SOME PROBLEMS ON THE PRIME FACTORS OF CONSECUTIVE INTEGERS II
by

P. Erdbs and J. L. Selfridge

G. A, Grimm [3] stated the following interesting conjecture: Let
n+1l,..., n + k be consecutive composite numbers. Then for each 1,
1 <i £ k there is a pi’Piln+i Pil#pie for 1, # 1, .
He also expressed the conjecture in a weaker form stating that any set of
k consecutive composite numbers need to have at least k prime factors.
We first show that even in this weasker form the conJjecture goes far beyond
what is known about primes at present.

First we define a few number theoretic functions. Denote by v (n, k)
the number of distinct prime factors of (n + 1)...(n + k). fl(n) is the

smallest integer k 8o that forevery 1 < L < k
v(n, ) 2 tbutv(n, k+1) = k .
fo(n) is the largest integer k for which
v(n, k) 2 k.

Clearly fo(n) z fl(n) and we shall show that infinitely often
fo(n) 5 fl(n) s
Following Grimm let f2(n) be the largest integer k so that for
each 1 £ 1 £k thereisa p, | n+1,p # p if 1. # 1. .
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Denote by P(m) the greatest prime factor of m. f,(n) is the

\H

greatest integer so that all the primes P(n + i), 1 <1 <k are distinct.
fh(n) is the largest integer k so that P(n+ 1) 24, 1 £ 1 < k and
fs(u) is the largest integer k 8o that P(n + i) 2k for every 1l <1 < k.

Clearly



ik

fo(n) 2 fl(n) 2 fe(n) 2f5(n) z f,(n) 2 f5(n).

CONJECTURE: It seems certain to us that for infinitely many n the
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inequalities are all strict. For example, for n

fo(n)=96>9h>90>!+5>18>11=f5(n).

It seems very difficult to get exact information on these functions
which probsbly behave very irregularly. By a well known theorem of Pdlys,

fi(n) tends to infinity. First we prove

THEOREM 1.
5 1/2
(1) fo(n) <e [iog n]

To prove (1) assume that y(n, k) 2 k . We then would have

(2) (“;k]z Mp,, n(k) <r s k

where Py = 2 < Py < ... 1s the sequence of consecutive primes. On the

other hand
n+k §n+k[k e§n+k] %
(3) kJSTrr . Sk '
A well known theorem of Rosser and Schoenfeld [4] states that for
large t
(4) Py >t log t + t log log t - c,t

where ¢y » Gy oo are positive absolute constants.
From (4) we obtain by a simple computation that (exp z = &7,
k

(5) it p. > exp (k log k + k log log k - cik)'
ren(k)+l ©



%)
From (2), (3), (4) and (5) we have

c
(6) Eiﬂihl > klogk /e 5

(6) immediately implies (1) and the proof of Theorem 1 is complete.
We conjecture
1/2'Ch
fo(n) <n
c5 1/2-::}4

for all n > no(ch) , perhaps fl(n) >n for all n. fo(n) <n

seems to follow from a recent result of Ramachandra (A note on numbers with
a large prime factor, Journal London Math. Soc. 1 (1969), pp. 303-306) but
we do not give the details here.

Theorem 1 shows that there 1s not much hope to prove Grimm's conjecture

in the "near future" since even its weaker form implies that

1/2
pi+l = Pi < C(Pi / 103 Pi)

-~

in particular it would imply that there are primes between e and (n + 1)°
for all sufficiently large n .

Next we show

THEOREM 2. For infinitely many n

qD(n) < c6nl/e and fl(n) < cTnl/e .

Denote by u(m, X) the number of prime factors of m 1in (caxl/e, X

We evidently have

X
X i
m ) ulm x) = Y Zi>x  J 2 -xm>x
m=1 1/e 1l/e
cax <pX QBX <p<X

for sufficlently small cg -«
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From (7) it is easy to see that there is an cBKl/e £ m<X - ca}{ue
so that for every t < X - m
t
2: u(m+ 1, X) 2t .
i=1.

1/e

Choose t = c6x and we obtain Theorem 2, 1In fact for every t < c6xl/e

t
I (m+ i) has at least t prime factors > céxl/e . The same method gives
i=l

that fl(n) < c,_r,n

We can improve a result of Grimm by

1/® hende tor inriritely Wy 6,

THEOREM %.* For every n > ng

fg(n) >(1+o0(l)) logn .

Suppose fe(n) <t . This implies by Hall's theorem that for some r < =n(t)
there are r primes Pysees)P, SO that r + 1 dintegers n + il,...,n + iH
1 sil < e < ir+l

o'
there is at most one of the integers n + jJ, 1 < J st which divide »p

* t are entirely composed of PyseeesP, - For each p

o
with p > t . Thus for at least one index is’ 1< ssr+1

t o (=4
n + is = .Ill pii 3 pii <t, orn< tﬂ(r) < tﬂ(t) <
i=

e(1+o(1)}t

which proves Theorem 3. Probably this proof can be improved to give
f,(n) / log n 5 ® but at the moment we can not see how to get

fe(n) > (log r1l)]'+'E . Probably

(8) £,(n)/(10g n)* > =

for every k which would make Grimm's conjecture likely in view of the fact

that "probably"”

* K. Ramacﬁ:andra Just informed us that he can prove fg(n) > ¢ log n (log
log n)



(9) lim (p, - p) / (log pr)k—' 0

for sufficiently large k. We certainly do not see how to prove (8)
but this may be due to the fact that we overlook a simple idea. On
the other hand the proof of (9) seems beyond human ingenuity at

present,

In view of [2]

P =P
Ym =T .y
= logp,

Theorem 3 shows that Grimm's conjecture holds for infinitely many sets

of composite numbers between consecutive primes.
THEOREM 4., For infinitely many n

f5(n) > exp(c9 (log n log log n)l/e).

A well known theorem of de Bruijn [1] implies that for an absolute

constant ¢ the number of integers m < n for which
9
1/2
(10) P(m) < exp(c9 (1og n log log n) /")

is less than
(11) n exp—(c9 (log n log logn)l/g)-

(10) and (11) imply that there are exp(cg (log n log log n)l/e)

consecutive integers not exceeding n all of whose greatest prime factors are
greater than exp{cg (log n log log n)l/g), which proves Theorem L.

o
It seems likely that for infinitely many n fy(n) < (log n) W

c
but it is quite possible that for all n fj(n) > (log n) 11 | 4 have
no non-trivial upper bounds for f3(n), fh(n) or f5(n). It seems certain
that fﬁ(n) =0 (ne) for every €> 0. It is difficult to guess good

upper or lower bounds for fe(n).
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Grimm observed that there are integers u and v, u < v,P(u) =

P(v) so that there is no prime between u and v e.g. u = 2k,

v=27, It is easy to find many other such examples, but we cannot

prove that there are infinitely many such pairs wy, vy and we cannot

get good upper or lower bounds for Ve S uy . Pdlya's theorem of

course implies vitu e

It has been conjectured (at the present we cannot trace the

conjecture) that if n, and m, have the same prime factors, then

i i
there 1s always a prime between ni and mi « We cannot get good
upper or lower bounds on m, -0, .

Next we prove

THEOREM 5. Each of the inequalities
fi(n) > fi+l(n)’ 0< i < 4

have infinitely many solutions.
First we prove fo(n) > fl(n) infinitely often. Put n = pq
where p and q are distinct primes, q = (1 + o (1)) p, i.e. p and

q are both of the form (1 + o (1)) nl/2 . There is a largest k for which
(12) fo(pq -k) 2 k.

By theorem 1 none of the integers pq - 1, ... , pa - kK + 1 can
be multiples of p or q since k= o0 (nl/2). Since k 1is maximal,
by (12) the mumber of distinct prime factors of the product (pq - k + 1) .
.. (pa) equals k . Thus the number of distinct prime factors of
(pg - k + 1)...(pq - 1) is k - 2 hence fl(pq - k) <k -1 while

fo(pq -k) 2 k.



To prove fl(n) > fe(n) infinitely often, observe that
fl(pq -1) > fe(pq - 1) with p and q as above. Since
fl(pq - 1) >min (p, q), the primes p and q cannot both be used for
f2 but can be used for fl .

Assume now fe(n) = k and assume that the set n + 1,..., n+ k
contains no power of a prime. Then fe(n} > f5(n). Since fg(n) =k
there must be r numbers n + il,..., n + ir in the set which to-
gether with n + k + 1 are composed entirely of exactly r primes
QG < oo <Q (we use Hall's theorem). Now none of these r numbers
is a power of q,l so thelr largest prime factors cannot all be distinect
and thus fB(n) <k.

Now clearly 2° and (n + 1)2 infinitely often have no power
between them. This and the fact that f2(n2) = o (n) gives infinitely
often f2(n21 > fi[na). It might be interesting to try to determine the larpest
n such that fe(n) = f5(n). We cannot even prove there is such an n.

Since fj(n) goes to infinity with n and fh(Ek - 3) =
f5(2k - 3) =2, it is clear that fj(n) > fh(n) infinitely often.

Also fh(2k -1)>2 if k> 1 while f5(2k - 1) = 2. 1In fact it is
easy to see that fh(2k - 1) goes to infinity with k.

THEOREM 6. For all n > n_, fl(n) > fj(n) "

Proof: Put fl(n) = k. Then (n+ 1)...(n + k) has exactly k
distinct prime factors. If fj(n) = k then all these k primes mst
be the greatest prime factor of some n+ i, 1 £ 1 = k , In particular
2 must be the greatest prime factor of n + i, (n+ i = 2“) and

similarly for 3 so that n + i, = oVa¥ |
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Thus by theorem 1

o 2

(13) ) 2% -278 J<g £

A well known theorem states that if Pysess, P are T given
primes and a8, < a, < ... 1s the set of integers composed of the p's
: 1-€ ; .
then 8y, " 8 > 8y for every € > 0 and i>1i (€) . This
clearly contradicts (13), proving theorem 6.

It 1s not impossible that for every n > Ny

fO(n) > fl(n) > fg(n) > fB(n) > fh(n)

but wve are far from being able to prove this. It seems certain to us that

0 but we might nazard the guess

that fo(n) = fl(n) infinitely often, and perhaps f,(n) = fh(n) = f5(n)
~

f.(n) > f,(n) > f,(n) for all n>n
1 2 z

infinitely often. fh(Ek -3) = f5(2k - %) = 2, thus fh(n) = f5(n) has
infinitely many solutions.
We can prove by using the methods of Theorem 4 that
fa(n) <exp ((2 + o (1)) (Log n log iog n)l/2
for infinitely many n and that

I‘e(n) < exp (elog n log log log n / )

log log n
for infinitely many n.

Pernaps our metiods give that f _(n) < cnl/e holds infinitely

0
often and perhaps fo(n) <n holds for every n > ng - All these

and related questions we hope to investigate.
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