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SOME REMARKS
ON THE ITERATES OF THE ¢ AND
BY
' ERDOS8 (BUDAPEST)
Put a,(n) — o(n), g,(n) = ¢(n) and, for & =1,

gi(n) = @1 (gr_1(n)).
Schinzel conjectured that for every &

.. o)
liminf - - < 0O,
n

(1)

Makowski and Schinzel [2] proved (1) for kb = 2

{among others) that

limint 1 and  limsup

"
At present, L eannot prove (1) for k =
differences between the cases b = 2 and &
the number of integers » = » for which

(i) = an.

and by N.(k,a.x) the number of integers n =

ap(n) << an.

TueoreM 1. For every a <

1
large 1 we have for v > xy(a.t, {r)-

the inequalities

WA
(2 logloga)' < N, (2, «, ¥) << ——
(2) ln(u( glog ) 25y w) < log
further, for every o =0 and ¢ >0, we have
Ha
(33) N, (3, a,2) < —(loga)".

(logx)®

(”) : §aln)

x for

y arbitrarily small ¢

FASC
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or(n) = ooy 1{f-‘r)).-

. In fact, they showed

1
? -

3, but 1 show the following
3. Denote by N, (k,

o, 1)

which

=0 and arbitrarily

(loga)";

for @ =>a(a, ¢)



196 P. BRDOS

Tiurorey 2. We have for every tif & > xy (1)

> &£ 1]
(4) No(2,2,0) > — (loglog »)

logu
and for every a -0 and e >0 if @ = w,(e, «)

. ol
(H) N2, a,a) <

log: N,(3,a,x)<
lugrr(uw} o3, 8, %) (log )

—(logx)".

For w =2 we have gu,(n) < n/2, thus, in Theorem 1, « = § is the
best possible,

Before I prove these theorems, 1 would like to make a few remarks.
Let p > 2 be any prime (throughout this paper p,q and r will denote
primes). Denote by @, the set of all primes ¢i" < ¢! < ... satisfying
¢ =1 (mod p). Denote by @, the set of primes ¢V < ¢’ < ... for
which ¢ =1 (mod ¢{") for at least one j but which are not in ¢,.

Generally, Q; denotes the set of primes ¢ < ¢ < ... for which ¢{? =1
k-1

(mod q”‘”) for at least one j but which do not belong to (J@,; in other
=1

words, ¢ = 1 (modq®) for every j and 1< k—1. Put

i oo
QM = Ul 0 = U0e;

Q" and @, denote the sets of primes which do not belong to @™ and ¢
respectively. N,(@)) denotes the number of elements not exceeding r of
the set . It follows from the prime number theorem for arithmetic pro-
gressions that

; . i

Vel = o)t “1yioga

It easily follows from the prime number theorem for arithmetic

progressions and the sieve of Eratosthenes that

N(Qs) = (L-+o(1))

haﬂx

By using Brun’s method we easily obtain the following stronger
result (e, ¢,, ... are positive absolute constants):

(6) N (@) < e xf(loga) TVP-Y,

The proot of (6) is quite straightforward and ean be left to the reader.
I have not proved that N,(Q®) tends to infinity as » - oo, but this
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should perhaps be possible by Linnik’s method [1]. In other words, the
problem (P 595) is to prove that there are infinitely many primes » for which

r# 1(modp) and »rz1(modg), i=1,2,...
[t is easy to deduce from (6) by using Brun’s method that
(7) N.(@Q®) < e,z /(logm)?.

Very likely there are infinitely many primes in each @, and also
in Q. The problem of the existence of infinitely many primes in @
and @ is connected with the following question. Let p{" =2 < p{"
< oo < p be a finite set of primes. We define inductively a set of primes
as follows. By p¥ < pf < ... we denote the set of primes, for which
p¥—1 is composed entirely of the p{"’s. Generally, the p{ are the
primes for which p{™—1 is composed entirely of the p{!), 1 < k. It seems
likely that for every k& there arve primes p{* (perhaps infinitely many),
but nothing is known about this. It is not difficult to deduce from (7)
that the number of the p{?, i =1,2,...,k = 1,2, ..., not exceeding @
is less than eyz/(logx)® but very likely this is a very poor upper bound.

We can prove that for every £ >0 for all but o(x) integers »n < x

op(n) =0 (mud ” p).
t’-:(h)g]qulk—-a

The same result holds for ¢p(n). Further we can show that if we neg-
lect a sequence of density 0, then
o (1) Fre_y (1)

—— = (14-0(1)) — = (1 4o(1)) ke’ logloglog n
oy (1) Pr () '

but we do not prove these results in this note.

We will only prove Theorem 1 since the proof of Theorem 2 is similar,
but even in the proof of Theorem 1 we will not always give all the detadls.
First we discuss to what extent our theorems are the best possible. We
have, for n > 2, ¢,(n) < n/2; thus in Theorem 1 the number § cannot
be replaced by any greater number. It seems very hard to give an asymp-
totic formula for N, (2, a, ) ov N, (2, a,2) (see (3)) and the second in-
equality of (5) can perhaps be improved (P 596).

Now we discuss (4). It is best possible in the sense that « = 2 eannot
be replaced by any smaller number. We outline the proof. Let y < 2.
If o,(n) < yn, then there clearly is an I so that a(n) = 0(mod 2') or n
has fewer than I prime factors which oceur in the factorization of » with
an exponent 1. In other words, n = R, R,, (R, R,) =1, where R, is
square free and has fewer than ! prime factors and all prime factors of R,
ocenr with an exponent greater than 1. From this remark it follows by
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a simple computation that if y << 2, there is an | = [(y) such that

a(logloga)!

1og x

\‘n{.:'—}y b -I') < Cy—

By the methods used in the proof of Theorem 1 it is easy to show
that for every y >3
e

N (2,9, @) >¢4
logf

We do not give the details of the proot.

If o,(n)<3n, then » and o(n) must be odd; hence n is a square
and thus N, (2,3,2)<'®. In fact, it would be easy to show that
N,(2,3, @) = o(@") and N,(2,%, #) > ¢;o"[loge. It will not be easy
to obtain an asymptotic formula for N,(2,3,«). Similarly, we could
investigate N, (2, a,x) tor a< ;. We only make one final remark. It
is easy to prove that if n, < n,<C ... is a sequence of integers for which
as(n;)[ng — 1, then, for every ¢ >0, 3 1 = o(«).

M=

Now we prove Theorem 1. [+‘irs? we prove the first inequality in
(2). We need the following

LeMMA. To every i > 0 there is a ¢, > 0 such that the number of primes
p - a for which

(8) gp—1) 1—9

p—1 2

is greater than egefloge.
A simple computation shows that (8) holds if (» odd prime)

(9) \"_!- < 7.

Thus, to prove our lemma it will suffice to show that the number
of primes p < » satisfying (9) is greater than e x/loge. To see this let
k = k(n) be sufficiently large and let 3 = ¢, < ... << ¢; be the first &
odd primes. lmr Py < ...< p, <« be the set of primes p < @ satisfying

p = —1(mod []¢). It follows from the prime number theorem for arith-
. A4

metic progressions that

— =< ¥ = _[_I
oot [T
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Now we prove

!
8l v 1
(11) Z l —< sl
im=] Tfp;—1
&
lf 7p; — 1., we must have p; — —1 (mod []¢;) and p; — 1 (mod 7).
i1

By a theorem of Titchmarsh-Prachar ([3], p. 44, Theorem 4.1) the number
of those primes A4 (r, #) not exceeding o is less than

€T @ -1
(12) Cg—5 —— log —r—) .
r[](g—1) \r []g;!
J=1 j=1
From (12) and (10) we obtain by a simple calculation (elearly »|p;—1
implies 7 > qz)

i
\ \1 1 N Z A(ry @)

et e ] iy
f=1 rip;—1 Qp<t=x
_ \’ @ S ¢
<t G (log T ) < ml,
a<r<e 1* [](g—1) "'11 [ 45
7=1 =1

which proves (11). From (11) we immediately deduce that the number
of primes p; << & which satisfy (9) is greater than 1/2, which by (10) proves
our lemma.

Let now a< 4 be given and choose 5 — 5(a,?) to be sufficiently
small. Let p; < ps< ... be the primes satisfying (8) where p; > e¢(y,t).
By ounr lemma we have for y > y(n, 1)

bl k!
(13) S g
) 2 " logy
?’l’?»*

Denote by w, < u,< ... the integers composed of at most ¢4 2
primes p;. From (13) we infer by a simple computation using induction
with respect to 1 that (e; = e;(%))

>1 1> w{lnglogw)““_ .

(14)
loga

U<

From (8) we obtain
- L 4
(15) s w;) = s (1— ‘i}) (p(’h‘j}

Colloguium Mathematicum XWVIL2 3
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and from p, > ¢(n.1) we have

S
(16} i ('If-.,j) == Ui (1 — 'r;{?}’ f,) ) 5

(15) and (16) imply if 5 is sufficiently small and ¢(y, t) sufticiently
large that

(17) po(U;) = aity.

(14) and (17) prove the first inequality in (2).
Now we prove the second one. Let bk = k(a) be sufficiently large
and let ¢, ..., q; be the first &k primes. If ¢,(n) > an, we evidently have

1 1 1 1
(18) S‘ — << —  hence 2 —<<—.

rf(nj P % ajle(n) % ¢ "
Hence by (18) and from the well-known theorem of Mertens ( }'1/¢;
= loglogk--0(1)) we have for k — k(a) i=1
1
(19) () = 0(modg;), ji<...<jr<k, V —loglog;n
h s
?H‘ll 'Ii

There are clearly fewer than 2* choices for j, < ... < j, < k. Thus
our proof will be complete if we show that for every choice of j, <
r

< jr <k satisfying 3'1/g;, > 4loglogk the number of integers » <
satisfying =t
(20) p(n) £ 0(modg;,), ji1<...<jr<k,
is less than
= log )"
ogw (log )"
if k& = k(e, a) is sufficiently large.

It is easy to see that (20) implies that every prime factor p of n
satisfies p = 1(modg;), j; < ... < j,< k. From the prime number the-
orem for arithmetic progressions and the sieve of Eratosthenes using
(19) we easily obtain that the set of primes s, < s, << ... for which s =1
(mod ¢;), i =1,...,r, satisfies

"

9 \1i = i ( —i)l 1 o
(21) &% (1 0(1))” 1~ | loglog

=

if k= k(e) is sufficienfly 1arge..

1 :
—-) loglogax < il loglog.r
q i
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If » satisfies (20), it must be composed entirely of the s;’s. Tlence
il iy<t,<... are the primes < x which are not s’s, we must have
n % 0(mod #;). From (21) we have

(22) ¥ :; (1__) T —

From (22) we deduce by Brun'’s method that the number of these
n << @ is less than (if @ > x,(e))

Oatt 17 (1 __) ]ogT (loga)™

tj<m

which completes the proof of (2).

To complete the proof of Theorem 1 we now have to prove (3).
We will only outline the proof, since it is similar to the proof of the second
part of (2). If @g(n) > an, we must have }' 1/p < 1/a; hence, as in the

Plpa(n)
previous proof, we must have (as in (19))

pa(n) = 0(1110(1{{;5),
(23) ;
; - il 1
e e S I, — >—loglogk.
im1 4% =
Denote, as in the previous proof, by {; < ¢, < ... the primes for which.
t = 1(mod ¢;,) for some j;, +=1,...,r, and by 8 < s¢,< ... the set
of primes for which

(24) szx1(modit), j=1,2,...

(23) clearly implies that % is composed entirely of the s;.
From (24) and (22) it follows by Brun’s method that for y > y,(e)

b Tl | Yy G
o ] o AL &2
(25) })1 < ot (o)

8;<V
We need the following

Lsyna. Let {s;} be a sequence of primes satisfying (25). Then the
number of integers not exceeding x of the form [[sii is less than

(log ).

Cy
(105: 2)?
We supress the details of the proof.
Since there are fewer than 2* choices for Ji<<...<jr <k, our lemma
immediately implies (3) and hence the proof of Theorem 1 is complete.
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By the same method we can prove that

Cro

(2{)) J}Yq,(‘i, a, fﬂ) < W;

where ¢,, is an absolute constant independent of a.
(26) is probably very far from being the best possible.
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