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ON SONE PROBLEMS OF A STATISTICAL 
GROUP THEORY VII 

P. ERDOS and P. TTJR& (Budapest) 

[PO the memory of A. RI?NYI 

1. In the first paper of this series (see [l])’ we proved for arbitrary 
small t- > 0 t,hat for almost all P elements of the symmetric group S, of n 
letters (i.e. with exception of o(n!) elements at n~ost)2 the inequality 

here O(P) means of course the group theoretic order of P.3 This is surprisingly 
low compared to Landau’s theorem4 according which 

(l-2) 
1 

lim __ n-ar )fnlogn ~~~logo(p) = l- 

Since Dhe elements P of any fixed conjugacy class 2-Z of S, are of the same order 
which might be denoted by O(K), it is natural to ask what is the statistical 
Oheorem on t,he distribution of the orders O(K) if as “equally probably events” 
the classes K are considered. The number of the classes X - as well known - 
equals to I, the number of partitions of n for which the asymptotic formula 
of Hardy-Ramanujan (see [4]) 

(1.3) p(n) = (l+ o(l))+exp -$- n 
4n 13 ( i 

v-v- 

holds. Then we state the following 

THEOREM. For arbitrarily small E > 0 the inequality 

(1.4) 

1 Xumbers in bracket refer to the bibliography at the end of the paper. 
2 The o-sign refers to 12 -+ 03. 
3 A stronger form of (1.1) can be found in our paper [Z]. 
4 See LANDAU [3]. 
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with th.e constant 

(1.5) A, = -W ‘; ‘r; - 1,81 
x '2 ‘ 

holds for almost all classes K (i.e. with, exception of o(p(n)) classes at most). 

This theorem contributes again to the picture which shows that the 
“asymptotic structure” of the group 8, is rather transparent. Harmonising 
this theorem and (1.1) we can conclude that (1.1) is caused by the elements P 
of a “few but populous” classes K. 

For further remarks see 13. 

2. For the proof of our theorem we shall use for Re z > 0 the fun&ion 

(2.1) f@)““f n% P(n) e-n” = g 1 ‘,-- 

notably the functional equation 

1w 

(2.3) 

This gives in all angles 1 arc z 1 I; d < c the relatiotl 

for 2 -+ 0; 

furthers for 0 < x 5 1 (z = x + iy) 

(2.4) 

From (2.1) we get easily for x 2 1 

(2.5) 1 + e? <f(z) 2 1 + ce-‘; 

this and (2.4) give for each y 2 1 the rough but useful inequality 

(2.6) 

valid for 0 < x ,< y. We remind also the “Pentagonalzahlsatz” of Euler- 
Legendre 

(2.7) 
n (lee-w) = 2 (-.l)jexp -3j2 +j 
v=1 j=-.w ( -?I- 

5 c mean throughout this paper unspecified posit,ive numerical constant,s, not 
necessarily the same in different ocaurrences. 
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3. K’e shall need some lemmata. 

LEMMA I. For 0 2 y 5 1 and real 5 > 0 the inequality 

For the proof we remark first that the functional equation (2.2) gives in 
connection with (2.3) for z ---f + 0 easily 

(3.1) - f’(X) = 2 f@(n) ebnx = (1 + o( 1)) $2 z-i exp [.EJ . 
n=1 

Then H6lder’s inequality gives 

~~(5) = 2 {#p(n)’ (ewnx)y} {p(n)l-Y (cnx)l-r} 5 

which is owing to (3.1) and (2.3) 

l-27 
< CD? 

indeed. 

Next let us consider 

(3.2) H,(n) TEf 2 1% wq. 
K 

Denoting 

(3.3) 

we assert the 

LEMIMA IX. For n -+ 00 the relation 

B,(n) = (1 + o(l)) 2A;n pip(n) 
holds. 

4. For the proof we remind first that to each conjugacy class K we have 
a uniquely determined partition & of 

n = qnl f m2n2 $- . . . + mknk 

(4.1) 1 i nl < n2 < . . . < nk 
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so that 

(4.2) 

Hence 

O(R) = [n,, n,, . . . ) nk]. 

(4.3) 

Thus if ql, q2, . . . denote always primes, we have6 

(4.4) H,(n) =2 2 al%P 
Q 

rlql;h:..31. ml . I 

and also obviously 

(4.5) 

with 

H,(n) = 2 “l%q%7,a) 
q9%n 

(4.6) aq, a) = 2’ 1 
4 

where the summation is to be extended over all &-partitions where no summands 
are divisible by qa+l but at least one summand is divisible by q’. Since the 
number of partitions with no summa&s divisible by g”+r is 

= coeffs, e-*‘in n 
1 

qa+~Tv 1 - e-vZ 

or using the representation (2.1) 

= coeffs. e+’ in f(z) 
f(p”flz) ; 

hence 

(4.7) Z(q, a) = coeffs. eenz in 

and with the notation 

f&l 
l 

l - - 
1 

fw+l4 fW4 1 

from (4.5) 

log n 

[ I 
- =a4 
1% q 

H,(n) .= 2 log q 2 a Z(q, OL) = 
42h kTika!l 

= coeffs. e-nz in f (2) 2 log 

1 1 

q 2 a 99 a=1 L fw+lz) --. 1 fkF.4 

0 The symbol pj [m means that qajrn but p+l $ m. 



ERDljB. TURAX: STATISTICAL GROUP THEORY 153 

The internal sum is 

and since the term f(qQ+l z) contributes to the coefficient of e-“’ owing to 
(2.7) only through its constant term we get 

and also 

H,(n) = coeffs. eUnz in f(z) 

B,(n) = coeffs. ednz in f(2) 2 log q 2 
4 a=l i 

I - 
&I 

and using finally the representation in (2.7) 

(4.8) H,(n) = coeffs. eSnr in f(z) 2 log q G 3j2+ j 
- 2 q”z . 

4 

5. Next we have to investigate the triple sum in (4.8). Using the Mellin 
integral formula this is as easy to see for Re z > 0 

Usual contour-integration technique and elementary properties of C(s) give 
that this sum is 

(see (3.3)) if z tends to 0 f rom any angle from the right half plane. Together 
with (2.3) this gives 

(5.2) 2H,(n) e-n% = (1 + o(l)) & 
n=l 

exp j& ( n2) 

if only z -+ 0 in any angle from the right half plane, Since LT,(N,) is non- 
decreasing, the coefficients of 

(5.3) 

F(z) gH,(z) em2 + 2 (H,(n) - H,(n - 1)) emnz = 
n=2 

= (1 - e+) 2 HI(n) e-nz 
n=l 
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are nonnegative and from (5.2) we get 

(5.4) F(x) = (1 + o(1)) g\G exp ($1 . 

Hence the general Tauberian theorem of ING~M (see INGEAY~ [5]), together 
with (1.3) completes the proof of Lemma II. 

Next we consider 

(5.5) H*(n) E g log2 O(K). 

Then we assert the 

LEMMA III. For 11 -+ bo th.e relation 
_- 

H,(n) = (1 + o(l)) q 2%p(n) 
i J 

holds. 

6. For the proof we remark first that owing to (4.2) 

(6.1) 

As before 

B,(n) = c log2 [n,, n,, . . . , nkJ. 

(6.2) 

Since qy 2 n, we have owing to (4.4) and Lemma II 

(6.3) H;(n) S lop2 i? cclog q = log n H,(n) < c 1% log n *p(n). 
Q ql I[%....,&1 

Hence it suffices to investigate 

(6.4) G(n) = qz a1612 l%qlh3~,~(h ??2, %r "2) 
1 1 

where 

w?l,q,,~,,~,) = z* 1 

Q 

where the summation is to be extended to all &-partitions for which no summand 
is divisible neither by q;l+l nor by qF+l but some summand is divisible by 
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qf’ and some by qi'. The number of &-partitions satisfying the first two require- 
ments is 

1 
= coeffs.e-nz in 17 - = COeffs. e-nz in f(z)f(P;l+‘9~+‘z) 

q,4+Ipy 1 --e-v2 f(q;'"z)f(q;"+lz) 
q*"Pflf 1' 

with the notation (2.1). We have to subtract from this the number of those 
Q-partitions where either no summand is divisible by q",', or no summand is 
divisible by q>. The number of these partitions is 

coeffs. e-“’ in 

and hence 

IS.61 

R(q,, qL, a,, aa) = coeffs. eWnz in 
f(q”1’1 qz2+1 z) 

f(qp+lZ) f(qp+lz) - 

I I 

1 

f ($11z) 
l + 

f(q"1' 4Pz) -~-~ 

f(&' 4 f (q? 4 f (G" 4 I 

f@,). 

For later aims we write the expression in the bracket in the form 

(6.7) 

(l--f&j (l-f&j + ;g::;;;Iz; + 

+ f(qp+l qpflz) - 1 1 

f(q;'+l z) f(@'lz) ‘ f(qp'lz) f(q;'+lz) I 

Then Hi(n) in the form (6.4) can be represented as 

(6.8) K(n) = L,(n) + L,(n) + L (n) - L,(n) 

where 

L,(n) f%Z coeffs. e-nz in f(z) 
( 

2 2 cc1 % log q1 log qz f(ti p;"' 4 -- 1 

41f4. f(qTt z)f(@ 2) 1 

L,(n) def coeffs. eSnz in f (2) 
( 

2 2 ccl a2 log q1 log q, 
f( qp+1 q;"" z) - 1 

q,a1+1 q.“.+‘ln f (qlf' 2 ) fk&" 4 

L,(n) 52 coeffs. eUnz in 
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(taking into account e. g. in I&(n) t,hat terms in the sum with q;lq;E > n do 
not contribute to coeffs. eenz at all}. 

7. The easiest is to deal with L,(n). Using (2.1) and (2.7) we get the 
representation 

or - using the monotonicity of p(m) in m - 

Since from (1.3) for 1 < m 5 n - 1 

(7.4) 

which is trivially 

<c+pin) 2 
m>1oolin log n 

= 0 (PW) * 
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For L;(n) - since instead of (7.4) we have now 

This, (7.5) and (7.2) give indeed 

(7.6) L,(n) < cn3’4p(n) 1oglOn. 

8. For L,(n) we need a different treatment. We observe first that the 
coefficient of ehni in 

f(z) (fkl? 49 4 - - 1) 

fkP 4 fM* 4 
is the same as in 

f(4 fkP @ 4 l- 
1 

f(!P 4 fI!z? 4 f(&’ @ 4 1 

and hence owing t’o the representation (2.7) its absolute value cannot exceed 

f(z) f(q~ Pi’ ‘) Further we may observe that the coefficient of eMmz in Pk - 
f(@ 4 f(@ 4 

beinrr 
D 

the counting number of certa;in partitions of m - cannot exceed p(m) (and is 
nonnegative). Thus defining 

L;(n) dLf coeffs. e-“+ in 

(8.1) 
1 B+.T+ 

I@) (fk3' a4 4 - l)] 
"1 %l% Pll%% ___ 

1 2 f(al4 f(@ 2) I 
1OOjGIog nSq,“lq,QSn 
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Since the inner sum cannot exceed 

we get further roughly 

(8.3) p.;(n); < c~~p(n)log2n 2 exp 
looVnlogn~g,“~q,~‘Ql 

917% 
Putting 

and 

we get easily from (6.9), (8.1), (8.3), (8.4) and (8.5) 

(8.6) / L,(n) j < c {P(n) + log2 n (G(n) + &%))I. 

9. In order to estimate J?Zj (n) let 

(9.1) S,=Z. v 6n 

Since - as mentioned - the coefficients of /cd f(P? 42 4 

fW 2) fk&? z) 
are nonnegative; 

we have 

or using t,he upper bound in (2,6) 

Using further the lower bound in (2.6) (with y = 100 log n) we obtain 

(0.2) L;(n) < c exp - 
( I 2” 

lo!i?n 2 z‘ 
ql~‘qp~i;lOO ynmgn 

exp{q[l--&)(1-k)). 
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The part of this last sum corresponding to 

(94 

cannot exceed 

<clog2~n - 
7’; 

100 log ,n 
exp $ZZiG * loo~~g,~ exp [--k * 

1 J 
100 log n 

! 
< q(n) 

using (1.3). As to the remaining sum in (9.2), i.e. for the range 

\?l; 

100 log 72 I 4:’ , qzlq2 g 100 i% logn 

we have 
qp ( 104 log2 n 

i.e. the corresponding sum cannot exceed 

< c~log%L~exp %jin - -E-- -if’;; 

li6 l/z 104 log2 n < cp(n). 

Thus from (9.4) and (9.5) we got 

(9.6) J%(n) < v(n). 

In order to show 

(9-V L,(n) < cn3j4 p(n) loglo n 

it will be (amply) sufficient owing to (8.6) to show that 

P-8) L;;“(n) < cn3/4p(n) logn. 

19. To do so we have first from (8.5) 

1 L;“(n) ,( 2 2 coeffs. emnr in f(z) 
qpq,=‘mo~1ogn fk? ef(@4 

91fQt, 4I=‘sYP 

and using the observation that 

(0 <) coeffs. epmtin f(z) 
~ I PW) 
f (cl> 4 
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The last double sum is 

(10.2) 

evidently 

cn114 p(n) log n. 

Using further (7.4) we get for the first double-sum in (10.1) the upper bound 

(10.3) < cnp(n) 2 

(10.2) and (10.3) give with (10.1) 

‘L;“(n) < ~n~‘~p(n) log n 

indeed as asserted in (9.8). Hence (9.7) is proved. The proof of 

(10.4) L,(n) < d4p(n) loglO n 

can be done mutatis mutandis. Hence for Y = 2, 3, 4 the inequality 

(10.5) j L,(n) 1 < cp(n) n3”4 log n 

holds, 

11. In order to complete the proof of Lemma II we have to investigate 
L,(n). From (6.9) 

(11.1) 

- coeffs. Cnz in f(x) 2 psn22 log2q (1 - ---J’S L;(n) -E;(n). 

XL1 
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Let us consider first L:(n). Writing 

f(z) [l -f&j2= p+j (1 -&j 
and observing that 

(0 2) coeffs. eemr in f&l - - 
fk”@ 

I P@) 

we get - using also (2.7) - 

(11.2) IL’;(n)IIlog272 2 zp n- 
( 

3j2fj 
----P” 

2: j+* 
2 1 

which is analogously as before 

i.e. 

(11.3) 

< v(n) log2 n 2 
n114 log n 

q@5m0jG log n P 42 

I -G(n) I c&4 Flog3n. 

As to L;(n) we have for Rex > 0 

(11.4) 2 L;(n) emnZ - 
n=l 

-f+pw (1 -f&j)z- 

Using the rea,soning of 5 snd also (5.1) and (2.3) we see that the right side 
of (11.4) 

(11.5) 

if z tends to 0 in any angle from the right half-plane. Putting 

h(n) = Llb4 + L,(n) + L,(n) - L4Zn). 

we get from (11.3) and (10.5) 

(11.6) I W I < cp(4n4’5 

and thus for z = x + iy 

1 :lh(n) eenZ I< c ii n415 2-W esnx* 
n=l 

11 Periodica ML&t. 2 (1-P) 
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Using Lemma I the right side is 

this and (11.5) result owing to (6.8) and (6.3) that 

(11.7) 2 H,(n) ebnZ = (1 +0(l)) 
iI=1 

if z + 0 in any angle from the right halfplane. Since H,(n) is monotonically 
increasing, we have here 

(11.8) H,(I) e- ’ + Jj (H,(n) - H2(n - 1)) evnz = (1 + o( 1)) $+,-” eq ($1 . 
?I=2 I 

Since the coefficients are now nonnegative, ING~M’S above quoted theorem 
is applicable; this completes the proof of Lemma III. 

12. The proof of our theorem can be completed by considering the 
expression 

(12.1) 

(for A, see (1.5) and (3.3)). This is 

which is o(l) owing to Lemma II and III. Thus the number A(n) of classes 
K satisfying 

--A, >s 

with a fixed 6 > 0 is such that 

44 -8’ = o(l) 
p(n) 

which proves the theorem. 

13. Another proof of our theorem can be based on the following lemma, 
interesting perhaps also on his own. 

LE~u. For a suitable continuous and monotonicaZZy decreasing f(c) almost 
all partitions of n contain for n --)r 00, (8 small positive and fixed) 

(1 + o(l))f(c) {7c(\:‘G(l + 6)) - n(VE)} 
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f(0) = 1, lim f(r) = 0 
r-r+- 

and z(m) as usual stands for the number of primes not exceeding ma 

REFERENCES 

/II P. ERD& and P. TI-RAN, On some problems of a statistical group theory I, Z. Wahr- 
scheilrlirk~eisstlzeorie wnd Verw. Gebiete 4 (1965), 176-186. 

121 P. ERD& and P. TURIN, On some problems of a statistical group theory III, Acta 
Mnt?l. ~4ca,~. Rci. Hungur. 48 (1967), 309-320. 

[3] E. LAXDlo, Cber die Maximalordnung der Permutationen gegebenen Grades, Arch. 
Math. Phys. (3) 5 (1903), 92--103. 

[4] G. H. HARDY and S. RAMANUJAN, Asymptotic formulae in combinat’ory anaIysis, 
Proc. London Mat.h. sot. (2) 17 (1918), 75-115. 

[j] A. ~~g;~G~~~~. A Tauberian theorem for partitions, Ann. of Math. 42 (1941), lO’i&-- 

(Received November 19, 1970) 

XT-4 MATEMATIKAI KUTAT6 INTI%ETE, 
BUDAPEST, V., RELLTANGDA U. 13-15. 

EoTVbS LORdND TUDOM-4NI’EGYETEM 
ALGEBRA I% SZAVEIXtiLET TANSZRK, 
BUDAPEST, VIII., MUZEUM KRT. 6-8. 
HUNGARY 

11’ 


