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ON SOME PROBLEMS OF A STATISTICAL
GROUP THEORY VII

by

P. ERDOS and P. TURAN (Budapest)

To the memory of A. RENYI

1. In the first paper of this series (see [1])! we proved for arbitrary
small ¢ > 0 that for almost all P elements of the symmetric group S, of »
letters (i.e. with exception of o(n!) elements at most)® the inequality

I e

log? n} (expx=¢€¥);

here O(P) means of course the group theoretic order of P.* This is surprisingly
low compared to Landau’s theorem?! according which

(1.2) lim max log O(P) = 1.
n-= |'nlogn Pes.

Since the elements P of any fixed conjugacy class K of S, are of the same order
which might be denoted by O(K), it is natural to ask what is the statistical
theorem on the distribution of the orders O(K) if as “equally probably events”
the classes K are considered. The number of the classes K — as well known —
equals to p(n), the number of partitions of » for which the asymptotic formula
of Hardy-Ramanujan (see [4])

(1.3) p(n) = (1+0(1) zexp (72 V%e‘)

holds. Then we state the following

THEOREM. For arbitrarily small e > 0 the inequality
(1.4) exp {(4o — E)ﬁ} < O(K) < exp {(4, + ¢) VE}

! Numbers in bracket refer to the bibliography at the end of the paper.
2 The o-sign refers to n — oo,

3 A stronger form of (1.1) can be found in our paper [2].

¢ See Lawpav [3].
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with the constant

s f+1
(1.3) 4, =28 (1
T Jaeu 37247

~ 1,81

holds for almost all classes K (i.e. with exception of o(p(n)) classes at most).

This theorem contributes again to the picture which shows that the
“asymptotic structure” of the group S, is rather transparent. Harmonising
this theorem and (1.1) we can conclude that (1.1) is caused by the elements P
of a “few but populous” classes K.

For further remarks see 13.

2. For the proof of our theorem we shall use for Re z > 0 the function

(2.1) der jp{n}e—nz :ﬁ__l__;
n=>~0 =1 1 — e

notably the functional equation

22) fior = | Zoex wf- 2+ Tl

-

42 i

This gives in all angles | arcz | < x < % the relation

_ [z (“” .
(2.3) fiz) = (1+o0(1)) l - %P g, for z—0;
furthers for 0 <o <1 (z =z + iy)
oy 2 _ 22
(2.4) ¢ |x exp {——] < fle) < ¢z exp | —
6| 6x

From (2.1) we get easily for x = 1
(2.5) l+e*<fle)y<1+ce™;
this and (2.4) give for each y > 1 the rough but useful inequality

5

< flr) <elzexp [61‘

(2.6) o]}f — exp [
y 6x

valid for 0 < 2 < y. We remind also the ‘‘Pentagonalzahlsatz” of Euler-
Legendre

el JI1—e"= 3 (-1 exp[“ 3j22—"+j ?)
v=1 j=— /

8¢ mean throughout this paper unspecified positive numerical constants, not
necessarily the same in different oceurrences.
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3. We shall need some lemmata.

Lemya L For 0 < y < 1 and real x > 0 the inequality

def o —2y a2
n¥ p(n e—""<cx° exp [—
< 3 oo p [Gx]
holds.

For the proof we remark first that the functional equation (2.2) gives in
connection with (2.3) for x — + 0 easily

o a8 _3

(3.1) — flx) = Snp(n)e=™ = 1+ o(l))Eﬁx Zexp [—]

n=1

Then Holder’s inequality gives

7,(@) = 3020y €} (o)~ ) <
n=1

< ( 2"@(?1)8 neyrf zp(n)e L L

n=1

which is owing to (3.1) and (2.3)

1 2
< cx? 7 exp -n—]
6x
indeed.
Next let us consider
(3.2) Hy(n) & Slog O(K).
K
Denoting
4 J+1
(3.3) Pl L e sl
%0 372 4J
we assert the
LEemma II. For n — oo the relation
Hym) = (14 o1)) 24118 Vn p(n)

holds.

4. For the proof we remind first that to each conjugacy class K we have
a uniquely determined partition @ of

n = Mny + My + . .. + myny

(4.1) 1< n, <<mp<<...<my
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so that

(4.2) O(K) = [ng, ngy . .., 1y

Hence

(4.3) H,(n) = %'log 99—
Thus if ¢, ¢, . . . denote always primes, we have®

(4.4) H,(n) = %‘ 2; xlogg

L
L/ 1 KT 7Y |

and also obviously

(4.5) Hy(n) = 3 alogqZig,=)
g¥sn

with

(4.6) Z(g, ot}=%"1

where the summation is to be extended over all @-partitions where no summands
are divisible by ¢“*! but at least one summand is divisible by ¢*. Since the
number of partitions with no summands divisible by ¢*** is

nz 1

= coeffs. e”™ in _
ga¥isy 1 —e*

or using the representation (2.1)

= coeffs. e 7™ in %;
hence
1 1
; Z{q, =) = coeffs. e~ "* i —
(4.7) (g, x) = coeffs -e in f(z) []‘(q““z) T

and with the notation
[log n}
— p— zq
log ¢

Hin)= Jlogq 3 «Z(g )=
g=n 1ZeZog

from (4.5)

= coeffs. e=™in f(z) 3 logq g o !
g=n =

1
= [f(q““z) fl@2))

¢ The symbol ¢*||m means that ¢*m but g*+! } m.
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The internal sum is

1 1 1 o,

flgz)  flg%=)  flg=z)  flgeiz

and since the term f(g™**'z) contributes to the coefficient of ¢~ owing to
(2.7) only through its constant term we get

ag
H\(n) = coeffs.e~"* in f(z) Yloggq 1—
‘ 22" fra

and also

s 1
Hy(n) = coeffs. e=in f(z) ¥ log [1 = ]
n) = coeffs. e~ in f(z) > 0 gaél‘ )

and using finally the representation in (2.7)
3724 j
(4.8) H(n) = coeffs. e7"% in f{z) Zlogq }S‘ > (1} exp [ :?g“z}.
a=1 j#0 :

5. Next we have to investigate the triple sum in (4.8). Using the Mellin
integral formula this is as easy to see for Rez > 0

_ 1 (T@ [ (=1 logq) ,
| (#20[3”?])25 ) as =

2
g g, LS I R
277 25 ( )(‘% [3 7-2_*_;]3) S .
& ~3

Usual contour-integration technique and elementary properties of {(s) give
that this sum is

24
(5.1) = (1+ o(1)) —z--l
(see (3.3)) if z tends to 0 from any angle from the right half plane. Together
with (2.3) this gives

A4, - [352
V 27z Bz]

if only z— 0 in any angle from the right half plane. Since H,(n) is non-
decreasing, the coefficients of

(5.2) S Hym) e = (1 + o(1))
n=1

FREH @) e + 3 (Hyn) — Hyn — 1)) e =
(5.3) "
= (1) 3 Hyn)s™
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are nonnegative and from (5.2) we get

(5.4) F(z) = (1 4 o(1)) %VE exp ;_:] .

Hence the general Tauberian theorem of INcHAM (see INGHAM [5]), together
with (1.3) completes the proof of Lemma II.-

Next we consider

(5.5) Hy(n) 22 3 log2 O(K).
K

Then we assert the

Levma II1. For n — oc the relation

I;I-_ 2
L 6) np(n)

T

Hy(n) = (1 + o(1)) [
holds.

6. For the proof we remark first that owing to (4.2)

(6.1) Hy(n) = g,'logz [0y, By« 2 M)
As before
Hn)=2 2 «*logtq+

Q q%ii[nyey ]

2 2 2 2, 2, log qy log g, = Hy(n) + HY' (n).
Q 17,
@[ [y
A | EOT 1

(6.2)

Since ¢;" < n, we have owing to (4.4) and Lemma IT

(6.3) Hin) <logn > 2 alogg =logn H (n) << c].-"'a_z, log n - p(n).
Q qlilm,....m]

Hence it suffices to investigate

(6.4) Hj(n) = ; @, % 1og ¢, 1og ¢, R(a,, 42, %1, %)
N7 q:
g,1=n,q."*=n
ey =l,x, =1

where

R(?l! 92: %y, 1‘2) = 2* 1
Q

where the summation is to be extended to all @-partitions for which no summand
is divisible neither by ¢f**! nor by ¢3**' but some summand is divisible by
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¢i* and some by ¢5:. The number of @-partitions satisfving the first two require-
ments is

241 ozl .
= coeffs. e~ In H — coeffs.e—"* in f(z)f{ql g5 z)
Gﬂ"‘—lfb‘l_e vz f(gi‘lTl z}f{q}‘z"’lz)

g:" y

with the notation (2.1). We have to subtract from this the number of those
Q-partitions where either no summand is divisible by ¢}, or no summand is
divisible by ¢3:. The number of these partitions is

f(z) + ) f{Z)f(QT‘?E‘Z)}
flgrz)  flgez)  flar 2) flgs2)

coeffs, e=™ in

and hence
flg gz
flgirt'2) f(g32z)

et Y fdREe)
flarz)  flgez)  flei2) flgs2)

R(g],! Tas %4y az) = Coeffs. e " in [
(6.6)

fz).

For later aims we write the expression in the bracket in the form

- ][1_ 1 ]+f(q;=iq;!z)—1 .
L flere) flg322) flgt 2) flgs2 2

flgntt gztiz) — 1 [_ 1
Flgit2) gz 2) flgn=12) flgz+tz) |

Then Hj(n) in the form (6.4) can be represented as

(6.7)

(6.8) H3(n) = Ly(n) + Ly(n) + L (n) — Ly(n)
where
Ly(n) &t coeffs. e~ infz){ = alazlogqllogqgl ) |1 - ]
#TiZn g% 50 q}lz ) 4’5’ z)
¢121 Zgzl
T#a:

L,(n) &t coeffs. =" in f(z) { > S aalogg log ¢, M;_I_}

L 1@ 2) Flaz2)
Mg "=n
(6.9)
2yl 'l lawk
Lyn) = coeffs.em in f(z)| 5 3 2 cleogqllong f{q e S
.4 gt <n l 12 f(qaztl
G,

Ly(n) L coeffs, e~ in
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1
{z)l 2 2 aaxlogg logg, |1 TP }
p1 =0 g% En rlz)fle3tz)
7,=1 =l
G174

(taking into account e.g. in L,(n) that terms in the sum with ¢{'g3* >n do
not contribute to coeffs. e™™ at all).

7. The easiest is to deal with L,(n). Using (2.1) and (2.7) we get the
representation

Lyn) = 2 2 %y &y 10g /61 10g e 2 (— 1)A+ia+l

ahtisn gNtign Jitii=0
o=l [ #=31
(71) hFER
8ji + 4 gt — 353+ s
2 2

X pin— g,

or — using the monotonicity of p(m) in m —

|[Ln)|<clogtn X 2 3 pn—@i — i) = clogt n(Lin)+Li(n)),
a=Vn g.=Vn glji+adii=n

Ji+ii=0

(7.2)

where

o def
Lim=E 2 2 2  Pan—@R—a@R)
@sln a,=Vn gt +qiji<100Vnlogn
Ji+ji=0

(7.3)

L{(n) «© 2 2 2 pn —qiji — 4353 -

@sVn ¢:5¥n 100Vnlogn=qt J"+qiﬁsn

Since from (1.3)for 1 <m <n — 1

(Y —m — m]

‘E’(i__)< cnexp{

(7.4) p(n) /6
in ;
cnexp|— ———— en e 2
s
we get
: .2 2 0
| Li(n) <enp(n) > 2 = exp |— N9 +r229’2]
nsVrasin jlgi+iigi>100Vnlogn 2)n

which is trivially

(1.5) <emipm) 3 mexp[- S7=| = o (o).

==
m>100}nlogn 2 l n
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For Lj(n) — since instead of (7.4) we have now

p(n—m)

<1~
p(n)

we get the upper bound
2p(n) = 2 > l=cpm){ln 2 4+

a=ln a=<)n f?qs“-kfiﬁ;lgﬂ’?zlogn asln IS!J':':S;—On’-“logn
1 1

+( = =2 1)2} < cn® p(n) logd .

9sVn 1sjs-1§n‘f‘logn
This, (7.5) and (7.2) give indeed
(7.6) L,(n) << en3¢p(n) logt®n .

8. For L,(n) we need a different treatment. We observe first that the
coefficient of e in

1) (flgr g322)--1)
faz 2) flg =)

feflgpgez) (1 ]
flap 2 flge=) | A ase)

and hence owing to the representation (2.7) its absolute value cannot exceed

'2 L 1% 2) |
ffs. . . ? gz ]} f(z)f{¢ 52 2)
| BXP{ [n Hir o) g2

JONG a2
flgi2) flgss Z)

the counting number of cerfain partitions of m — cannot exceed p(m) (and is
nonnegative). Thus defining

is the same as in

Further we may observe that the coefficient of e=™ in

fgirz) — 1)
Lz(ﬂ) def coeffs. o1 m[ o o, 2y log g, log g f(2) (f(q3 g2 2) }
_zqﬁeqzz ] VT fgne) fape)
(8.1) 100} n1 log n=g,"g."=n

we have

’ I 2 3 }.2 + ?‘ X
| Li(n) | << log®n = X zp[n—————ﬁ‘?z’]-
100} nlogn=g,"g,"1<n J#0 2
§: 7
Using further (7.4) we get

(8.2) |Lj(n)| < enp(n)log2n = 2 Sexp {—
100} n log n<¢, g, "1 J70
NG

B2+ f)_qi“;g’-?}
4fn
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Since the inner sum cannot exceed

cexpl— 99
4fn

we get further roughly

(8.3) [ Lyn)!<<cnp(n)log*n > exp [ 71" q?] < cp(n).
100) nlog n<g,"gs "<
G17q
Putting
. " —nz 3 1@ flg1 432 2)
(8.4) Ly(n) = coeffs, g~ jn ‘2 2=
’ m,ﬁs.m%m Ha2) flgs2)
Q¥
and
ros s e 1(z)
(8.5) Ly (n) = y 3 lcoeffs. €in ——————
2 G:“"Q:‘%SIOO]’%Ogn | flg5r2) flgz2) |
§i74:
we get easily from (6.9), (8.1), (8.3), (8.4) and (8.5)
(8.6) | Lo(n) | < e{p(n) + log*n (Ly(n) 4 Li'(n))}.

9. In order to estimate L (n) let

by 4

(9.1) Ty =—.
" Ven
Since — as mentioned — the coefficients of ;Sjﬂ—?—}l{g‘; are nonnegative;
1z 32z

we have

L:?’.(ﬂ) P g ‘S L;(m} e~ MXo — Sl 2 f(xo) f(qgl‘l 932‘2 xo)

m=1 qlul‘;;slm'[,-’;"]ug nf{gitt xﬂ) f(gz, xo)
¥y

or using the upper bound in (2.6)

o 11 {5 [zl

* Hgar ) F(g52 x,)

Lin) <<c B
¢, %19, M<100 Y logn
074G

Using further the lower bound in (2.6) (with y = 100 log ») we obtain

; g lf"_
(0.2) Li(n) <cexp[ ud Jlog n 2 2 exp Iﬂn (1 = ll ]}
@*1g,%25100 Vnlogn 5 91
07

QI=a™
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The part of this last sum corresponding to

11 1;’;-3’
(93 ST log »

cannot exceed

_1 ] .2“ exp :rz]n

}‘n Vn
1 1
(9.4) %"= 1001ogn @ 100 log n

2-3l

<cp(n)

clog®n-exp

. l exp 2_:11,"--?_3 ol s Bl
1001og n [lf”é J loologn [ V_

using (1.3). As to the remaining sum in (9.2), i.e. for the range

< clog?n * 100logn

1
jn T =
T00logn = 4"+ A6 <100 In logn
we have
g3 = 104 10g2n

i.e. the corresponding sum cannot exceed

feJ > > el

M= 00]:‘ nlogn ¢,%2=10%log*n

.'r

clog®n-exp

bl <

(9-5)

fes E Y=
clnlog®n-ex _
Lonlogt P [],’r In VE 10* log2n

Thus from (9.4) and (9.5) we got

(9.6) Ly(n) < cp(n).
In order to show
(9.7) L,(n) < en®* p(n) log®n
it will be (amply) sufficient owing to (8.6) to show that
(9.8) 3 (r) < ent p(n)logn.

10. To do so we have first from (8.5)

| roeer _ f(z)

Ly'(n) < 2 coeffs. e~"zjn — 17

o q:‘*m“s%o‘}'ﬁlagn f (97 2) f(q32 2)
QF G, ISR

and using the observation that
f(2)

(0 <) coeffs. e=™in
Mg 2)

= p(m)
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and also (2.7) we get

1 — ~ 32+ -
|Lyrm)| <2 3 > 2p[n—3 ’qf]s
21=10n141 — i :
¢,*=10n"*logn - 109}:::;g n J
Q'r':’éq:

-

o 100 V% logn

- §.2=10n' *logn q?_;a

= p(n — P g3)
£
which eannot exceed

cfnlogn{ = ™ > p(n— g3 *) +
g,%=10n logn voq. 100Fnlogn
s — =
q'al

(10.1)
+ 2 @+ 2 po)

g 'n 1o
qm<10m logn s El;;l_gn
x

The last double sum is evidently
(10.2) en*' p(n) log n.

Using further (7.4) we get for the first double-sum in (10.1) the upper bound

| <oz,

_ e

103) <o) 3 g 3 exp[ _
2l'n

g.%=10n ' logn __10n4}logn
J_J—.___
Qnéa'
(10.2) and (10.3) give with (10.1)

57(n) < en®* p(n) log n
indeed as asserted in (9.8). Hence (9.7) is proved. The proof of
(10.4) Ly(n) < en®* p(n) logion
can be done mutatis mutandis. Hence for v = 2, 3, 4 the inequality
(10.5) | Ly(n) | < ep(n)n®* log n
holds.

11, In order to complete the proof of Lemma IT we have to investigate
L,(n). From (6.9)

L,(n) = coeffs. e in f(z) { = *logn {1 A 1 )]}2 N
(11.1) = o

2
— coeffs. e™™ in f(z) > «?logq (1 . def 7i(n) — Li(n).
¢'sn flg*z)

xz=1
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Let us consider first Lj(n). Writing

0 =) =9 =jes) [~ 7ema)

and observing that

(0 <) coeffs. e=™ in [f(z) = ]%] < p(m)
we get — using also (2.7) —
(11.2) | Li(n)| < log?n X Ep[n = MQ}
g"sn j#0 2
[ =

which is analogously as before

<e(pn) +logn 2 > pn— i)
g<100Ynlogn j;eo
lo
st T=28n q,,,,g“
1/4
< ep(n)log?n 2 n_k)_g_ri
¢7<100)nlogn Q’J‘

ie.
(11.3) | Li(n) | ep(n) |/n log®n.
As to Li(n) we have for Rez >0
= 1 12
11.4) N Lin) e — 1 [1 . ” .
( = 1(n) e /() 2‘ xlogg i

Using the reasoning of 5 and also (5.1) and (2.3) we see that the right side
of (11.4)

(11.5) = (1 +o(1))%§z'%exp [-:—z]

if z tends to 0 in any angle from the right half-plane. Putting
h(n) = Li(n) + Ly(n) + Ly(n) — Ly(n).

we get from (11.3) and (10.5)

(11.6) | h(n) | < cp(n)n*

and thus for z = o + iy

| Sum el <o Sunpm e

n=1

11 Periodica Mat. 2 (1—4)
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Using Lemma I the right side is
11 2
~a T
<cx exp (—— :
|6z

this and (11.5) result owing to (6.8) and (6.3) that

o . HAZ 8 ‘2
1.7 H iy e=" = (1 A L |
(aL.7) 3 Him) e = (14o(n) 222 exp _ﬁz]

if z — 0 in any angle from the right halfplane. Since H,(n) is monotonically

increasing, we have here

(11.8) Hy(1)e? + ~ (Hyn) — Hyn — 1)) e = (1 + o(l))—i—‘ﬁz%exp[n—z :
3 =\ 2 Vom 62

n==2

Since the coefficients are now nonnegative, INgHAM's above quoted theorem
is applicable; this completes the proof of Lemma IIIL.

12, The proof of our theorem can be completed by considering the
expression
12
(12.1) T > U] . a
)KL In

(for 4, see (1.5) and (3.3)). This is

LB e i e

np(n) Vm p(n)

which is o(1) owing to Lemma II and III. Thus the number 4(x) of classes
K satisfying

=6

——— — A4,

\logO(K} N
" Vn

with a fixed § > 0 is such that
i) 0% = o(1)
»(n)

which proves the theorem.

13. Another proof of our theorem can be based on the following lemma,
interesting perhaps also on his own.

LemMA. For a suitable continuous and monotonically decreasing f(c) almost
all partitions of n contain for n — oo, (6 small positive and fixed)

(1 + o(1) fle) {a({ill + 8)) — n(y7)}
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p prime summands from the interval
cyT<p< e+ 0)Yn

Here
f0)=1, lim f(r) =0

r— oo

and z(m) as usual stands for the number of primes not exceeding m.
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