family of examples
G( 3 ) (n) for n - q" + q + 1 (q any odd prifne powex) having- for q suffieientl,v
large, more than (1,16)n 3 ' 2 triples but containing noGc 3) (6 ; 3) ; the proof then
may be completed as in the proof' of the lower bound in Theorem 3 . Our example
is the 3-graph "spanned" by the graph exploited in [1], § 3 and [6], Theorem 1 .
The vertices will be the points of a finite projective plane PG(2, q) . Let ~ be
an orthogonal polarity . A triple {x, y, z} of points is selected if and only if the
points are distinct and pairwise conjugate with respect to A i .e. each is in-
cident with the polars of the other two, (sometimes called a self-polar triangle) .
It is easily seen that no triple selected can contain an absolute point of the
polarity . (We could "improve" our example by discarding these points, but
this improvement will be of no importance asymptotically .) No two distinct
triples can have two vertices in common, for the polar line of any point of a
triple is determined by the other two . Hence, if this 3-graph is to contain a
G(3)(W 3), that 3-graph must be of the following form : V = {1, 2, 3, 1', 2', 3'}
F = {1'23, 12'3, 123'} . The existence of such a sub-3-graph would imply that
1, 2 and 2, 3 and 3, 1 are each conjugate pairs, i .e . that 123 is a triple . Put that
would yield several pairs of triples sharing an edge ; which, as we have remarked
above, cannot exist . Every line l of the geometry which is not incident with its
pole contains at least q - 1 points not on the conic of the polarity . Any two
ofthese points, together with the pole of l form a selected triple . The number

r -
of non-self-conjugate lines is q 2 : the number of such triples is (q2/3)

lr
2
2

1
(1,16)(1

	

f)q 4 for q sufficiently large (0 < e < 1 arbitrary) .
We have not succeeded in establishing an upper bound better than

(constant) ),1 2 .

k 4 . To establish a lower bound (probably capable of some improve-
ment in the constant) let the vertices of a G(3) ( )j ) be the residues modulo n.
A triple xyz is selected if' and only if x, y, z are distinct, and x + y -}- z = 0
modulo n . This 3-graph has at least n 2 admissible triples containing x,
hence at least n(n 2)/6 triples in all . No two triples share two vertices, since
the third is uniquely determined by any two. Thus the only type of G (3) (6 ; 4)
which could be present would be of the following form :

V = {1, 2, 3, 1', 2', 3'}

E _ {1'23, 12'3, 123', 1'2'3'} .

However, the four congruences implied by the existence of these four triples
imp], the congruence for 123, which is impossible since no two triples share an
ed ge !
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For an upper bound we apply (4) of [4] . In any G (3) (-n ; (n[(3/4) (n - 1)] +
-F- 1)/3) some vertex has a G(n -- 1, [(3/4) (n - 1)] -f- 1) as a star ; hence the
star contains a G(5 ; 4) . It seems likely that t.l)e lower bound could be improved
to allow the establishment of lira n-2 f(3) ()? ; 6, 4) = 1/ 4 .

n --
k = 6 . Let a G (3)(n ; c, n5 2 ) be given, where the constant is to be further

specified below . By the same sort of reasoning as used in the proof of the
upper bound of Theorem 3, there are at least 9c 2 n3(1 -- (6c , n.) -I) (pairs of
triples sharing an edge, which is more than 9c2(1 -- E)n 3 when n < (36c2 F.=) -
(t being any real number strictly between 0 and 1) . Hence for suchh n there
exist two vertices whose stars have more than 18c'2(1 - -)n edges in common ;
by ([4], (4)) these stars have a G(4; 3) in common if 18c°(1 F) > 2/3, wilh
n restricted, for example, to exceed ,-2 .

k = 8 . Let a GO) (n, c 12 n" 4) be given, where the constant is to be further
specified below . As in the ease k - 6 above, there are at least 9c2 ?a,' 2 (1 -

-- (6c I , n) - i) pairs of triples sharing an edge . Hence for 0 < F < 1
and n (36c 2 e2)_I there exist two vertices whose stars have more than
18c2(1-,,) n3 2 edges in common . The proof concludes as in the earlier case .
using the result of KővÁati-Sós --TuRáN [15] cited earlier .

k = 9 . Any 3-graph G (3)(6) with vertices in three classes such that any
triple has one vertex in each class can have no more than eight triples . Thus
the 3-graphs TO) constructed in the proof of a . yield a lower bound .
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