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S0ME APPLICATIONS OF GRAPH THEORY TO NUMBERS THEORY
P. Erdos
Hungarian Academy of Sciences
Let a; <...<a sn be & sequence of integers no one of which divides
any other. It is mot difficult to see that max k = [531] [1]. Assume now
that no a divides the product of two others, them I proved that [2]

(r(x) denotea the number of primes not exceeding x)
2/3 2/3

X
(1) 1) +—E—— < maxk < w(x) + ———s
(Log x)

The proof of both the upper and the lower bound used combinatorial methods.

Probably

2/3 2/3
(2) mix k = :(;)-u--"‘—-fq-ol X 3
(Log x)

(Log x)
for a certain ¢; but I could mot prove (2).

Assume next that the products 8,3, are all different. Then I proved [3]

h
- 3‘3/4 o3t
3 w(x) + < max k < wix) +
_'(m ‘Jai‘z _'ﬁ‘_'(m ”a?z
I expect that here too
@ © T ( 0] [
max k = wix) + + o0
(tog 032 " " | (tog 02

but again I can not prove (4). The proof of both the upper and the lower bound
of (3) ia combinatorial and graph theoretic.

Assume that the products takem r at a time .11 i Hr are all differ-
ent. We have no completely satisfactory estimation of max k 1f r > 2,

Assume that all the products

| S
n a e, =Dorl
:L-li" i

are different. I proved that [&]
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1/2
C X
(5) T(x) + n(vx) < max k < wix) +—3m .

.

The lower bound is obvious, it suffices to take the primes and their squares -
the proof of the upper bound is more complicated. FProbably
1/2
6) max k = w(x) + n(/x) + o[ﬁ;—;]
holds and one can make plausible conjectures for sharper results than (6) [4].
Let 8 < ... <A be a sequence of real numbers. Assume that for every

four indices {1, j, r, 8
n hilj ~aalzl,

if the a's are integers then (7) means that the products ‘i'j are all dif-

ferent. I can not prove that (7) implies k = o(x).

Let now 8) < e SB S X and assume that the sums ul-i-aj are all
distinct. It is known that [7]

1/2 1/2

< max k < x -I-::'l"‘i

(1+o(1))x +1.

Turfn and I conjectured
®) mxk = xM%+ o).

(8) if true seems rather deep. Assume now that all the sums taken T at & time

."1 + ...t 8y are distinct. Bose and Chowla conjectured

mx k= (Mo(1))xT

but they could only prove max k & (l#o(1))x'’F

[8].
Let us finally assume that a € ses € a < x 1is such that the sums

L P L 0 or 1 are all different. Moser and I proved that [5]
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Log x x
max k = Eg—E+-§—°%g-l,—+o(togx).

Conway and Guy showed that for x = g%, 0% T max k = r+2. Perhaps

) mxk = gg—;q»om.

(9) is probably rather deep.

Let a <. <asx k > n(x). Then it is easy to see that the prod-
ucts “11‘-1 .‘;1 can not all be different. Let k > m(x), denote by f£(k,x)
the smallest integer so that thers always are f(k,x) = r primes Py < es- < B,
for which more than r a's are of the form I[I_l p:i. Clearly f(k,x) 5 ={(x),
also f(k,x) 1is a non increasing functionm of k. Straus and I proved

1/2
(10) £+, x) = (ho(gpasy

and in fact we obtained several sharper results than (10) the proof of which
we will outline.

let k = cx. 1 proved
an ) = Loglog x + (e +o(1)) (2 Loglog 02

where
c

2
12) z;:;?f g PR
UZ) be the primes not ex~

1/2

Now we prove (10). Let p, < ... <p, 8 =1(x
-

ceeding x, 9 < ... < q_ are those primes greater than x which divide

5
more than one a, S5ince k > w(x) a simple argument phows that more than st+v
8's are composed of the primes PyrecesPys Qpoeensd, (since all the other q's

divide at most one a and k > n(x)). Thuas

(13) f(n(x)+l, x) s 8 + v.
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Now we show
(14) £(n(x)+1, x} s 28 + 1.

The proof of (13) is indeed easy. If s 2z v, (13) implies (14). Assume

next v > 8, let 9 < be the first s+l gq's. Clearly at least

B 1

28+2 a's are composed of the 28+l primes PreesesPgs Gpaeeerd (to each

s+l
q there corresponds at least two a's and the a's corresponding to distinct
q's are distinct). This completes the proof of (14).

By the prime number theorem and (14) we obtain
xuz
(15) fin(x)+l, x) = (W(.l))m i

Next we estimate f(w(x)+1, x) from below. Let Py < e <P, be the set

of primes not exceeding (z-—c)x” z. We define a set At of t integers as

follows:

(16) A - {":"1’ PeP2r Progrd1Por1’ Pe-20+1P2r41" Pe-2cP2r “t-z:"z;-a-z}
re1,...

and we close up the cycle so that eacy Pys 1s1i <t should occur in exactly
two integera of A . Let for example t = 8, then the set Aa consiste of
the 8 integers 19-2, 19-3, 17-2, 17-5, 13-3, 13-7, 5-11, 7-11. It is easy to
give a geometric interpretatiom of At. Consider a polygon of t sides, the
vertices are the primes PyscessPy and the edges which are interpreted as the

products of the vertices are the elements of At' e.g. t =9

13
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It easily follows from the prime number theorem that for x > xo(c) all
elements of At are less than x.

Now we define a set of w(x) + 1 integers as follows: The primes < x,

g
j 2 t+2, the t elements of A and zptﬂ. Wyyyr For x 2 xn(r:} all these
numberas are < x and Ppse=sPpry is clearly the smallest set of primes so
that there are more a's composed of these primes than the number of these

primes. Thus by the prime number theorem for x > x,(e)
/2
an E(r(x)41, x) 2 t+1 = Q-cto(D)go -

(15) and (17) imply (10). By using the prime number theorem with an error term
the above proof gives

Fr+l, 0 = 20?4 o( S .

(Log x)
for every k.
We also obaerved that (13) is best possible for quite large values of x,

e.g. £(26,100) = 9 (v(100) = 25). To see this take the primes from 29 to
97 and the 10 numbers 34, 38, 39, 46, 55, 57, 69, 77, 85, 91. In fact there
always is equaliry in (10) whenever the set of integers (16) formed with the

1/2

primes = 2x are all not greater tham x. This certainly happens for very

much larger values of x than 100 but Straus and I conjectured that for

x> x, this never happens and that in fact
18) ATl SO TOY S G

We also made the following related conjecture: For every sufficiently

large prime Py there is an index 1 for which

2
a9 Py Prag Pgc
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{19) if true is certainly very deep. There certainly are fairly large
2
values of k so that for all 1 < k, Pr > Pr+iPy-1 and we could perhaps try
to find the largest such value by a computer, but even if one would succeed it
will be very difficult to show that one really has found the largest such
value.

Finally Straus and I proved that
(20) f(n(x)+1, x) = ¢

where t ie the largest integer so that all the t integers of At are less
than or equal to x. The proof of (20) follows easily from the remark that if
a = qjl. then all prime factors of z are =< quj.

Mow we prove (11). A theorem of Kac and wyself states [6] that the number

1/2

of integers mn s x for which V(n) > foglog x + a(2foglogx) is  (V(n) de-

notes the number of distinct prime factors of n)

21) (o)) —2= [ "‘2’24:

From (21) we immediately obtain that the number of integers n S x for which
1/2
(22) V(n) > ALoglog = + (ey=e)) (2£0gLogx)

is > cx where ey is determined by (12) and £ tends to 0 as x tends
to infinity. Let now 8 € wun € a, < x, k> cx be the integers not exceeding

x which satisfy (22). This set of integers clearly shows that for k = cx
@3 £(k,x) 2 Logog x + (e +o(1))(220gtogn) M/

(eince no a 1is composed of fewer than Loglog x + (t:l‘-l'o('l))(Zah:lgla_gx)M2
prime factors).
Thus to complete the proof of (11) we have to estimate f(k,x) from above.

My first results were obtained by combinatorial methods. I proved that if
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51-:,,, (;ka, k 2 cx then for every o there 1s a y and a sequence of

primes
Y <Py <o <p, <2y, r > a Loglog x
and integers

by < oo <b, 8> —F—, k= k(o)

(Logx)

so that all the numbers pihj. 1s1sr;l1z<jsa are a's. From

8 > (x/ (Logx)k) I then deduced that there are indices },, j, and primes p.p,
so that bjlpl - bjzpz' But all these results only gave f(k,x) < (2+o(1))*
Loglog x. Finally I found simpler mumber theoretic methods which gave the re-
quired upper bomd for £(k,x). I now outline my proof. Let 8y < el <y s x,
k = ex be any sequence of integers. It easily follows from (11) and (12) that

for every € > 0 there is & § = &(e) so that our seq e has a subsequence

311 < ven € alr satisfying for every 1 < j = r
24) V(s, ) < Loglog x + (cln)(zzogtagx)uz. r> bx.
i

Put exp exp (Log log x| 13, y (exp & = ) and denote by vy(n) the
number of distinet prime factors of n not exceeding y. It easily follows
from the method of Turén[10] (or again from [6]) that for at least -.:7 of the
lij'l we have

@5) \’Y(aij) > £ (togtog 0/? = % togtog y.

In (25) %(ughgx) 1/3 could be replaced by (togl.agt)ln - c(!.ogtogx)” %
for sufficiently large c, but (25) suffices for our purpose.

Denote by 8 < ... <@, t> -6-2! the a's which satisfy (25). Denote

further by bl C S bz < y the integers for which
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@6 % togtog 07 > vy > 2 (togtog 3.

From Turén's method [10] (or from [6)) =z = (l+o(l))y. Consider now the

integers

27 '1"1' ls1st; 1s5]3=z.

Denote by Fy(n) the nusber of prime factors of n not exceeding y

where in F,(n) multiple factors are counted multiply. From (25) and (26) we

have
@8 P ap) > 3 Uoglog '3 = 5 toglog y.

From (28) it easily follows from the method of Hardy and Ramanujan [9]

that the number of integers m S xy satisfying (28) in other words satisfying
(28a) Fow) > %(zog!.ag /3

is less than xytxp(-nu-ogng)“’) for a certain fixed n > O (Turén's meth-
od would give here only (cxy!(loglogx)” 3) which would not be enough for our
purpose, but by using higher moments we would obtain o{xy/loglogx) which would
suffice for our purpose.)

The number of the products of the form (27) ie clearly

(29) ez > ST,

From (29) and (2Ba) there is an m < xy for which the number of solutions
of m= .1111 is greater than (taglogx)z. in other words m is divisible by
at least (lag!.ngx)z distinct a's. (24) and (26) imply on the other hand

that

(30) V(m) < toglog x + (cy+e)(Loglog 0?4 -f_:- (Zogdog o3,
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Thus clearly
f(k,x) < V(m)

or

&) £0,x) < Loglog x + (c;+o(1)) (Loglog 02,

(23) and (31) complete the proof of (11).
One could study f(k,x) for k = o{x) and k > w(x)+1, but I have not

yet obtained as sharp results as (10) and (11).
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