ON THE NUMBER OF COMPLETE SUBGRAPHS
AND CIRCUITS CONTAINED IN GRAPHS

P. ErDOs, Budapest
(Received January 10, 1968)

Dedicated to V. JARNIK on the
occasion of his 70-th birthday.

Denote by %(n; k) a graph of n vertices and k edges. Put for n = r (mod p — 1)

m(n,p)=2g)‘_21)(nz —r2)+(;). 0snsp—1

and denote by K, the complete graph of p vertices. A well known theorem of TURAN
[6] states that every @(n;m(n, p) + 1) contains a K, and that this result is best
possible. Thus in particular every %(2n;n®> + 1) contains a triangle. Denote by
fu(p: 1) the largest integer so that every %(n; m(n, p) + I) contains at least f,(p; I)
distinct K ’s. RADEMACHER proved that f,(3; 1) = [n/2] and I proved [1] that there
exists a constant 0 < ¢ < 1 so that for every

(1) I<en, f(3;1) = f[;l]
and I conjectured that (1) holds for every I < [n/2]. We are very far from being able

to determine f,(p; I) in general, the problem is unsolved even for p = 3 (though W.
BROWN has certain plausible unpublished conjectures). NORDHAUS and STEWART [4]

conjectured that
. 2
IR L SR Y T
n=w 1 %iln 9 2 4
I proved that for I = o(n?)
) 130 = (1 + o) 17
I do not give the proof of (2) in this paper.
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Theorem 1. Let n > no(p). Then

() fipi ) =ﬁ[*’+']

|0p—1

The special case
f.’m(d'; 1) = ”2

was stated without proof in [1]. It is possible that the condition n > ny(p) can be
omitted and that (3) holds for every n.
Instead of Theorem 1 we prove the following more general

Theorem 2. Let n > no(p) (I; < &,n, e, > 0) be a sufficiently small constant. Then

fps) = 1 n[”**]

p—3

In the case p = 3 the proof of Theorem 1 is much simpler than that of Theorem 2,
[2], but for the general case I have no simpler proof for Theorem 1 than for Theorem 2.
Our principal tool for the proof of Theorems 1 and 2 will be

Theorem 3. Let n > no(p), I, < n/200p*. Let there be given a %(n; m(n, p) — 1,)
which contains a K,. Then it has an edge which is contained in u"""‘f(_lﬁp)f"’ K,'s
of our graph.

By Turdns theorem every %(n;m(n, p) + 1) contains a K,. Thus Theorem 3
implies the following corollary of independent interest.

Theorem 3'. Every %(n; m(n, p) + 1) has an edge which is contained in
n?~2/(10p)°” K ’s of our graph.

For p = 3 all our Theorems are known [1]. In fact T can show that every ¥(n;
[n?/4] + 1) has an edge which is contained in at least (n/6) + O(1) triangles and
that n/6 is best possible. For p > 3. I have not succeeded in determining the best
possible constant in Theorem 3’. The constants in all our Theorems are very far
from being best possible.

To prove Theorem 3 we need two Lemmas, but first we have to introduce some
notations. %, will denote a graph of m vertices. 4(y, ..., y,) will denote the subgraph
of % spanned by the vertices y,,...,v,, ¥ — x; — ... — x, denotes the subgraph
of % from which the vertices x,, ..., x, and all edges incident to them have been
omitted. Let e, ..., e, be edges of ¥. ¥ — e¢; — ... — ¢, denotes the subgraph of %
from which the edges ey, ..., ¢, have been omitted. ¢(#) will denote the number of
edges of ¥, v(x) the valency of the vertex x is the number of edges of % incident to x.
K(uy, ..., u,) denotes the complete p — chromatic graph, with u; vertices of the i-th
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color and where any two vertices of different color are joined by an edge. If % is
a set ]9"| denotes the number of its elements and if A = &, A4 is the complement
of 4in &.

We always assume p = 4, since our Theorems are all known for p = 3.

Lemma 1. Let |%| = nand A, = &, 1 £ i £ p. Assume

(4) (o= L), igids
p—1 100p*
Then there arevalues 1 < i < j < p so that
(5) Gadisa=3p 1N
p—1 10p°

(5) is not best possible, but suffices for our purpose. From (4) and |#| = n it
follows that if (5) fails to hold for every 1 < i < j < p, then

(6) [A;|gn(-f'-’;2+ D )

p—1 10p°  100p*

From (6) we have

(7) ]z,.|;n(-..1_-._ L1
' p—1 10p° 100p*

Further clearly

Thus if (5) never holds we have from (4) and (8) that forevery 1 < i < j <

(9) |,Z,.m¥j|gn(1 o+ ]).

s0p*  10p°

n

¥

It is easy to see that (7) and (9) lead to a contradiction. We evidently have
P
(10) n=|7|zY |4l - Y |AinA]l.
i=1 1si<j<p

Thus from (7) and (10)

max |4, n 4| 2 0 S S
1si<jsp p) p—1 10p*> 100p°
2

which contradicts (9) and hence proves the Lemma.
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Lemma 2. Let 4(n; m(n, p) — 1,) = %, 1, < n[200p* be a graph which contains
a K,. Then it has a subgraph %y, N > n/100p> which also contains a K, and
each vertex of which has (in 9y) valency

(11) u(x):-N(p—_z ] 4).

p—1 100p

If our ¥ satisfies (11) our Lemma is proved. If not let x,, ... be a sequence of

vertices of our % so that the valency of x; in 4 — x;, — ... — x,_, satisfies
(12) ox) < (n — i) (=2 - ).
p—1 100p*

Suppose this process stops in k steps, in other words every vertex of 4 — x, — ...
. — X, has valency greater than

(13) b

p—1 100p*

But then by (12) and by the fact that ¢(% — x; — ... — x;) < (”
argument shows that

(14)

@)= o) — 1= P22 () 4 oty < (222 — LY (M) 4 (7=
(%) = m(n. p) — 1, p_1(2)+0{r)<(p_l | i ¢

(14) clearly leads to a contradiction if n > nu(p) and n — k < n/100p>. Thus

=% a4 simple
. simple

n — k > n/l00p*. Put ¥y = ¥ — x; — ... — x;. By (13) 9y satisfies (11), it clearly
satisfies N > n/100p®. Finally by (12) and k = 1 we obtain by a simple computation
k=1
» -2 1
15) (%) = %) — ¥ (n — i) 2—== - >
( - ' ;i’a( p—1 100p*

> m(n, p) — — . —AYI(II = !)(p_—Z - ) > m(n — k, p) = m(N, p).
200p* =0 p—1 100p* ' o

(15) implies by Turins theorem that our @y contains a K,, which completes the
proof of Lemma 2.

Now we are ready to prove Theorem 3. Our %(n; m(n, p) — 1,) contains by
Lemma 2a %y, N > n/100p* the valency of each vertex of which satisfies (11) and it
contains a K, say (x,, .., X,). Denote by 4, the set of vertices in %y joined to x,.
By (11) we can apply Lemma 1 and obtain that there are two vertices x; and X}
I =i < j = p both of which are joined to (y,, ..., y, are vertices of %y)

(16) ViseoaVis >N Beig + : , N > n/100p*.
p—1 10p?
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Consider now the graph 9x(y,, ..., y,). By (11) and (16) we have for every i

(17) u(y;)>N(z—:-% 1)—N+r=r—N(L+ : )>

1 100p* p—1 100p*
1 1
1 = 100p* 4 1
smighl ~E T2 T8 | o8 — 2 4 .
p—3 1 p—3 20p°
p—1 10p°
In (17) v(y;) of course denotes valency in #y(y,, ..., ¥,). Denote by B; the set of y's

joined to y,. It immediately follows from (1?) that for every iy, ..., i,,r = p— 3
(18) |B"ﬁ”'ﬁBf’>ﬁf;§’

(for r < p — 3(17) could of course be considerably improved).
For (18) and (15) we immediately obtain that %y(y,, ..., y,) contains at least
(t>(p—3)N/(p — 1) > n/300p?)

1 2 5 1 n"_z_ 5 n"=2
(p — 2)! (20p°)72 "~ (p — 2)t (10p)°~2 " (10p)°r

K,-,'s. (19) follows from the fact that by (18) we have for each r at least ¢/20p*
choices for the r-th vertex of our K,_,. Each of these K,_,’s form together with the
edge (x;, x;) a K, of our 4(n; m(n, p) — 1,) each of which contain the edge (x;, x;),
and this completes the proof of Theorem 3.

Now we prove Theorem 2. The proof is very similar to [1]. We use the following
theorem of StvmonoviTs [5]:

To every p there is a 8, so that if | < 6,n and the graph %(n; m(n, p) — 1) does not
contain a K, then it is (p — 1)-chromatic, in other words it is a subgraph of some

=1
K(uy, ooy tt,—y) with 3 u; = n.
i=1

(19)

Now we are ready to prove Theorem 2. Consider Turdns graph
i — 1
K(”l.ﬂﬂs“p—l)& u; = [m_l_'_]w I_S.IEP_11
p —_—

having the vertices x{, 1 £ j < [(n+i—1/(p—1)], 1 £i = p— 1. Add the [,
edges (xP"V, x"Y), 2<j<1I + 1. This % n; m(n, p) + l,) clearly has
-3

P
L [T[(n + i)/(p = 1)] K,’s. Thus to prove Theorem 2 we only have to show
i=0

(20) fp D) 2 ’:ﬁ[" + f].

=0 p—
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To prove (20) observe that by Turdns theorem our %(n; m(n, p) + I,) contains
a K, let r be the smallest integer so that ¥ — e¢; — ... — e, contains no K,. By
Turdns theorem we have r 2 [;. Assume first r = (10p)°? I,. From Theorem 3 (and
from the proof of Theorem 3) we obtain that if ¢, < 1/2.10°p%?*2, (I, < ¢,n) then
each of the edges e;, 1 < i < (10p)®”. /, are contained in at least n”~2/(10p)°” K ’s
of 4 — e, — ... — e;_,. These K’s are clearly all different. Thus % contains at least

I,nP~2 > f‘,-l:f[(" +i)i(p — 1]

K,’s which proves (20) in this case.
Assume next r < (10p)®? I,. Let ¢, < 6,/(10p)°”. We have by assumption [, <

< gyn. Then by the theorem of Simonovits 4 — e; — ... — e, must be contained
r—1
ina K(uy,...,u,—y), Y u; = n. Now we assume p = 4. We then easily obtain
i=1
(21) apm|BET =] ey ey 1.
p—1
p—1

To see this observe that if p = 4 and Z u; = n and (21) is not satisfied for all i we
i=1

would have by a simple computation for sufficiently small 5,

p—1
mn,p)—r<e@—e —...—e)<[[u; < mn p)—dn
i=1

an evident contradiction since r < d,n.

Observe now that (since 6, is small) the edges e;, 1 < i < r must join vertices of
the same color of our K(uy, ...,u,). By (21) we observe by a simple argument
that each ¢;, 1 < i < r is contained in at least (r — I, = r,)

(=) )mG]

K,’s and these K's are clearly, all different, or our graph contains at least

o (5]

K,’s. From r < d,n it follows for sufficiently small 8, that r([n/(p — 1)] — r,)
is minimal if r, is as small as possible, in other words if » = [, r; = 0. Thus by (22)

our % contains at least
l:I n+i
=o|lp - 1
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K,'s, which completes the proof of (20) and Theorem 2.
With considerably greater care we could prove the following further results:

Theorem 4. Let n > ng(p)

J’ . .
(23) ;=E([w]__])+rﬂ ogr{[m:l, -] EHE pen’f
izo\|p—1 p—1

Then every 4(n; m(n. p) + 1 — I) which contains a K, contains at least

o e

K,'s. Further every 9(n;m(n, p) + 1 — 1) satisfying (23), which contains a K,
has an edge which is contained in e, g(n, p, ) K's.

The proof of Theorem 4 is quite complicated, it uses methods of [1] and will
not be given here. It is quite easy to see though that (24) is best possible. It suffices to
consider a Turdn graph K(uy....u,—y), u;=[(n+i—=1Di(p—-1)]. 1=2i<
< p— 1 having vertices x{, 1 < j<[n+i—-1)/(p— D], 1=i=p—1. Add
the edge (x{"~",x¥"") and omit [ suitable edges emunating from x{"~". The
details can be left to the reader.

By the methods of this paper we can prove the following

Theorem 5. Every %(2n; n® + 1) contains at least n(n — 1) (n — 2) pentagons.
K(n, n) with one edge added shows that Theorem 5 is best possible. Theorem 5

could be generalised for (2r 4 1)-gons but we will return to these questions at an-
other occasion.
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