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1. Our investigations might be suggested by a sort of optimalization
problem which could be described vividly in practical terms as follows: suppose
we are given a network of routes on which there are critical points endangered
by fire. We want to place fire stations at an appropriate number of points from
which any endangered point can be reached within a given time interval in case
of emergency calls,

To give our problem a more precise formulation, we are going to
interpet the situtation with the aid of graph-theoretic terms. Unless otherwise
stated, in what follows we shall consider only undirected finite graphs without
loops or multiple edges.

Suppose now we are given a graph G and a positive integer k.
Our task will be, analogously to the fire station problem sketched above, to
designate a possibly small number of the vertices of G, the so-called depots,
so as to be able to reach any vertex of G from some appropriate one of the
depots passing along a number <k of the edges of the graph G. Any such
system of depots will be said to be a k-frame, and the minimal number of
depots occurring in any k-frame for G will be denoted by f(G,k).

2. Considering for a while again our practical formulation of the
problem, in view of the given quality of the roads, it might be preferable to
keep fire engines from running in opposite directions on the same road while
answering emergency calls. That is to say if for an undirected graph we are
given a k-frame, we want to direct the edges of the graph in a way that the
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given system of depots still continues to form a k-frame in the sense that any
vertex of the graph may be reached by starting from some appropriate depot
and passing along only a number <k of edges, but in the designated direction.
That this can always be carried out is confirmed by the following

Theorem 2.1. If in an undirected graph G there is given a
collection of depots, then we can define a directing of the edges in G so that no
access-time of any vertex increases.

By access-time we mean, of course, the minimal number of edges
by passing along of which the given point can be reached from some depot.

The proof of the above theorem can easily be carried out if we
direct each edge towards whichever of its endpoints that has the greater access-
time. If the two access-times coincide, the direction is arbitrary, or the edge
in question can even be deleted.

Thus we have seen that in a sense no novel feature of the problem
can be obtained by considering directed graphs. So in the sequel we shall
confine ourselves to undirected ones.

3. The next theorem yields the best estimate for {(G,k) in case
G is connected. Here we suppose that the number of vertices in G exceeds k,
since otherwise we obviously have {(G,k)=1.

Theorem 3.1, If G is a connected graph containing n >k
vertices, then

n

(G, k) < P

PROOF. Without any loss of generality we may assume that G is
a tree, i. e. a connected graph containing no circuits. In fact, if this is not
the case, we can omit some suitable edges of G in order to obtain a tree.

Now supposing that this has already been done, we define
recursively a classification of the vertices in G as follows: we form the class
C, of the vertices in G having valency * one, and we delete both these vertices
and all the edges incident to them. Now, having done this, we put the vertices
of valency one of the graph so obtained into class C,, and so on. Repeating this
procedure as long as possible, we obtain the desired classification of all the
vertices in G.

* F 1 :
The valency of a vertex means the number of edges incident to it.
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Now it is easily seen that if we take all the points contained in
classes having multiples of k+1 as indices, then we obtain a k-frame for G.
In order to see that for this k-frame the inequality of the theorem being proved
holds, we only have to notice that, in view of the fact that G is a tree, the
classes C; have decreasing cardinalities.

It is easily seen that the estimate given in the theorem is the best
possible one. In fact, assuming n= r(k+1), we can construct an extremal
example as follows: we consider an arbitrary connected graph of r points
and attach to it r disjoint tentacles of length k - here the tentacles are simply
paths starting at different points of the original graph.

Now in order to reach the free endpoints of the tentacles within k
steps, any tentacle must contain at least one depot. Thus the minimal number
of depots necessary is r.

The result obtained for connected graphs can be used in order to
derive estimates for the function f(G,k) in case the number of the connected
components in G is known.

CORROLLARY 3.2, If the graph G having n vertices can be
decomposed into s connected components, then

< n+ks
£(6,k) £ XS

This result is not the best possible because it does not reflect
the situation even in the case s =1 , as seen by comparing it to the above
theorem. The result is exact if G does not contain edges at all, i.e. if s=n.

The assertion of the corollary can easily be reduced to that of
the previous theorem by attaching each of the components of G to different
vertices of an arbitrary connected graph of s points by tentacles of length k.
In fact the graph obtained in this way contains n+ks vertices, and if we
consider any of its k -frames, the depots in that k -frame can be removed
along the corresponding tentacles so as to belong to the starting graph G .

In order to derive another corollary of the previous theorem, we
introduce the notion of the diameter of a connected graph as the maximum of all
the numbers occurring as distances between any pair of points in the graph.
Here by the distance between two points we mean the length of the shortest
path connecting them.
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COROLLARY 3.3. Suppose that G is a connected graph having n
vertices. Then for any positive integer d all these vertices can be covered

by a number *

n

[d/2] +1

of its subgraphs having diameters <d . For even d the bound given for the
number of subgraphs is the best possible.

PROOF. Choose k=[d/2] and forma k -frame containing as
few depots as possible. Now it is easy to see that the subgraphs assigned to
each of the depots containing every point having distance <k from the depot
in question will conform to all the requirements desired.

In order to see that the given estimate for the number of covering
subgraphs necessary is exact in case d is even, it is enough to consider the
extremal example given for Theorem 3.1 when k= [d/2].

As a matter of fact, for odd d the above result can be strengthened
slightly, i.e. then the number

n-1

(d/2]+1

may also be chosen as the upper bound of the number of covering subgraphs
necessary. In fact such a covering can be defined as follows: we omit an
arbitrary vertex of G along with the edges incident to it whose removal does
not affect its connectedness, then define a minimal covering by subgraphs with
diamter < d-1 and finally we adjoin the omitted point to a suitable one of the
covering subgraphs; this might cause an increase by one in its diamter. The
extremal example which shows that we are again given the precise upper bound,
is a star-shaped graph where for an arbitrary integer r tentacles of length
(d+1)/2 start in a given vertex.

4. In the next two sections we are going to derive a rather precise
estimate for the minimal number of depots in a k -frame of a graph the
diameter of which does not exceed 2k . First we give the estimate from above.

THEOREM 4. 1. Let k be a positive integer and suppose that the
graph G has diameter <2k . Then

(G, k) € Vnlogn+ o(m)

+*
[.] denotes the integral part of the bracketed number.
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PROOF. Let r< f(G,k) and consider all the collections formed
by r vertices of G, Clearly no such set is a k -frame for G , that is to say
to any of these collections we can assign a vertex the access-time of which
exceeds k.

n
Since the number of all these collections is (,,.) , obviously one
of the vertices of G, say x , has to be assigned at least Jﬁ(:) times.
Now consider all the points in G which can be reached from x
within k steps. Since G has diameter 2k , these points clearly form a k
-frame; thus their number exceeds r.Because these points cannot belong to

any set to which the point x was assigned in the way described above, we
see that these sets are obtained as the subsets of a set of cardinality n-r-1

i n-r-1 . .
so their number does not exceed ( 2 ) Recalling that we had an estimate
from below for this number, we infer

LM< ("

which can be written equivalently in the form

(n-1) .. (n=r+1) ¢ (n-r-1)...(n=2r)

or
® el R R il 0
From (1) we easily obtain
1+0(1) < ne,"rz/“
or

r<Vnlogn+o(n)

which completes the proof of the theorem.

5. In what follows we are going to show that the estimate given
in the previous theorem is a rather good one. In fact for the case k=1 we
have

-3
THEOREM 5. 1. For every d< 2 /2 , there exists a graph G
with n vertices, n>n(d) , having diameter two, such that

(2) $(6,1) > dVnlogn -
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It is easy to deduce from Theorem 5.1 a lower bound for f(G,k)
Consider a graph of n vertices satisfying (2) - and let a tentacle of length k-1
grow from each of its vertices. Then a k-frame for the graph so obtained has
to be a one-frame for the original graph, and therefore its cardinality must
exceed r. Considering that our new graph has now nk vertices, after changing
the value of n appropriately, we obtain

COROLLARY 5.2, For any d<2 72 there exists a graph with
n vertices, n > n(d), and having diameter 2k , such that

(G, k) > %Unlogn :

Now we return to the proof of the theorem just mentioned,We shall
not actually construct the graph G , we shall prove its existence by purely
probabilistic methods. In order to accomplish this, consider a random graph
with n vertices, for which the probability of the event that a pair of vertices
is connected by an edge, is a given number p, and so that the events that diffe-
rent pairs of vertices are connected are independent. To say this in a more
definite way let us consider the set of all graphs having the same n vertices
as a measure space such that the measure of a one-element set containing a

graph with K edges is
n

-K
[’.)K (1-p )( 2)

Now what we are going to show is that for an appropriate choice
of the number p the probabilities that such a random graph has a diameter
greater than two, or that it has a one-frame of a cardinality less than desired
in the above theorem, are both small. This will imply, of course, that there
exists a graph which has neither of these properties, that is to say, which
meets all the requirements of the theorem being proved. In order to obtain
all these results we first derive two simple estimates.

LEMMA 5.3. Let G be a random graph with n vertices and
having edge-probability p, as described above. Then the probability of the
event that it has diameter exceeding two, is less than

-2
n(1-p2)" "

The probability of the event that for a given positive integer r
some r -typle of vertices of G forms a one-frame does not exceed the value

(M) G-t-p)" "

PROOF. Both estimates are easily obtained. As to the first,
consider two given vertices of G . That they are not connected by an edge has
probability

i-p.
- 322 -



The event that they are not connected by a path of length two
passing through a given vertex of G, has probability

1-p2.

Here in the choice of this third point we have n-2 possibilities. Thus, taking
into account that all the events considered were independent, we see that the
probability that the distance between two given points in our graph exceeds two
is
n-2
(1-p?) (1-p) .
Considering that the number of possibilities for the particular
: : L o ;
choice of these two points is (2), we see that the probability of the event that

the diameter of G exceeds two is at most
n -2
() -p)" " (1-p).
Obviously this says more than required in the lemma.

Now we turn to the second estimation. To this end we designate r
vertices of the graph as depots, and consider the probability of the event that
they form a one-frame. The probability of the event that a given point different
from the depots is not joined to any of them is obviously

(1-p)"
hence this point is joined to some depot with probability
1-(1-p) .

Thus by an independence argument the probability of the event
that every point in G different from the depots is joined to some depot, i.e.
that the given collection of depots forms a one-frame, is

d-u-p)" "

n
Considering that we can choose these collections in (r) ways,

the probability that there will be a one-frame among them is at most
n n-r
(DG-a-p)
which completes the proof of the lemma.

Now in order to accomplish the proof of Theorem 5, 1 we select
two positive constants ¢ and d such that
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c>V2 and cd <1/2,

and write
log n

p=c ) r=dVnlogn

n

Then, if n—o , it is easily seen that for the first probability in
the lemma we have

n-2

2
nzf‘i—pz) = o(nze"p(n"z}) =

2 logn

: (n-2))) — 0.

= O(exp(ztogn -C

As to the second probability, in order to estimate the first factor
there, we make use of the well-known STIRLING formula:

0 (__En_) "
ol 4 o i

(+)

r
0(___i_) - OCHrE(n-r)F) .

(1-r/m)"°"

Using this we obtain that

I

(:) (1- (ﬁ—p)r}n_r o (exp(rlogn +(n-r)% — e tn-r) =

-cd
o(exp(rlogn+ renC (n-r)) — 0 .

This completes the proof of the theorem.

6. A somewhat weaker result than that of the preceding section
can be obtained by directly exhibiting an example where the graph G with n®
points has diameter two and each of its one-frames consists of at least n
depots. The case where the graph has diameter 2k can be dealt with by
artaching to each point a tentacle of length k-1 as before.
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The graph G mentioned above can be constructed as follows:
define the the vertices of G as all those points in the Euclidean plane having
positive integers <k as coordinates, and connect a pair of these points if any

of tneir corresponding coordinates are equal. All the desired properties of G
are easily verified.

The authors express their gratitude to Mr. ANTHONY G. HUGHES,
Bristol University, for his help during the preparation of these notes.
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