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Throughout this paper A and B will denote infinite sequences of integers,

Bk denotes a sequence of integers having k terms . A + B denotes the set of

integers of the form ai + b j , ai E A, b i E B .

B is called a basis of order r if every sufficiently large integer is the

sum of r or fewer b's, B is a basis if it is a basis of order r for some r .

A will denote the complementary sequence of A, in other words n is in A

if and only if it is not in A .

Put A(x) =

	

E 1, A(u,v) = A(u) - A(v), lim Al if it exists is the
86 1 < x

	

x=4

density of A, lim inf
A 	is the lower density .

X = m

R. Blum asked us the following question : Does there exist for every O < a < 1

a sequence A of density a so that for every B the density of A + B is 1?

We shall prove this by probabilistic methods, in fact we prove the following,

(in the meantime Blum solved his original problem by different methods) .

Theorem 1 . To every a, 0 < a < 1 there is a sequence A of density a

so that for every Bk, k = 1,2,- the density of A + Bk is 1 - (1 - a)k.

Theorem I clearly implies that for every B the density of A + B is 1,

thus the answer to Blum's question is affirmative .

Next we show that Theorem 1 is, in a certain sense, best possible . We prove

Theorem 2 . Let A be any sequence of density a. Then to every e > 0 and

to every k there is a Bk so that the lower density of A + Bk is less than

1 - (1 - a)k + e .

There is a slight gap between Theorems 1 and 2 . It seems certain that
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Theorem 1 can be slightly strengthened and that the following result holds .

Toevery a there is a sequence A of density a so that forevery Bk

the density of A + Bk is greater than 1 - (1 - a)k .

We did not carry out the details of the construction of such a sequence A .

We observe that in Theorem 2 lower density cannot be replaced by density or

upper density . To see this let n l < n2 < . . . be a sequence of integers satisfying

nk+l/nk
- m . For every j, j = 1,2, • • • and k = 2j-1(2r + 1), r = 0,1, • • • ,

U is in A if nk < U < nk+l and U = 2(mod 2j), t = 0, • • • ,j-l

	

Clearly A

has density V2, but for every B 2 , A + B2 has upper density 1 (to see this

let bl and bl + j be the elements of B2 then for every k = 2j-l(2r + 1)

all but o(nk+l ) of the integers not exceeding nk+l are in A + B2 ) .

Finally we settle an old question of Stőhr . Stőhr [4) asked if there is a

sequence A of density 0 so that for every basis B, A + B has density 1 ?

He also asked if the prime a have the above property? Erdős (1) proved that the

answer to the latter is negative . We shall outline the proof of the following ;

Theorem3 . Let f(n) be an increasing function tending to infinity as

slowly as we please . There always is a sequence A of density 0 so that for

every B satisfying, for all sufficiently large n, B(n) > f(n), A + B has

density 1 .

It is well known and easy to see that for every basis B of order r we

have B(n) > cnl/r, thus Theorem 3 affirmatively answers Stöhr's first question .

Before we prove our Theorems we make a few remarks and state some problems .

First of all it is obvious that for every A of density 0 there is a B so

that A + B also has density 0 . On the other hand it is known [5) that there are

sequences A of density 0 so that for every B of positive density A + B has

density 1. It seems very likely that such a sequence A of density 0 cannot

be too lacunary. We conjecture that if A is such that
nkfl/nk

> c > 1 holds

for every k then there is a B of positive density so that the density of

A + B is not 1 .



We once considered sequences A which have the property P that Par every
•

	

A + B contains all sufficiently large integers [2] . We observed that then

there is a subsequence Bk of B so that A + Bk also contains 8.11 sufficiently

large integers (k depends on B) .

It is easy to see that the necessary and sufficient condition that A does

not have property P is that there is an infinite sequence t I < t 2 < . . . so

that for infinitely many n and for every t i < n

(1)
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A(n - ti , n) > i .

(1) easily implies that if A has property P then the density of A is 1

(the converse is of course false) .

It is not difficult to construct a sequence A which has property P and for

which there is an increasing sequence t 1 < t 2 < . . . so that for every i there

are infinitely many values of n for which

(2)

	

A(n - ti , n) > i .

(2) of course does not imply (1) . Also we can construct a sequence A having

property P so that for every k there is a B (k) so that for every subsequence

(k)

	

(k)Bk ) of B(k) infinitely many integers should not be of the form A + B k .

Now we prove our Theorems. The proof of Theorem 1 will use the method used

in (3) ; thus it will be sufficient to outline it. Define a measure in the space

of all sequences of integers . The measure of the set of sequences which contain

•

	

is a and the measure of the set of sequences of n which does not contain

• is 1 - a. It easily follows from the law of large numbers that in this measure

almost all sequences have density a. We now show that almost all of them satisfy

the requirement of our theorem.

For the sake of simplicity assume a = 112 . Then our measure is simply the

Lebesgue measure in (0,1) (we make correspond to the sequence A = (a l < • • • ) the

real number £ a) . Our theorem is then an immediate consequence of the
1=1 2 i
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following theorem (which is dust a restatement of the classical theorem of Borel

that almost all reel numbers are normal) . Almost all reel numbers X = E 1
1=1 tai

have the following property : Let b l < • • • < bk be any k integers. Then the

density of integers n for which n - bi is one of the a's for some j = 1, • • • , k

is 1 -2k . For a / 2 the proof is the same .

Next we prove Theorem 2 . Here we give all the details. Let T = T(k,e)

be sufficiently large, we shall show that there is a sequence Bk in (1,T)

(i . e. 1 < bl < • • • < bk < T)

1- 1k + s .
2

(3)

First we show

so that the lower density of A + Bk is less than

xE A(n - T, n) _ (1 + o(1)) Tx2 .
n=T

x

	

_
o(x) + TA(x - T) < E A(n - T, n) < T A(x)

n=T

which by A(x) _ (1 + 0(1))2 proves (3) .

Let now T < n < x. Clearly we can choose in

íA(n -
k
t, n)\

J

ways k integers 1 < bl < • • • < bk < T so that A + Bk should not contain n .

Thus by a simple averaging argument there is a choice of a Bk in (1,T) so that

there are at least

1 £ í3:(n - T, n)

n=T \

	

k

Let al < a2 < • • • be the elements of A . To prove (3) observe that with

a number (at most T) of exceptions, independent of x, every a, :S x - T occurs

in exactly T of the intervals (n - T, n), T < n < x and each a i satisfying

x - T < ai < x occurs in fewer than T of these intervals. Thus the ai < x - T

each contribute T to the sum on the left of (3) . Hence



values of n < x not in A + Bk Now it follows from (3) that

T k(5)

	

nET \ (n k
T, n) ) > (1 + o(l)) x ((k) )

w
since it is well known and easy to see that i£ E wi is given then E(i) is

e minimum if the wi's are as equal as possible. Finally observe that for

T > T(k, c)

(6)
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( [Tk ] ) > (1 -
2)2

kfT\ .

Thus from (4), (5) and (6) it follows that there is a Bk in (1,T) so that

more than x(2k - 2) integers n < x are not in A + B k. This Bk may depend

on x, but there are at most (k) possible choices of B k and infinitely many

values of x. Thus the asses Bk occurs for infinitely many different choices

of the integer X.

In other words for this B k the lower density of A + Bk is less than

1 - lk + e as stated .
2

It is easy to see that Theorem 2 remains true for all sequences A of lower

density a. The only change in the proof is the remark that (3) does not hold for

all X but only for the subsequence xi , xi m for which Jim A(Xi)/Xi = .
xi = m

Now we outline the proof of Theorem 3 . The proof is similar but more

complicated than the proof of Theorem 1 . We can assume without loss of generality

that f(x) = o(x~ for every I > 0, but g(x) _ (f(log x)1/2 3 . Define a measure

in the space of sequences of integers so that the set of sequences containing n

has measure g7n7 and the measure of the set of sequences not containing n has
ál1

	

It easily follows from the law of large numbers that for
g(n)

almost all sequences

measure 1 -

A(x) _ (1 + o(l »-

	

.

We outline the proof that for almost all sequences A, A + B has density 1



for all B satisfying B(x) > f(x) for all sufficiently large x . In fact we

prove the following statement :

For every e > 0 there is an no(e) so that for every n > no(e) the measure

of the set of sequences A for which there is a sequence B k, k > [f(log n)] in

(1, log n) so that the number of integers m < n not of the form A + Bk is

greater than en, is less than 1 2n '

Theorem 3 easily follows from our statement by the Borel-Cantelli lemma.

Tines we only have to prove our statement . Let 1 < b1 < . . . < bk < log n

be one of our sequences Bk. If m is not in A + Bk then acne of the numbers

m - bi , i = 1, • • • , k, k > f(log n), are in A . This the measure of the set of

sequences for which A + B k does not contain m equals

k

k

	

k(7)

	

fl `1 -		7Ug(m 1 bi)) < (1 -

	

) = (1 -

	

) < .

i=1

Let now mi , • • • ,mr be any r integers which are pairwise congruent

mod [log n] . A simple argument shows that the r events : mi does not belóng to

A + Bk are independent . Then by a well known argument it follows from (7) that

the measure of the set of sequences A for which these are more than m integers

m = u(mod [log n]), m < n which are not in A + B,b is less than (exp 2 = e 2 )

(8) exp(-c en/log n) < exp(-n1/2 ) .

From (8) and from the fact that there are only log n choices for u it

follows that the measure of the set of sequences A so that for a given Bk
there should be more than en integers m < n not in A + Bk in less than

(9)

	

log n .

	

exp(-n1/ 2 ) .

There are clearly fewer than 21og; n < n possible choices for Bk , thus by

(9) the measure of the set of sequences A for which there is a B k in (l,log n)

so that there should be more than on integers not in A + Bk is less than
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n log n exp(-n'/ 2 ) < l/n2

for n > no , which proves our statement, and also Theorem j .
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