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We shall present here a number of results in set theory concerning the decom-
position of a set E in various ways as sum (union) of its subsets . These results
have connection with problems on countably additive measure functions in
abstract sets, but they may also bear on the problems of the axiomatics of set
theory and generally on foundations of set theory itself . Some of these results
employ the continuum hypothesis or the generalized continuum hypothesis.
The several _problems which will be presented also put these hypotheses in a
certain limelight .
The impossibility of defining a countably additive measure for all subsets of a

set of power of continuum (a measure which would vanish for subsets consisting
of any single point) was first established with the use of the continuum hypothesis
by Banach and Kuratowski .l Very shortly afterwards, one of us showed the
impossibility of such a measure for subsets of a set of power NI without the use of
any hypothesis.' The same result was shown there to hold for sets of higher
powers, in fact, for all the accessible alephs . More recently, these results have
been extended to a large class of inaccessibles as well . These results show that
this "problem of measure" is closely related to fundamental problems concerning
the role of axioms of set theory . Recent developments have further clarified
these relations . Important results have been obtained by Scott, Solovay,
Martin, and others . The proofs of these relations make use of the methods
introduced by Paul Cohen in proving the independence of the continuum
hypothesis.
Both the results of Banach and Kuratowski and the stronger result of Ulam

are obtained by exhibiting purely combinatorial schemata of decomposition of
abstract sets with certain properties : B • and K • show a countable sequence of
decompositions of a set of power of the continuum, each into countably many
disjoint subsets so that, no matter how one takes a finite number of sets from
each of these decompositions, the intersection of all these finite unions contains,
at most, countably many points . Sierpinski3 generalized the B • and K • schema
in the following way. There exists a sequence of decompositions into aleph
disjoint sets, each so that if one is selected from any countably many of these
(not necessarily all), the union of the selected sets gives the whole of the space,
except perhaps for countably many points . Decomposition given by U • show,
without the use of the continuum hypothesis, the following phenomenon . A set
E of power NI can be decomposed countably many times into NI disjoint sets in
the following way :
A "matrix" of sets cam be constructed such that we have countably many

rows and noncountably many columns . Sets in each row are disjoint. The
anion of sets in any column gives the whole set E except for possibly countably
many points. As is easy to see, the existence of such a decomposition (a sequence
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of decomposition, properly speaking) contradicts the possibility of defining a
countably additive real-valued measure function .

In this paper we shall show various modifications of such constructions . In
particular, we strengthen the result of Sierpinski . One can decompose E in the
nth row into 2"+ 1 disjoint sets with the above property . It is clear that the
impossibility of a measure function follows because if the measure for these sets
existed, we could select a set of power less than 1/s" and their union would have
to measure less than 1 . This is a contradiction, since the complement is
countable. This construction uses the continuum hypothesis . Whether one
can do it by using a weaker hypothesis remains an open problem . Should the
number of sets in each row be finite and fixed, we show that one does not need
the continuum hypothesis for this property to hold (but of course one does not
get the impossibility of a measure function from such a "matrix") . We shall
introduce a special symbol for decomposition of sets in such "matrix" patterns.

Finally, we would like to say that all the results and problems in this paper
form only a special aspect of a more general problem which we formulate rather
vaguely here : Given a class of Boolean relationships to be satisfied by unknown
sets, all subsets of a given set, one wants to find or "construct" sets satisfying
such relations, which may be countable or noncountable in number. We hope
to attack this more general question in a paper to be published in the future .
THEOREM 1 . The real line (and in fact every set of power e) can be decomposed
in infinitely many ways as the union of k disjoint sets

so that

k
S =

	

Al() , n = 1,2, . . .
1-1

for every choice of the sets A,,(") , 1 < l" < k.
We prove Theorem 1 without the axion of choice. Consider all sets of k - 1

disjoint rational intervals and write them in a sequence {I"0k-1)}, n = 1,2 . . . .
The first k - 1 sets A,00 , 1 < l < k - 1, of the nth row of our decomposition
matrix are the k - 1 intervals of I"<k-1> . Ak (" ) is the complement of the union
of the intervals in

	

Now let
m

m

IS- U •A 1,(")J < k

	

(1)
"~1

U A I.W = F
"-1

be a typical family of sets, one from each row . To prove (1) it suffices to show
that if xl, xz, . . . xk are any k real numbers, we must have x, E F for at least one
i, 1 < i < k. To see this, observe that there is a set of k - 1 rational intervals,
say I"1k_1,, which separates xir xs, . . . xk . But then every A, 00 , 1 < l < k
contains exactly one of the x, or x i E F for at least one i, as stated. This com-

pletes the proof of Theorem 1 .
It is easy to see that (1) fails to hold with k - 1 instead of k, but we leave this

to the reader.
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THEOREM 2 . Let I SI >_ No,, 2 < k, < k.2 :5, . . ., k.

	

and let
k .

S= U A t<*>, n= 1,2, . . .
1-1

be a decomposition of S into k, disjoint sets . Then there is always an 1,,, 1 < In <
k„ n = 1,2, . . . so that

IS - U A 1 . 00 1 >_ No .

	

(2)
n-1

To prove Theorem 2 we will define elements x* , 1 < u < - of S (the x*'s are
not necessarily all different, but there are infinitely many different ones among
them) and sets A,.(*) so that

x*iZA,.(*), 1<u<-,1<n<-,1<1.<k„

	

(3)
(3) will clearly imply Theorem 2.
We construct the x* and the sets A1,(*) by induction with respect to n . As-

sume first that 2 = kl = , . . . = k, < k,+, . Consider the 2' sets
t
f1Á1<*> i = 1 or 2 .
U-1

The union of these sets is S, thus at least one of them is infinite, say
t
2A.,(*)1 = No, (en = 1 or 2) .
n1

t
Let x be an arbitrary element of f1A .„ (*), put x = x, _ . . . = x, and At,<*> _

i-1
A t-,,(*) for n = 1,2, . . .t . Clearly the complement of UAI.W = UA'-,,(*)

t

	

a-1

	

*-1
(which equals f1A ..W) is infinite .

*-1
Now assume that we have already succeeded in choosing elements x,, x=,

and sets A,.(") , 1 < n < u having the following properties :
*

	

*
1S - UA,,( *)1 > No,

	

S* = S - UA,* ( *)
n-1

	

n-1

x,«A,*( * ), 1<a<u;1<n<u

..

	

m

(4)

(5)

and finally there are at most k* - 2 distinct elements among the xt, 1 < i < u.
Now we construct x*+, and A,,+,(*+ 1) so that (4) and (5) remain satisfied and so
that there are at most k * - 2 distinct elements among the x, . . . X., x*}, .
Assume first that kn+, = k * . Then there are at least two sets A,,(*+' ) and

Ayt*+1> which do not contain any of the elements x,, . . .x* (this follows from the
fact that there are at most k* - 2 distinct x's and the A,(*+') 's are disjoint) . At
least one of these, say A,,(*+ 1) , has an infinite complement in S* (i .e., in-
finitely many elements of S* do not belong to Put A,,c*+u „ A 1*+1<*+u
and clearly (4) and (5) are satisfied .
Assume next that k*+ , > k Then there are at least three sets A,,(*+' ) ,
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A,,("+' ) , A,, ("+') which do not contain any of the x i, 1 < i < u . At least one
of the sets, say A,,("+') , has an infinite complement in S"; we choose an arbitrary
element x"+1 from this complement and put Al,("'" = A t.+,c"+u . x"+1 is
clearly different from x l , xg, . . . x", and (4) and (5) are again satisfied . Thus
we have constructed the infinite sequence xl, xs, . . . and the sets A,,(") . (3) is
clearly satisfied and it is clear from our construction that there are infinitely
many distinct elements among the x's, thus (2) is satisfied and Theorem 2
is proved .

Now we would like to state the following question which we cannot solve .
PROBLEM I . Let No < ISI < e. Let 2 < kl < ks < . . ., k"

	

be any
sequence of integers. Does there exist for every n a decomposition

k„
S = U A,("~

1-1

into disjoint sets so that for every 1 < l" < k"

1S -- U A,"(") < No ?
n-1

If c = N1, we will see that the answer to our problem is affirmative ; in fact
very much more is true . But if we do not assume that c = Nl, we cannot
solve this question even if we assume that

f S1
= Nl and let our sequence k„

tend to infinity very slowly . If
181

= c and k" > 2" as stated in the introduc-
tion, we cannot expect a positive solution without some assumption on the
power of the continuum since this would imply that there is no real-valued com-
pletely additive measure on the subsets of the teals where points measure Q .

It seems very likely that if we do not make some assumption about the power
of the continuum, then we cannot obtain a solution to Problem I. It may even
be possible to show that if Problem I has a solution for a fixed sequence k„
then a solution exists for every such sequence .

It will be convenient to introduce the symbol m --a. (p, q, r, s), which means
that a set S of power m can be decomposed into the union of p disjoint sets in
q ways :

S = U A„ (s), 1 < ft < w,
1 <a <~

so that if we choose any one of the sets A.("') for r different tot, then

S - U AQ, (s' ) 1 < s,

	

(6)
t

m -/ > (p, q, r, s) means that such a decomposition is impassible . Sierpinski
proved3 that

c

	

(N1, No, No, N1)

	

(7)

is equivalent to the continuum hypothesis. Sierpinski's result implies that if
we assume c = Ni, the answer to Problem I is affirmative. We generalized this
and proved other results on our symbol, but do not give these proofs since
Hajnal observed that all our results follow from previous results of Erdős,
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Hajnal, and Milner,4 and Erdös, Hajnal, and Rado.5 We studied the following
symbol extensively :

\ q) -' (r r)

	

(8)

The meaning of (8) is as follows : Let 181 I = m, IS21 = q; we split the pairs
(x,y), x E S,, y E Ss into two classes . Then there is always a U C S,, V C SR,

i u I = s, ! V I = r so that all the pairs (x,y), x E U, y E V are in the same class .

(q) -/> (r r)
for which such sets U and V do not exist .

It is easy to see that

is equivalent to

m -/ > (2, q, r, s) .

	

(10)

First we show that (9) implies (10) . Let IS, i = m, I S21 = q . Let x E S,,
0 E $,, 1 < 0 < w a. The pair (x,,6) is in class I if x E A, ( s) and in class II if
x E A2(0) . (9)implies that (6) is not always satisfied, hence (10) is proved .

Next we show that (10) implies (9). In fact we show that if (9) does not hold,
then m-+ (2,q,r,s) . Consider then a splitting of the pairs (x,p) into two classes
so that if U C S,, V C Ss, I UI = s, (V) = s, then there is always a pair (x,,y,)
in class I and a pair (xs,yz) in class II where x, E U, x, E U; y, E V, ys E V .
Now we put x in A,(") if (x,,B) is in class I, and in A=(s) if (x,,6) is in class II .

Now we show that (6) is satisfied . Since p = 2 in (6), a, = 1 or = 2 . Without
loss of generality we can assume that for r values of i, a, = 1 . But then if (6)
is not satisfied, we would have

IS - UA,(I" ) I >- s,

	

(11)
i

where S t runs through a set of ordinals V of power r. (11) means that there is a
set U C S,, I UI >- s so that all the pairs (x,#,), 0, E V are in class II, which
contradicts our assumption that (9) is false ; hence (6) and thus m -• (2,q,r,s)
is proved . Hence (10) implies (9) and thus the proof of the equivalence of (9)
and (10) is complete .
Theorem 48 of Erdős-Rado states that

thus clearly

means that there is a division of the pairs into two classes

(9)
(q)-(r

8 8

r)

(No
Wi

	

W1 W1
)

--.
(No No) ,

(No
Wi
)

--~
(
W0 No
No No)'
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which by the equivalence of (9) and (1U) implies

N1 --• (2, No, No, No) .

	

(12)

Perhaps
Na -> (2, N., N,, Ni),

but this is undoubtedly very difficult since it is equivalent to one of the most
difficult unsolved problems of Erdös-Hajnal-Rado (problem 12),

Na --i N1 Nl

	

(13)
(N1)

	

(Wi N1)~

Perhaps N, -o- (2, N1, No, N1), but this is also very difficult, since (see problem 12)

N1 --~ N1 N1

	

(14)
Na

	

No No

is also unsolved ; (13) would imply (14), but (14) also seems very hard .
On the other hand, it follows from Theorem 33 of Erdös-Hajnal-Rado that

Na

	

(2, Ni, No, N~

We will not discuss m -+ (2&r,s) further, but refer to reference 5 .
We state another result which generalizes Sierpinski's result : Assume that

2N1 = N.+,, then

N.+1 -i (N.+,1 N.+,1 N., N .+1) . (15)

(15) follows from Lemma 14 .1 of Erdös-Hajnal-Milner .' A slightly weakened
form of this lemma is stated as follows :
Assume that 2"' = N.+,, I Si j _ ISa 1 = N.+, . The pairs (x,y), x E S,

y E Sa can be split into N.+1 classes so that whenever U C S1, V C Sa, I U1 _
N.+,, I V ( = N., there is an x E V so that every class is represented by the pairs
(x,y), y E U.

Now we deduce (15) from this lemma. The elements of S, are denoted by
{ x,,1, 1 < y < w, +11 those of Sa by ,61 1 < < w,+11 and the classes into which
the pairs are split are denoted by i al, 1 < a < w.+1 •

We put x,. E A,.«1 if the pair (x,,#) is in class a . A simple argument using
Lemma 14.1 shows that (6) is satisfied with r = N„ s = N.+11 which proves (15) .

Perhaps N.+, i (N,+1, N.+2, N., N.+,) also holds, but as we already stated we
could not even prove

Ni --*- (2, Na, No, Ni)

Finally we state a trivial result . Let m < N, and assume 2m < N,+, • Then
N,+1 i (2, m, m, N,+ ,) . In fact, the following stronger result holds . Let 181 _

N,+1 . Put

S = A1(0) U Aa (a), 1 < B

Then for some ~1 = 1 or

	

2, U A ,%(O) has a complement of power N,+1 . We
a

leave the simple proof to the reader .
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