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PROBLEMS AND RESULTS ON T'HE CONVERGENCE AND
DIVERGENCE PROPERTIES OF THE LAGRANGE

INTERPOLATION POLYNOMIALS AND SOME EXTREMAL
PROBLEMS

1-

P . ERDŐS

Budapest

In this note I will mainly discuss the joint work of Turán and
mvself and some of my own results and I do not claim to give a survey
of the whole subject .

Let -1 c xl < . . . < xn < 1 be n points in (-1, +1) . Denote bv_
l k (x) the fundamental functions of Lagrange interpolation, we have

n

1, (x) =	
0(x)
- w(x) = L( (x -- xk ) .

~~'(xk)(x - xk~

	

k=1

n

It is well known that the sum

	

1lk (x) I plays a fundamental role
k=1

in the studv of the convergence and divergence properties of the Lagrauge
interpolation polynomials . I proved [3], [4] sharpening previous
results of Faber, Bernstein and others that for every s > 0 there is an
r > 0 so that for n > n,(e, -r, ) the measure of the set in x for which

(1)
k=1
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is less than s, further
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2
(2)

	

max

	

1,(X)

	

log n - cl .
1 ;~;x!5 1 -1

2

Both (1) and (2) are in some sense best possible. It is well known
that if the xk are the roots of the n-th Tchebicheff polynomial T,(x)
then

n

	

2
max

	

j 1.(x) I < - log n + c,
-15x51 k=1

	

~

An interesting unsolved problem asks the determination of the set
n

-1

	

x l < . . . < x n

	

1 for which max

	

1,(x) I is minimal . It seems
-1<_x_51 k=1

likely that this set of points is characterized by the property that the

(3)

n
values of the n } 1 local maxima of

	

l k (x) I are all equal (-1 - xp ,
k=1

1 = xn , 1 ) . As far as I know this conjecture is still unproved . Perhaps this
conjecture will be easier to prove in case the x ; are on the unit circle

and we want to minimise max

	

l k (z) I . It seems certain that the x;
zi= 1 k=1

must be the n-th roots of unity .
Another related problem is to determine the set --1 < x, < . . . <

< xn < 1 for which

n
min max

	

l k(x)
051 n xl<x<x11i k=1

is maximal. It seems likely that the solution of the two problems coin-
cide and again the n + 1 maxima in (3) have to be equal . I cannot
prove here tfie analogue of (2), I can only show that [5]

n
min max

	

I l k(x) I < V n
0 :5 1gn xl<x<xl+i k=1

it seems certain that Vn can be replaced by c3 log n .
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+1

(4)

	

S

	

Zk(x) dx > c 4 log n .
k=1

-1

( 5 )
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(1) easily implies

T11RA asked the question : for which set -1 C x, < . . . < xn C 1
is the integral (4) minimal ? This question does not seem to be easy,
but it seems certain that asymptotically the minimum is assumed for the
roots of T,(x) the n-th Tchebicheff polynomial .

I thought that the minimum of

Pn-1(xr) ~ C 1,

+1

S

	

n l

l' (x) I dx_1 ~=1

is assumed if the x ; are the roots of the integral of the Legendre polyno-

mial P,-,(x) . (FEJtR proved that max

	

lk(x) = 1 holds if and only if
LxSi k=l

the x ; are the roots of the integral of P„ _i (x) -13 ] . SZALADO5 'L22 -' proved
that this is false for every n > 3 . It call be shown that the integral in
(4) is certainly greater than 2 - - i°	but this result is far from being

n
best possible,

G. GRtiXWALD - 15] and J. MARCINKI$wICZ LIS] proved that there
exits a continuous function f(x) so that the sequence -0n [f(x) ] of Lagrange
interpolation polynomials taken at the roots of T,(x) diverge everywhere .
Let .T(" ) , - 1 _C x (1 " ) < . . . < xnn) e 1, n = 1, 2 . . . . be any point group .
It easily follows from (1) that for almost all x„ there is a continuous
function f(x) so that 10,E f f(x o ) ] diverges . But in fact I can prove more .
I can show that there is a continuous function f (x) so that -L). [f(x) ]
diverges for almost all values of x . The proof is difficult and has not
vet been published . The following remark might be of some interest :
FALI,J, [12] was the first to prove that for every - 1 C x, < . . . < x n C 1
there is a polynomial Pn_ 1(x) of degree at most n - 1, for which

. . . ' n ' but

	

max

	

Pn_ 1 (x) ; > clog n .-1Sx--l

I believe I can prove that for every A there is an z > 0 so that
if n > n„(A, z), there is a polynominal Pn- 1 (x) of degree at most n - 1
satisfying

i=1, . . . . n
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and the measure of the set in - 1 < x < I for which j P,,_ 1 (x) I > A is
greater than It is easy to see that in some sense this result is best
possible e .g. if the xi are the roots of the n-th I,egendre polynomial

+1

then if _4 - )~ -r-, s must tend to 0 (since as is well known S Pn_ 1 (x) C 2) .
-1

The largest permitted choice of e = s(A) valid for am- set -1 C x l <
< . . . < xn -- 1 will be very hard to determine .

I,et

	

> 0, -1 C a < b C 1 . Then if n > n o ( a, b) and - 1 Cx,
< . . .<x,C1,

(6)

( 7 )

max
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> -
E)

log n .

4

The proof of (6) is complicated and unpublished (it sharpens a pre-
vious result of S . Bernstein) . (6) immediately implies that for any point
group x~ n ' there is an x,,, - 1 < x o < 1, for which

n

	

21

	

~ (nlim sup -io -
n k=1

I lk (x,) >
r

>
g

and in fact the set of these x o's are everywhere dense. Perhaps (7)
holds for almost all x o .

It would be of interest to know if for every point group there is
an xo in (-1, -}-1) for which

L log n
) I >	C

holds for infinitely many values of n . This question does not seoli to
be easy .

Now we discuss some convergence and divergence phenomena of the
interpolation of polynomials .

The following result of mine is of interest since it shows in z-ie\v
of a well knoN-,-n result of Fejér a suprising contrast with the behaviour
of the Fourier series . Let x o = cos p , P - q - 1 (mod 2) . Then there is

v
a continuous function f(x) so that i ~C„[f(xo ) j --,- oo as n --, ; x,
,knLf(x) is the Lagrange interpolation polynomial of f(x) taken at the
roots of 1',á (x), [6], [7] . In fact in [7] it is stated without proof that
if A is any closed set then there is a continuous function fA(x) so that
the set of limit points of

	

is precisely the set A . The set .4 can
be chosen to be +co, i .e . there is an f(x) for which ,0,[f(xo )

	

- ce .
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A previous result of ti1ARC1.NK1F;w1CZ [19 states that if the fundamen-
tal points of the interpolation are the roots of U,,(x) = T ;,+I (x), then for every

0 there is a sequence yak for which -0„k[f(xo)] -s f(x o ) . TUR-í and I [G]
showed that the Same result hods for the roots of T„(x), if

xo cos P , P - q - 1 (mod 2) .
q

All these results show that from the point view of convergence the
Lagrange interpolation polynomials behave rather badly . We just mention
here a result of Turán and myself which points in the opposite direction
I,,, t P( .I) > c > 0 be integgrable in (-1, -}-1) and let P„(x) be the sequence
of polynomials orthogonal with respect to _p(x) in (- 1, + 1) . Let f(x)
be bounded and Riemann integrable and X,,1f(x) - the Lagrange inter-
polation polynomial of f(x) taken at the roots of P„(x) . Then [10],

I

S ~f(X ) - £n'f(x )
j o,2,1 x --, 0 .

-1

We have not been able to find usable necessary and sufficient con-
_ :_ I

ditions for the point group in order that
S {

f(a) -- e„' f(x) --I } 2 dx should

converge to (3_ This fact should be compared Yvith the well known
necessary and sufficient conditions of xAir-N and PŰLYA for the conver-

I

gence of

	

„[f(xo)] and SXn1f(x)Jd :x, [17

	

21] .
-1

-\1Ai,CTXrirxelez [20] and independently_ rrr,DHEm and I [11] proved
that if the fundamental points are the roots of T„ (x) then for every
Riemann integrable and bounded f(x) and r > 0,

+I

(g)

	

S u(x) - ~ n L( f(x) .1 }2' dx ---,. 0 .
-1

As far as I know (8) has not been proved for any other point group
than the roots of Probabily (8) holds for the roots of all Jacobi
polyuonlials both parameters of xOiich are in ~- 1, - I

1
, Feldheim

a
slioY~ed that (8) fails for r = 2 for the roots of U„(x) .
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A well known result of i~,T $ F141 states that the Hermite inter-
polation parabolas converge uniformly to the continuous f(x) in (-I, +I)
if the point group is the roots of T„(x) . Fejér in fact proved this for many
other point groups, for a more general result see G. GRO WALD [161 .
S . BERNI STEÜ, [ I] proved the following result : Let f(x), -1 C x c I be
any continuous function . Then to every c > 0 there is a sequence of
polynomials Vi n_, (x) of degree - n - 1 for which Vn i ( xin~) = f(xi n) ) for
at least n(1 - c) roots of T,(x) and Yn_ 1 (x) --o-f(x) uniformly in (- 1, -i-- 1) .

In this direction I proved [81 the following very much more general
results which in some sense give the final answer to these (Iuestions .
To formulate our results we first have to introduce some notations . Put
cos D,j n) = x;") and denote by N,(a, b), 0 C a < b C n the number of
the a,(') in (a, b) .

THEOREM 1 . Let x (In) , i = 1, . . . , n ; n = 1, . . . be a Point groin. The
necessary and sufficient condition that to every continuo-us function f(x) and
to every c > 0 there exists a sequence of polynomials y.(x) of degree
m < n(1 -}- c), such that y .(xti") = f(xy n) ), i = 1, . . ., n and ?.(x) -). f(x)
uniformly in (-1, + 1) is that if n(b n - an) -. cc, 0 C a n < b„ C

(9)

	

lira sup -n(a", b„)

	

i

n _ z n (bn - an)

and

(10)

	

lim inf

	

- ;O~( " ) ) > 0, i = 1, . . . , n .
n=a
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Condition (1) states that the number of ain) in (an , b„) for „large"
bn - a n cannot be much larger than the number of roots of cos n.x = 0 .

Theorem 1 is related to, but does not generalise the theorem of
Bernstein. I can prove the following result which is a direct generalisation
of Bernstein',, theorem

THEOREM 2. The necessary and sufficient condition that to every con-
tinuous f(x) and to every c > 0 there exists a sequence of Polynomials y_ 1 (x)
of degree C n - 1 such that '~n ,(x) --), f(x) uniformly in (-1, + 1) and such
that ~n._,(x;"~) = f(x(, n ) ) holds for at least n(1 - c) values of i is that for
every z > 0

(11 )

	

E'N,(ak, b) = o(n) ,
where in E' the summation is extended over an arbitrary set of disjoint
„long" intervals (i . e . n(b,_ - ak )

	

oo) satisfying

(12)

	

N (ak, bk ) > n(bk	
-

	 ak) (1 -}- ~)

and that (10) is violated for at most o(n) values of i .

6
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Roughly speaking our conditions require that (9) and (10) should
be nearly always satisfied .

Theorem 2 is not even stated in [8] but can be proved by the met-
hods of [8] . In "8 I also give a necessary and sufficient condition for
the point ,group in order that there should exist a sequence of polyno-
mials ,,, x) -* f(x) of degree ni < do satisfying Y.(xá" )) = f(x~" ) ) for

. .,n .
Our results with TrR í~ [9 imply that if

(13)

	

!li,(x) ; < c„ -1CXC1, k=1, . . .,n, n=1, . . .

is as~Umed then (9) and (10) are satisfied, thus our theorems apply if
(13) is satisfied, and in fact Theorem 1 is proved under the assumption
(13) in [8] in a very simple way, the proof of Theorems i and Theorem
2 in their full generality is rather complicated .

Finally I would like to state a result of BFRN5TE1'X [2]] and some of
its generalisations

Let m > n(1-{- c) the x,,,l C i < nz are the roots of Tm(x), P"(x)
is a polynomial of degree n satisfying I P"(x,) I C 1, i = 1, . . . , m. Then

max I P„(x) I< A= A (c) .
-Í~XSI

zYGMUND [23] proved the same result if the x, are the roots of the
n-th Le,gendre polynomial .

In a recent paper [9] I proved a comprehensive generalisation of
these results . First we have to introduce some notations . As before put
cos e

	

~9y m) and let

OCC ~y m) <

	

< . . . < ,9',m) < R,
bI, the 4 ("'i's In (x, , ) . Clearly 1(x, ,) -= j - i -, 1 . For each -r, >0 Nve
now define a subsequence of these 9 ( " ) 's. Put ,9, ;" ) _ ai( " ) and assume that
9 ( ")

	

("')

	

"i, < . . . < ~, has already been defined, then' ~ r̀ ) is the least 0,(')

	

9 " t
r

	

i, " <

	

. . < 19 m), S,('n)

	

('")

	

r

	

( r )r . Thus «% obtain 9-

	

> ~; - - Put Nm (7, 3) = l .
in nz

71

THEORE-~r 3 . Let - 1

	

x (jm) < . . . < x;;," ) _C 1, m = 1, 2, . . . . Let P„(x)
he a 15ohnomial of degree -it satisfying

(14 )

	

i 1 . (X,( )) i

	

1, i = 1, . . . , )it, in > ,n (I + c) .

The necessary and sufficient condition that (14) should imply for every
c >0

(l~)

	

max IP"(x) < A(c),-lax<l
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y,,, < P,n satisfying

P . ERDŐS

is that there should be an

	

>0, independent of m, so that for every
m(NW - xcM)

	

W,

( 16)

	

l~ni ) (~on , ~ra)

	

( 1 + o(1)) m

In other words every interval large compared to
1

contains asy-mp-
m

totically at least as many points ~& (j') , no two of which are too close, as
the roots of cos mx.

Theorems 1 and 2 follow from the following results on polynomials .

THEOREM 1'. The necessary and sufficient condition that there should
exist to every c > 0 an A(e) so that to every . y ;"'~( _C 1, i = 1, . . ., n, n = 1, . . .,
there should exist a polynomial P, n(x) of degree m < (1 -f- c)n, satisfying

P,,,(xi ) = yi(n), i = 1, . . . , n ; max I P,n(x) I < A(c)
-I~x51

is that (9) and (10) should hold.

Tx1?,oxi;~r 2' . The necessary and sufficient condition that there should
exist to every c > 0 an A(c) so that for every ; y in' _C 1, i = 1, . . ., u, there
should exist a polynomial P,,- I (x) of degree C n - 1 satisfying P„-,(x~n') _
= y,n) for at least n(1 - c) values of i and max !P n-,(x) I < A(c) 'is that

-15x<i
(11) should hold and (10) should be violated for at most o(n) values of i .

Theorem 1' is stated in [9] . In [9] I state without proof the fol-
lowing .

'rxi;oRL,m 4 . To every A however large there is an Z > 0 so that if
n > n o(A, s), m -- -(1 -I c) n1, then for every -1 C x, < . . . < x, n C 1 there
is a Polynomial of degree n, P,,(x), satisfying

I P,, (,Y,) C 1, i = 1, . . ., m and max P, (x) I > A .
-15x51

Theorem 4 clearly sharpens the Nvell known result of FABER [12]
(in the theorem of Faber na = n+l) . Theorem 4 shows that in Theorem 3
m > n(1 - c) can never be weakened to na > n(1

	

0(1)) .
Probably the following result also holds
To every A however large there is an e > 0 so that if n > n ,(A, }

then for every -1 C x, < . . .

	

x,, _C 1 there is a set y	yn , J y; C 1,
i -1, . . . , n so that every polynomial P(x) of degree ua < (1 -t- s)n
for which P,n(x i ) = yi holds for at least n(1 - z) values of i satisfies
max II'„,(x) I > A .
-lCt~l

This result if true clearly contains Theorem 4. I have not ev(_ ii
proved it if 7n = n .

8
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