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PROBLEMS AND RESULTS ON THE CONVERGENCE AND
DIVERGENCE PROPERTIES OF THE LAGRANGE
INTERPOLATION POLYNOMIALS AND SOME EXTREMAL
PROBLEMS
by
P. ERDOS

Budapest

In this note I will mainly discuss the joint work of Turan and

myself and some of my own results and I do not claim to give a survey
of the whole subject.

Tet —1<x, <...<x,<<1 be n points in (—1, +1). Denote by
L,(¥) the fundamental functions of Lagrange interpolation, we have

"
L= —2 o) = 1T (x — ).
w’f.r,\.l{x vl k=1

It is well known that the sum Y |/(x)| plays a fundamental role
k=1

in the study of the convergence and divergence properties of the Iagrange
interpolation polynomials. I proved [3], [4] sharpening previous
results of IFaber, Bernstein and others that for every = > 0 there is an
n >0 so that for n > n,(z, n) the measure of the set in x for which

(1) kE_IHk(:r}! < 1 logn
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is less than ¢, further
(2) max > [l(x)| > "logn — ¢,

Both (1) and (2) are in some sense best possible. It is well known
that if the x, are the roots of the n-th Tchebicheff polynomial T ,(x)
then

n

max E; Li(x) | <—10gn + ¢,.

—1=2=1 k=1

An interesting unsolved problem asks the determination of the set

—1=sx <... <x,=<1 for which max Z[!,, (%) | is minimal. It seems

—I1==1 k=1

likely that this set of points is characterized by the property that the

values of the # -+ 1 local maxima of Y |/,(x)| are all equal (—1 = x,,
k=1

1 = %,;1). As far as I know this conjecture is still unproved. Perhaps this
conjecture will be easier to prove in case the x; are on the unit circle

n

and we want to minimise max ) |l(z)|. It seems certain that the x;
=1 &=
must be the n-th roots of unity.
Another related problem is to determine the set —1 = x, < ... <

< x, = 1 for which

(3) min  max E L(x

=i<n AErEr

is maximal. It seems likely that the solution of the two problems coin-
cide and again the # -+ 1 maxima in (3) have to be equal. T cannot
prove here the analogue of (2), I can only show that [5]

"
min  max D |L(x)] < Vn
0=ZiZn « [<ESE k=1

it seems certain that \/» can be replaced by ¢, log #.
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(1) easily implies

41
) § 51001 dx > ¢, 1og n.
k=1
TUrAN asked the question: for which set —1 =121, < ... < x,<1

is the integral (4) minimal? This question does not seem to be easy,
but it seems certain that asvmptotically the minimum is assumed for the
roots of T,(x) the n-th Tchebicheff polynomial.

I thought that the minimum of

+1

(3) s (?};{ zg(x)) dx

is assumed if the x; are the roots of the integral of the Legendre polyno-

mial P, ,(x). (FEJER proved that max Zlg(x) = 1 holds if and only if
—1Ex=1 k=1

the x, are the roots of the integral of £, ;(x) [13]). szapavos [22] proved

that this is false for every # > 3. It can be shown that the integral in

(4) is certainly greater than 2 —° %% but this result is far from being
n

best possible,

G. GRUNWALD [15] and J. MARCINKIEWICZ [18] proved that there
exists a continuous function f(x) so that the sequence .£,[f(x)] of Lagrange
interpolation polynomials taken at the roots of 7T,(x) diverge everywhere.
Tt 27 —1Z a0 < o o B ET =19 ... be any point group.
It easily follows from (1) that for almost all x, there is a continuous
function f(x) so that £,[f(x,)] diverges. But in fact I can prove more.
I can show that there is a continuous function f(x) so that .£,[f(x)]
diverges for almost all values of x. The proof is difficult and has not
vet been published. The following remark might be of some interest :
FABER [12] was the first to prove that for every — 1=, < ... < 1, <1
there is a polynomial P,_,(x) of degree at most n — 1, for which

| Poi(x)| =1, ¢=1,...,n but max |P,_(x)| >clogn.

—l1=x=1
_ I believe I can prove that for every A there is an ¢ >0 so that
if # = mn,(d, <), there is a polynominal P, ,(x) of degree at most #n — 1
satisfying

| Pu—a(x) | = 1, L
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and the measure of the set in —1 << x << 1 for which [P, ,(x)| > A4 is

greater than =. It is easy to see that in some sense this result is best
possible e.g. if the x; are the roots of the #u-th ILegendre polynomial
+1

then if 4 — 5, = must tend to 0 (since as is well known S P (%) < 2)
-1
The ]arge‘st permitted choice of = = g(4) valid for any set —1 = 1, <
< ... < x,= 1 will be very hard to determine.
Let >(} —1l=a<b=1. Then if n >nyz,a, b) and — 1 =x,
e e 20 BEES L

(© max |2

()| > [; - } log.

The proof of (6) is complicated and unpublished (it sharpens a pre-
vious result of S. Bernstein). (6) immediately implies that for any point

group " there is an x, — 1 << x4 < 1, for which
<

(7) lim sup L]JI"’ ==,
n=m ™

and in fact the set of these x,’s are everywhere dense. Perhaps (7)
holds for almost all x.

It would be of interest to know if for every point group there is
an x, in (—1, +1) for which

> ey [ > 22 2

b= T

holds for infinitelv manyv values of n#. This question does not scem to
be ecasv.
Now we discuss some convergence and divergence phenomena of the

interpolation of polynomials.
The following result of mine is of interest since it shows in view

of a well known result of Fejér a supnsmg contrast with the behaviour
of the Fourier series. Let x,= cos p=g¢g=1 (mod 2). Then there is

q
a continuous function f(x) so that |.£,[f(x0)]1| = as n— o, where
£,[f(x)] is the Lagrange mterpolatwn polxnomta] of f(x) taken at the
roots of T,(x), [6], [7]. In fact in [7] it is stated without proof that
if A is any closed set then there is a continuous function f,(x) so that
the set of limit points of £, [ f4(¥, )] is precisely the set A. The set A4 can
be chosen to be - oo, i.e. there is an f(x) for which £,[ f(x,) —
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A previous result of MARCINKIEWICZ [19] states that if the fundamen-
tal points of the interpolation are the roots of U, (x) =T (x), then for every
1, there is a sequence #; for which .Q,k[f(x,,)] = f(x,). TURAN and I [6]
showed that the same result hods for the roots of T,(x), if

:tro:,_‘-cosi, p=g=1 (mod 2).
q

All these results show that from the point view of convergence the
Lagrange interpolation polynomials behave rather badly. We just mention
here a result of Turan and myself which points in the opposite direction :
Let p(x) >c¢ >0 be intergrable in (—1, --1) and let P,(x) be the sequence
of polynomials orthogonal with respect to p(x) in (— 1, + 1). Let f(x)
be bounded and Riemann integrable and _£,[f(x)] the Lagrange inter-
polation polynomial of f(x) taken at the roots of P, (x). Then [10],

1

Sif(-t) — L, [f(x)]3dx - 0.

We have not been able to find usable necessary and sufficient con-
-1
ditions for the point group in order that S{f(;r} — 2,7 f(x)1}*dx should
-1
converge to 0. Tlis fact should be compared with the well known
necessary and sufficient conditions of manx and porva for the conver-
L1
gence of 2,0 f(x,)] and S,!:‘,,{_f{x};d_r, [17], [21].
=
MARCINKIEWICZ [20] and independently rErLDHEIM and I [11] proved
that if the fundamental points are the roots of 7,(x) then for every
Riemann integrable and bounded f(x) and » > 0,

+1

) () — 21 ax - 0.
=1
As far as I know (8) has not been proved for any other point group
than the roots of 7,(x). Probabily (8) holds for the roots of all Jacobi

polynomials both parameters of which are in (— I, —%), Feldheim

showed that (8) fails for » = 2 for the roots of U,(x).
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A well known result of rrjiEr [14] states that the Hermite inter-
polation parabolas converge uniformly to the continuous f(x) in (—1, 41)
if the point group is the roots of 7, (x). Fejér in fact proved this for many
other point groups, for a more general result see G. GRUNWALD [1617.
S. BERNSTEIN [1] proved the following result: Let f(x), —1==x=1 be
any continuous function. Then to every ¢ >0 there is a sequence of
polynomials ¢, ,(x) of degree ‘g-n — 1 for which LL,‘_‘_(xi")) — f(x™) for
at least n(l —¢) roots of T,(x) and 4, (%) — f(x) uniformly in (— 1, + 1),

In this direction 1 proved [8) the foIlcmmLT verv much more gencral
results which in some sense give the final answer to these questions.
To formulate our results we first have to introduce some notations. Put

cos 9" = 1" and denote by N,(a,b), 0=a < b== the number of
the 9" in (a, b).
rHEOREM 1. Let ™, i=1,...,n; n=1,... be a point group. The

necessary and sufficient condition that to every continuous function f(x) and
to every ¢ >0 there exists a sequence of pol_wwm-ials on(x) of degree
m < n(1 +c), such that ¢, (x") =f(x"), i = 1,...,n and q:)m(i. - f(x)
uniformly in (—1, +1) s that if n(b —a,) —» >, 0-:::.:1 <bh, =7

9) lim sup xlx, Ba) = 2.
n—w= Hlb, — ay) =
and
(10) lim inf (9", —9)>0,i=1,...,n

n= o

Condition (1) states that the number of 9" in (a,, b,) for large”
b, — a, cannot be much larger than the number of roots of cos nx = 0.

Theorem 1 is related to, but does not generalise the theorem of
Bernstein. I can prove the follomnfv result which is a direct generalisation
of Bernstein’s theorem :

THEOREM 2. The necessary and sufficient condition that to every con-
tinuwous f(x) and to every c>0 there exists a sequence of poly nomials U, _,(x)
of degree —n — 1 such that <, (x) = f(x) wuniformly in (—1, +1) and such
that 4, (&) = f(x) holds for at least n(1 — c) values of i is that for
every = >0

(11) E'N,(a,, b)) = o(n),

where in X' the summation is extended over an arbilrary set of disjoint
Llong” intervals (i. e. n(b, — a,) — @) saﬁisfying

21+ )

and that (10) is wviolated for at most o(n) values of 1.

(12) N, b,) >2e =2 ””’*
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Roughly speaking our conditions require that (9) and (10) should
be nearly always satisfied.

Theorem 2 is not even stated in [8] but can be proved by the met-
hods of [8]. In (8 I also give a necessary and sufficient condition for

the point group in order that there should exist a sequence of polyno-
mials o, (v) - f(x) of degree m < dn satisfying o) = f(x) for

=], ..M
Our results with TUrAN [9] imply that if
(13) ()| <em —1l=2=<1, k=1,...,m,0n=1,...

is assumed then (9) and (10) are satisfied, thus our theorems apply if
(13) is satisfied, and in fact Theorem 1 is proved under the assumption
(13) in [8] in a very simple way, the proof of Theorems 1 and Theorem
2 in their full generality is rather complicated.

Finally I would like to state a result of BErRNSTEIN [2] and some of
its generalisations :

Let m > n(l4¢) the x,,1=17=m are the roots of 7,(x), P,(x)

is a polynomial of degree n satisfving |P,(x)| =<1, i=1, ..., m. Then
max |P,(x)| < 4 = 4(ec).
—l=r=1

zyGeMUND [23] proved the same result if the x; are the roots of the
n-th Legendre polvnomial.

In a recent paper [9] I proved a comprehensive generalisation of
these results. First we have to introduce some notations. As before put

cos 2™ = 9™ and let
e <t <...<t"< 8,
be the #™'s in (e, ). Clearly N, (=, B) =j — 7+ 1. For each % >0 we

now define a subsequence of these $™’s. Put 9" = 9" and assume that
(<. . < {}::’” has already been defined, then 9,':2' is the least 9™ =9 4

+ 2. Thus we obtain 9" < ... <3, 8{"> 9™ — 1. put N¥(a, 8) =1
m m F

THEOREM 3. Let —1=x" < ... < <1, m=1,2, ... Let P,(%)
be a polynomial of degree n satisfying

(14) Po(x™) <1, i=1,...,m m >n(l + c).

g'ke necessary and sufficient condition that (14) should imply for every
c >

(15) max |P,(x)| < A(c),

===
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ts that there should be an = >0, independent of m, so that for every
Ly < ﬁm Sﬂt!?f}’lﬂg 1”(@#& - m) — 0,

(16) No (e, B) Z (1 + 0(1)) Z (8 — o).

. 1 :
In other words every interval large compared to — contains asymp-
M

totically at least as many points 9" no two of which are too close, as
the roots of cos mx.
Theorems 1 and 2 follow from the following results on polynomials.

THEOREM 1. The necessary and sufficient mnds'tz'on that there should

exist to every ¢ > 0 an A(c) so that to every v <1, i=1,...n, n=1,
there should exist a polynomial P, (x) of degree m ‘: (l )n sm’zsf\’mg
P =", i =1,..,n; max|P,(x)|<A()
—1=2=1
is that (9) and (10) should hold. .

THEOREM 2'. The necessary and sufficient condition that there should
exist to every ¢ >0 an A(c) so that for every |y <1, i =1, there
should exist a polynomial Py_y(x) of degree == n — 1 satisfying Pu—l(l“ J) =
=y for at least n(l — c) values of 1 and max |P, q(x)| < A(c) is that

—1==1

(11) should hold and (10) should be violated for at most o(n) values of i.

Theorem 1’ is stated in [9]. In [9] T state without proof the fol-
lowing.

THEOREM 4. To every A however large there is an = >0 so thal if
n =>mny(d, ), m =[(1 -+ e)nl, then for every —1 < x; << ... << x,, << 1 there
is a polynomial of degne n, P,,(x satisfying

IP(x)] =1, i=1,.., m and max |P,(x)| > 4.
—l1=x=1

Theorem 4 clearly sharpens the well known result of rarer [12]
(in the theorem of Faber m = n-F1). Theorem 4 shows that in Theorem 3
m > n(l - ¢) can never be weakened to m = n(l - o(1)).

Probably the following result also holds:

To every A lmwever large there is an ¢ >0 so that if n > n,(4, =)
then for every —1==x, < ... < x, = 1 there is a set v, ..., v, [V <“1
t=1,..., n so th’lt every polt nomlal P, (x) of degree m << (1
for which P, (x;) = v, holds for at least n(l — ¢) values of ¢ Satlb[l(‘S
max |[P,(x)| > A4

— ==
This result if true clearly contains Theorem 4. I have not even
proved it if m = n.



9 PROBLEMS AND RESULTS ON THE LAGRANGE INTERPOLATION POLYNOMIALS /3'

REFERENCES

178 Bermstein, Swr wue modification de la formule dinterpolation de Lagrange.
Commi. Soc. Math. Kharkow, (4), 5, 49—57 (1932).

[2] 8. Bernstein, Swr une classe de formules d'interpolation. Bull. Acad. Sci. U, 5. 5. R.
(7), 4 1151—1161 (1931).

(31, 41 P, Erddés, Problems and on the theory of interpolation, (I) and (IT). Acta Math.
Acad. Sci. Hung. 9, 381 —388 (1958), and ibid, 12, 235244 (1961).

3] — Some remarks on polynomials. Bull, Amer. Math. Soc., 53, 1169—1176, see p.
1171 (1947).

61, (71 — On divevgence properties of the Lagrange inlerpolation parabolas. Annals of

Math., 42, 309—315 (1941) and Corrections to two of my papers. ibid. 44, 647 —51

(1943).

8] — OUn  Some convergence properties of the interpolation  polynomials. Anunals of
Math., 44, 330—337 (1943).

9 — Ow the boundedness and unboundedness of polvnomials. Journal d’Analvse, 18.

[101 P. Erdos and P. Turan, On interpolation (1), Quadrature and mean convergence in
the Lagvange interpolation. Anmals of Math. 38, 142—155 (1937).

117 P, Brdos and B. Feldheim, Sur le mode de convergence pour Uinterpolalion de
Lagrange. Comptes Rendus, 203, 913—915 (1936).

(127 G. Fahber, Uber die interpolatorische Darsteliung stetiger Funktionen. Jahresbericht der
Dentschen Math,  Ver, 23, 190—210 (1914).

[187 L. Fejér, Annali della R. Senola Normale Sup. di Pisa, IT, 1, 263 —276 (1932).

[14] — Math, Zeitschrift, 32, 426—457 (1930).

151 6. Griunwald, Uber die Divergenzerscheinungen ete,, Annals of Math., 37, 908918
(1936).

[16] — Omn the theovy of interpolation. Acta Math, 75 (1943).

[17] H. Hahn, Uber das Interpolationsproblent. Math. Zeitschrift 1, 115—142 (1918).

[181 J. Marcinkiewicz Sur la divergence des polynémes d'interpolation, Acta Sci.
Math. Szeged, 8, 131—135 (1937).

9] — Acta Sci. Math. Szeged, 8, 127 — 130 (1937).

200 — Sur Uinferpolation (I). Studia Math., 6, 1—17(1936), See also , Collected papers”’,
Warszawa, Panst. Wyd, Nauk (1961).

2l] G Polya, Uber die Nonvergenz von Quadraturverfahven. Math, Zeitschrift 37, 264—
287 (1933).

[221 1. Szabados, On a problem of Eydds. Acta Math. Ac. Sci. Hung., 77, 155157,
(1966),

23] A Zygmund, A property of the zevos of Legendre polynomials. Trans. Amer. Math.
Soc., 54, 39—56 (1943).

This work was communicated at the Colloguivm on the Theory of Approxi-
mation of Functions, 15—20 September, 1967, Cluj (Romania).



	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9

