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ApsrrACT

A function f(z) is said to belong to the class 7 if it is regular in |z | < 1
but not in any larger disc. 1f fe # and f(z) = Za 2" ( | z | < 1) we investigate
an aspect of the behaviour of the zeros of the partial sums

n
Saz) = Z az’.
Vel

Let p,(f) be the largest number » such that 8,(z) has a zero on |z | = r;
and let
plf) = liminf p,(f), P = sup p(f).

no> fe #

[t is well known, and not difficult to prove, that 1 = P < 2. In this paper
it will be proved that 4/2 < P < 2. The proofs of v/2 < Pand P < 2 are
by contradiction. By making the arguments more precise numerical constants
'y = 0 and (', = 0 could be obtained such that /2 - 0, < Pand P = 2 - C,.
However, it was not thought worthwhile to obtain such constants €', and C,
gince they would almost certainly be far from sharp.

1. The function f(z) is said to belong to the class .%# if f(z) is regular in
| z | < 1, but is not regular in |z | < r for any » > 1. If fe # and

n
8,.2) = Z a2
0

#This paper was submitted on behalf of the authors by I'. B, Kennedy, M,1.1.4., whose
death was announced on 10 June, 1966.
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has at least one zero on |z | = ». We assume that » is large enough for
pulf) to be well defined. Let
p(fy = liminf p,(f)

n—x

and
P = sup p(f).

JeF
We believe that it has been shown by Kakeva that 1 < P <= 2. but unfortunately
we are unable to give any reference for this result. In this paper we shall
show that 4/2 <= P < 2. It would be interesting to know what the correct
value of P is, but the determination of P would appear to be rather difficult.

If for fe # one considers the zeros of its partial sums S,(z) (» == 0), then

our result can be regarded as saying something about the possible extremal
behaviour of these zeros. As regards the average behaviour of the zeros a
number of results are known. The first of these seems to be due to Jentzsch
[3, p. 238] who showed that each point of |z | = 1 is an accumulation point
of the set of all zeros of S, (z) for n = 0. Later Szego [2] showed that if € = 0
is given then there is a sequence {n,}, depending on the particular f(z). such
that all but 0(»;) of the zeros of S, (z) liein 1 — ¢ < |z | <1 - € and are
uniformly distributed. The latter means that if N(n.; o, ) is the number of
zeros of S, (z) ina<argz < B (0 < B —a < 27), then for fixed o, § we have

N(ng; a, B) B B—-a

k= .
ny, 27 ( )

More precise results of this kind were obtained by Erdés and Turan [1].
2. Theorem 1
P -] \.-’E.

We shall construet a function g € # and prove that this function satisfies

plg) = 2. Let g, = 1 and suppose that for » = 0 we have defined
gy, oty (a, | =1,0 << v <n) If
n
S,z =2 a, 2
0
and

M(r, S,) =max | S,()].
| 2] =
then M(1. 8,) = 1 (n = 1) and
Jl{(?'. Sn)

pr-+l

—= 0 (r — o).

Take R = R, as the largest value of r such that
M (r, 8,)

1.
ph+l

Then R = 1. There iz in fact only one value of r such that

M (r, 8,) 1

?rnq-l
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but this fact plays no part in our arguments. Choose { ( | L | = R) so that
| S8, (0) | = M (R, S,) and put
= S'n (g)
Unty = ~ ‘:-n-ld_
Then [, | = 1and 8,,,(z) has a zero at z = {. Let
giz) = 2 a,z2v(|z]< 1)
0

be the function obtained from this construction. Clearly ¢ ¢ # and
pulg) > R, (n > 1), (1)
Lemma 1.

lim inf R, = /2.
n*x

Let e satisfy 0 < e < 1 and put A = /2 — e. By Parseval’s Theorem
[3; p. 84],

i

1
M), S,) - | 8, (A e) | 2db

T 27 Jo

Erbes \1"3 | 2 v
= i 1] i i A
0

A2nt2

Az -1
Henece there is an n, = ny(e) such that
M S, _ (1= A ‘
An+l =z = 1 (== ny).

Consequently for n > ny, B, > A = /2 — . As e is arbitrary apart from
satisfving 0 < e << 1 the lemma follows.

From (1) and Lemma 1 it follows that p(g) = 4/2. We shall prove that
plg) = +/2 by showing that the assumption p(g) = 4/2 leads to a contradiction.
Suppose then that p(g) = /2. From (1) and Lemma 1 it follows that there
is an increasing infinite sequence {n,} such that R, ., — V2 (k — x). We
now consider the behaviour of the general nth partial sum 8 ,(z) of g(z)
and introduce a number of auxiliary polynomials. By examining these as
n —= oo through the sequence {n.} we show that the desired contradiction
is obtained.
Henceforth assume that » = 1. We have
M (R, S,)
i s = Ry4)

and so
|ag +ay Bz 4 oovnnnnns 4, Rz | < Rett (2] < 1)
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From this it follows easily that

@y 17 )
lan + =52 4+ e + et | <R (]2 <1). 2)

Let
Ay
Then |b;] =1 (0 <j < n)and (2) can be written
by | b 3 7 >
[l—l—?fz—r ......... —!——ﬁz“]mﬂ(|z|%1). (3)

Let p(z) be the polynomial within the modulus bars on the left of (3) and
define, with # = R, .,

v 25

ooe ws
R

As B =1 (n = 1) it follows from (3) that the image domain of |z | < 1 by
p(z) is contained in that by A(z). We also have that p(0) = ¢(0) = 1. Hence
in |z| <1, p(z) is subordinate to A(z) and so there is a function

w, 2t (|2 ]| <l)

e
@
Il
[

Al

satisfying | w(z) | <1 ( |z ) such that

w(z)
R
=143 cauwtz) (|z]<1) (4)
where 1
G = = (RRRIJ (n = 1). (5)
Consequently
by (R* - 1) w,
R~ R
so that w; £ 0 and
by =— (B2 -1) w,. (6)
Let
; 1
qz) = 21 s (Z) =b, + by 2 + ... +b,; 21,
Ap
and if w, = ¢ e put (7)

Qe) = - et g (set) = dy + dy2 + - + d, 27,
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where |d,

=1 (1 = j < n). Note that apart from the a, cach coefficient
in the above depends not only on the displayed suffix but also on n, the
order of the partial sum considered.

We now take the sequence {n;} such that Ryt —> v/2 (k — o0) and examine
the situation for » = =, in the above as kb — . In what follows & —» oo’
will always refer to the & of n,. From (6) it follows that |, | — 1 (k- o)
since R = L’,” 1= 472 (k= o0). Hence for each fixed j = 1, w; > 0 (k> o)
since

oo
wiEz) = £ w, 2"
1

satisfies | w(z) | = z | << 1). Therefore given any fixed positive

integer N we obtain, fmm (4) and ( ),

b- ~ = ?{‘ ( —> 00} & j < j\r)
Hence it follows from (7) that
d—=>1k—>0: 1 <j<m (8)

To complete the proof we require the following result,

Lemma 2. Lety (0 < y < 1) be given. Then there isan n = 5 (y) (0 = 5 < 1)
sueh that any polynomial

1
Ay =Ad, + A2 + ... + A, 20 (u. > —)

7}
satisfying | A; | = 1 (0 < j < n) and
1
| 4,-1 | éq(ﬂ <j < -)
n
has all its zevos in |z | >y.
Choose 7 = g(y) so that 0 < % < 1 and
a 14, 1
1 -y | i
- L omg ot el (9)
1 + v | Y |
As the right hand side of (9) tends to 0 and the left hand side tends to
1
1 4y

as n — 0+ such a choice is possible. Now for |z | < L. with

1
I:-:I =N -1,
G

1 -2~
A@) = ——= + Bie) + By,

where
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Henee if z( |2 | < 1) is a zero of A(z) we find that

1—|= N ) 1-z]¥ =z N
L+ |z | - | S
.r\;‘i
HE
Yl
this implies that
L 14 L
Sl £ 8 1-J=]" z|" 10
d=lz0" =1 =] (10)

‘-‘q.-_-.:‘l?
T PY S S PTRE =

The left hand side of (10) decreases and the right hand side increases as
| =] <= 1 inereases and so, if |z | < y then

! g 1
L—-o" _ 1=y e
1 4+ v i 1 -y 1 -y

But this inequality contradicts (9) which defines 4 in terms of . Consequently
any zero of () must satisfy |z

z | = y. This proves the lemma.
Take y of Lemma 2 to be

30+ )

V2
and 7, to be a corresponding value of 5. Let

1
[]:sz
o

From (8) there is an integer &, such that

| d; =1 | <ok >ky:1 <j < Np).

By Lemma 2 all the zeros of Q(z) lic in

I2[>;—"(1 + %2)

)
for b = ky. Hence, from the definition of

Q(z) in (7), all the zeros of S, _, (z)
lie in

|z] <2 (1 4 )_l 2

2| < Z - — B G
V2 1 + /32 Ve

However, this contradicts the result that p(g) =

= 4/2 which has already been
established.  Consequently plg) = +/2 and Theorem 1 is proved.

3. Theorem 2.

P < 2
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[n order to prove Theorem 2 one has to show that there is an absolute
constant ¢ = 0 such that for any fe # we have p(f) << 2 — e¢. We shall in
fact only prove the weaker result that for any fe # we have p(f) << 2. We
have adopted thig approach since it will be clear how our proof of the weaker
result can he modified to give the stronger result. At the same time we shall
avoid a number of rather complicated, but nevertheless straightforward,
technical difficulties that such a modification would entail.

We assume that there is an

fe) = Z a,2n(|2z]<])
0

helonging to .# for which p(f) = 2 and show that this leads to a contradiction.
Lemma 3. If

M) =% agah(|2]< D)

belongs to F then there is an increasing infinite sequence of integers depending
on [, which we denote by o, such that

i

| g | 2

lim sups max v 'J::V? g

";:c ’U A ) lr-‘n ] ‘ -
A i’

Sinee fe # it follows that for any { = 1 the sequence ! |a, |17} is
unbounded. Henece there is an increasing infinite sequence of integers »
such that

[a, | <]a,|I* (0 <v<n)

and so

From this result it is clear that a sequence o for which Lemma 3 is true ean
be constructed.

Lemma 4, Suppose that
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belongs o 7 and satisfies p(f) = 2. If o is any sequence for which Lemma 3 is
true then, for any fixed positive integer k we have

lim |a,, |
p | | =1
hea aﬂ

Corvollary. Under the conditions of Lemma 4, if o* is the sequence of integers n
such that n -+ 1 € o, then

lim sup | max v L)

n;r:* 0 <v <nla,| ,

Let £, be a zero of largest modulus of

assuming that » is large enough for {, to be well defined. Then

n=1
o, g_ﬁﬁ = - % a, €'H”
0
and so, with A, = | ¢, |.
n—1
|“‘n l )‘m?'a = =z ]ﬂ'v | )‘Jrv " (11)
0
Suppose now that n ¢ ¢ and that
1
max I"f_;: lis = (12)
0 <v <nla,| " -

Then

An

n-1 n—rv - n
1< 5 (L) L L
3., 1= L,

r=()

As n — oo through ¢ we have lim sup /,, = 1 and lim inf A, = 2 so that

1< lim inf

A - 1
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Hence it follows that lim sup A, < 2 as n — oo through ¢. Consequently
lim A, = 2.
e (13)

Teo

For any fixed positive integer & and n > k (neo) it follows from (11) and
(12) that

1 “ﬁ;;}_l (Z_ﬂ)ﬂ-—" i ‘ Ian—k |Aﬂ_k—- (_J_ﬂ)ks
A 1 7a, | X,

":n 1 - (/A" ‘ l”’n—k , — (J )ﬁi
= fa 2 7 Caltal® L 1By g
Yo 1- ’!ﬂf‘\ra l l thy |

Letting n — oo through ¢ we obtain, using (13),

1&1 Ik 2 Hminf (""’H ‘-1)
2% | @, | 5

-

30 that
lim inf | a,_, |
ea @y

From this and the definition of the sequence o the result of Lemma 4 follows.
The corollary is an immediate consequence of Lemmas 3 and 4.

Lemma 5. Under the conditions of Lemma 4 we have

B .
—TE o~ eik¥n (as w > oo through o)
Uy
where, in the previous notation, i, = arg {,.

We assume that £ = 1 and that we have proved that as » — oo through o
then

oy o _gin (1 <y < k- 1),
a‘l’i
From
n—k—1
a4y, g-n“ 1 v Uy gia”_k =- X a, uv
L1}
it follows that, using (12) and A, = |, |,

n—k—1 —
!l + . S T a?—:_i En I < 2 (E_ﬂ)n

I a'ﬂ o n 0

= (':' n) ke l il {E:n.'ll’\n)“_k
B ): 1- IEI-r.u‘!)‘n
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Hence
lim sup | W, 4 «
g o -k oy
- I 1 Iz gre ! | { R Cn k | < ok
ea @y n -')

By the induction hypothesis and (13) we obtain

fmsuply 1 1 01 Ll gl o L
nex [ 2 2° 25-1 2k @y | 2k
or
lim sup | 1 1, 1 a, St | <
— 0 o T e i S
Ta:u [ 2k-1 2k iy [ 2%
Consequently
L. (" 1
4 = limsup Re [ 2k e-th¥n) < _
2k—1 2k o thy, 2k
Tea
or

g+ @

lim sup Re (aﬁ" e‘““-"’ﬂ) < - 1.
a

n

flea

From the above and Lemma 4 it follows that

[T

~ — efk¥n (p — ooy n e a).

iy

This completes the proof of the lemma apart from showing the result to be
true for & = 1 so that the induction argument is valid. It is clear that this
can be done by taking £ = 1 in the above discussion.

The result of Lemma 5 is valid when p(f) = 2 and # — co through any
sequence o for which Lemma 3 is satisfied. By the corollary to Lemma 4 we
see that Lemma 5 is also true when the sequence o is replaced by o*. Hence
it p(f) = 2, then

gy g—1
noltk o~ ekl (- o0 0 € o). (14)

Up—y

From (14) and Lemma 5 it follows that as » — oo through o, then

-2 in o=z _ pidn-t
a’n—l thp—y
(1 3 [+ o0

. el2bn, i - T
p—q hp—

Hence as n — oo through o, then
eivn ~ — gidn-1 gidn ~ _ ei2¥n—1
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But clearly these two asymptotic results are mutually incompatible and so
we have arrived at a contradiction. Therefore the assumption which led to
this contradiction, viz. p(f) - 2, is false so that p(f) < 2.
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