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G. A. Grimm [3) stated the following interesting conjecture : Let

n + 1, . . ., n + k be consecutive composite numbers . Then for each i,

1 s i s k

	

there is a pi , p i I n + i pi
1

# pi
2

for 1 1 ~ 1 2 .

He also expressed the conjecture in a weaker form stating that any set of

k consecutive composite numbers need to have at least k prime factors .

We first show that even in this weaker form the conjecture goes far beyond

what is known about primes at present .

First we define a few number theoretic functions . Denote by o (n, k)

the number of distinct prime factors of (n + 1) . . . (n + k) . f1 (n) is the

smallest integer k so that for every 1 s t,4- k

v (n, t) Z -t but v (n, k + 1) = k .

f0 (n) is the largest integer k for which

v (n, k) k k .

Clearly f0 (n) i f1 (n) and we shall show that infinitely often

f0 (n) > f1 (n) .

Following Grimm let f2 (n) be the largest integer k so that for

each 1-. i !9k there is a p i ln + i , pi 1 1 pi
2

if i1 / 12 .

Denote by P(m) the greatest prime factor of m . f.(n) is the
J

greatest integer so that all the primes P(n + i), 1 :!91 s k are distinct .

f4 (n) is the largest integer k so that P(n + i) Z i, 1 s i -- k and

f5 (n) is the largest integer k so that P(n + i) 2:k for every 1 s i s k .

Clearly



l4

CONJECTURE : It seems certain to us that for infinitely many n the

inequalities are all strict . For example, for n = 9701

f0 (n) - 96 > 94 > 9o > 45 > 18 > 11 = f5 (n) .

It seems very difficult to get exact information on these functions

which probably behave very irregularly . By a well known theorem of Pólya,

f3(n) tends to infinity. First we prove

THEOREM 1 .

(1)

To prove (1)

f0 (n) 2 f,(n) > f2 (n) 2 f5 (n) 2 f4 (n) z f5 (n) .

n

	

1/2
f0 (n) < cl log n J

assume that v(n, k) z k . We then would have

(2)

	

Cnkk]2
n pr , 71 (k) < r s k

where pl = 2 < p2 < . ., is the sequence of consecutive primes . On the

other hand

(3)

	

n+k < n+k k

	

e n+k k
k

	

k .

	

k

A well known theorem of Rosser and Schoenfeld (4j states that for

large t

(4)

	

Pt >tlogt+tloglogt-c2t

where cl , c 2 . . . are positive absolute constants .

From (4) we obtain by a simple computation that (exp z = e z )e

k
(5)

	

11

	

p > exp (k log k + k log log k - c k) .
r=n(k)+1 r

	

3



From (2), (3), (4) and (5) we have

(6)

	

en+k

	

c3
k

	

> klogk / e

(6) immediately implies (1) and the proof of Theorem 1 is complete .

We conjecture
1/2-c4

f0 (n) < n
C 5

	

1/2-c4
for all n > nO (c4) , perhaps fl (n) > n

	

for all n. f0 (n) < n

seems to follow from a recent result of Ramachandra (A note on numbers with

a large prime factor, Journal London Math . Soc . 1 (1969),

we do not give the details here .

Theorem 1 shows that there is not much hope to prove Grimm's conjecture

in the "near future" since even its weaker form implies that

pi+l - pi < c(pi / log pi) 1/2

in particular it would imply that there are primes between n 2 and (n + 1)`

for all sufficiently large n .

Next we show

THEOREM 2 . For infinitely many n

f0 (n) < cónl/e and fl(n) < c7n
l/e

(7)

Denote by u(m, X) the number of prime factors of m in

We evidently have
x
F

M-- 1

for sufficiently small c8 -

pp . 303-306) but

s

15

BXl/e X) .

u(m, X) -

	

Z

	

[p ] > X

	

p
- n(X) > X

l/e

	

1/e
c8X <p<X

	

c8X <pIX
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From (7) it is easy to see that there is an c8Xl/e s m < X - c8Xl/e

so that for every t -- X - m

Choose t = c6Xl/e and we obtain Theorem 2 . In fact for every t < c 6Xl/e
t
R (m + i) has at least t prime factors > c6Xl/e

	

The same method gives
i=I

that fl (n) < c7nl/e holds for infinitely many n .

We can improve a result of Grimm by

THEOREM 3•* For every n > no

f2 (n) > (1 + o (1)) log n .

Suppose f2 (n) < t . This implies by Hall's theorem that for some r s n(t)

there are r primes pl, . . .,pr so that r + 1 integers n + il, . . . . n +

1 s íl < . . . < ír+1

	

t are entirely composed of p l , . . .,pr . For each

there is at most one of the integers n + j, I < j s t which divide

with pa > t . Thus for at least one index is, 1 5 s s r + 1

f2 (n) / log n -,# - but at the moment

f2 (n) > (log n) l+ E . Probably

(8)

t
an + i s = II Pii , Pi i < t,

í=1

which proves Theorem 3 . Probably this proof can be improved to give

for every k which would make Grimm's conjecture likely in view of the fact

that "probably"

u(m + i, X) 2 t

or n < tn(r) < tv (t) < e
(l+o(1~)t

we can not see how to get

f2 (n)/(log n) k _j~ co

a
p

* K. Ram Ramachandra just informed us that he can prove f 2 (n) > c log n (log
log n /~+)

1r+l'

P



(9) lim (Pr+l - Pr) / (log Pr)k ~ 0

for sufficiently large k. We certainly do not see how to prove

but this may be due to the fact that we overlook: a simple idea .

the other hand the proof of (9) seems beyond human ingenuity at

present .

In view of [2)

pr+l Prlim log
Pr

	

< 1 .

Theorem 3 shows that Grimm's conjecture holds for infinitely many sets

of composite numbers between consecutive primes .

THEOREM 4 . For infinitely many n

f5 (n) > exp(c 9 (log n log log n) 1/2 ) .

A well known theorem of de Bruijn [1] implies that for an absolute

constant c 9 the number of integers m < ri for which

(10)

	

P(m) < exp(c9 (log n log log n) 1/
2 )

is less than

(11)

	

n exp-(c 9 (log n log logn) 1%2 ) .

(10) and (11) imply that there are exp(c 9 (log n log log n) 1/2 )

consecutive integers not exceeding n all of whose greatest prime factors are

greater than exp(c 9 (log n log log n) 1~2), which proves Theorem 4 .

10
It seems likely that for infinitely many n f3 (n) < (log n)

cbut it is quite possible that for all n f3 (n) > (log n)ll . We have

no non-trivial upper bounds for f 3 (n), f 4 (n) or f5 (n) . It seems certain

that f3 (n) = o (n) for every E > 0 . It is difficult to guess good

upper or lower bounds for f2 (n) .

(a)
On

1(



18

Grimm observed that there are integers u and v, u < v,P(u) _

P(v) so that there is no prime between u and v e .g . u = 24,

v = 27 . It is easy to find many other such examples, but we cannot

prove that there are infinitely many such pairs u i , v i and we cannot

get good upper or lower bounds for vi - ui

	

Pólya's theorem of

course implies v i - ui -+ Co .

It has been conjectured (at the present we cannot trace the

conjecture) that if ni and mi have the same prime factors, then

there is always a prime between ni and mi . We cannot get good

upper or lower bounds on mi -

Next we prove

THEOREM 5 .

	

Each of the inequalities

fi (n) > fi+l (n), 0
5 i s ~+

have infinitely many solutions .

where

First we prove f0 (n) > f
l (n) infinitely often .

are distinct primes,p and q

q are both of the form (1 + o (1)) n112 . There is a largest k for which

(12)

	

fo(pq - k) z k .

By theorem 1 none of the integers pq - 1, . . . , pq - k + 1 can

be multiples of p or q since k = o (n1
/2 ) . Since k is maximal,

by (12) the number of distinct prime factors of the product (pq - k + i)

. . (pq) equals k

	

Thus the number of distinct prime factors of

(pq - k + 1) . . .(pq - 1) is k - 2 hence fl (pq - k) < k - 1 while

fo (pq - k) z 1: .

Put n = pq

q = (1 + o (1) ) p, i . e . p and



To prove f1 (n) > f2 (n) infinitely often, observe that

fl(pq - 1) > f2(pq - i) with p and q as above . Since

fI(pq - 1) > min (p, q), the primes p and q cannot both be used for

f2 but can be used for fl .

Assume now f2 (n) = k and assume that the set n + 1, . . ., n + k

contains no power of a prime . Then f2 (n) > f3 W . Since f2 (n) _ k

there must be r numbers n + 111 . . .1 n + it in the set which to-

gether with n + k + 1 are composed entirely of exactly r primes

q1 < . . . < qr (we use Hall's theorem) . Now none of these r numbers

is a power of q1 so their largest prime factors cannot all be distinct

and thus f3 (n) < k .

Now clearly n2 and (n + 1) 2 infinitely often have no power

between them. This and the fact that f2 (n2) = o (n) gives infinitely

often f2 (n2) > f-,(n2) . It might be interesting to try to determine the largest
l

n such that f2 (n) = f3(n) . We cannot even prove there is such an n .

Since f,, (n) goes to infinity with n and f4(2'` - 3) _l

f5(2k - 3) = 2, it is clear that f3 (n) > f4 (n) infinitely often .

Also f4 (2k - 1) > 2 if k > 1 while f5 (2k - 1) = 2 .

easy to see that f4 (2k - 1) goes to infinity with k .

THEOREM 6.

	

For all n > no , f1 (n) > f3 (n) .

Then (n + 1) . . . (n + k) has exactly kProof :

	

Put fl(n) = k .

i9

In fact it is

distinct prime factors . If f3 (n) = k then all these k primes must

be the greatest prime factor of some n + i, 1 S i s k . In particular

2 must be the greatest prime factor of n + i, (n + i = 2w} and

similarly for 3 so that n + 1 2 = 2°3w .
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Thus by theorem 1

A well known theorem

2u - 2v 'v i <k<?

states that if pl' *'*'
p r

primes and al < a-P < . ., is the set of integers composed of the p 's

then ai+1 - ai > ai -E for every E > 0 and i > i (E) . This

clearly contradicts (13), proving theorem 6 .

It is not impossible that for every n > n 0

f0 (n) > fl (n) > f2 (n) > f,(n) > f4 (n)

but we are far from being able to prove this . It seems certain to us that

fl (n) > f2 (n) > f,1 (n) for all n > n0 but we might hazard the guess

that f0 (n) = f1 (n) infinitely often, and perhaps f z (n) = f4 (n) = f5 (n)
J

infinitely often . f4 (2k -3) = f5 (2k - 3) = 2, thus f 4 (n) = f 5 (n) has

infinitely many solutions .

We can prove by using the methods of Theorem 4 that

f3 (n) < exp ((2 + o (1)) (log n log log

for infinitely many n and that

for infinitely many

f2 (n) < exp (clog n log log log n /log tog n )

n .

are r given

n) 1/2

Perhaps our methods give that f0 (n) < cnl/e holds infinitely

often and perhaps f0 (n) < n~,E holds for every n > n0 . All these

and related questions we hope to investigate .
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