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ABSTRACT

A function f(z) is said to belong to the class J if it is regular in I z I < 1
but not in any larger disc . If fe . and f (z) - 1:a 7 ,z'n ( ~ z I < 1) we investigate
an aspect of the behaviour of the zeros of the partial sums

n
S,(z) = 2, a„z

v-o

Let p„(f) be the laruest number r such that S,,(z) has a zero on j z I = r ;
and let

9(f) = lint inf pn(f), P = sup p(f) .
fe .

It is well known, and not difficult to prove, that 1 < P < 2 . In this paper
it AA ill be proved that N/2 < P < 2 . The proof's of V/Z < P and P < 2 are
by contradiction . By making the arguments more precise numerical constants
CI > 0 and C 2 > 0 could be obtained such that v2 Ci < P and P < 2 - C2 .
However, it was not thought worthwhile to obtain such constants C I and C 2

since they would almost certainly be far from sharp .

1 . The function ,f(--) is said to belong to the class 3z' if f(z) is regular in
z < 1, but is not regular in z < r for any r > 1 . Iffe , and

t(z) _

	

a, z 71 ( z < 1)
o

let p,,(f) be the largest number r such that
n

8 .(z) _

	

a, z°
o

*This paper was submitted on behalf of the authors by P . B. Kennedy, m.B .I .A ., w hose
death was announced on 10 June, 1966 .
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has at least one zero on I z = r . We assume that n is large enough for
p,,(f) to be well defined . Let

p(f) = line inf, p„ (f )

and
P = slip P(D .

fE .

We believe that it has been shown by Kakeva that 1 < P < 2, but unfortunately
we are unable to give any reference for this result . In this paper we shall
show that ~,/2 < P < 2. It would be interesting to know what the correct
value of P is, but the determination of P would appear to be rather difficult .

If for f E one considers the zeros of its partial sums S„(z) (n > 0), then
our result can be regarded as saying something about the possible extremal
behaviour of these zeros . As regards the average behaviour of the zeros a
number of results are known . The first of these seems to be due to Jentzsch
[3, p. 238] who showed that each point of I z I - 1 is an accumulation point
of the set of all zeros of S,(z) for v > 0. Later Szego [2] showed that if E > 0
is given then there is a sequence {nk, , depending on the particular f(z), such
that all but 0(q,) of the zeros of S„ h,(z) lie in 1 - E < z < 1 -L E and are
uniformly distributed . The latter means that if N(nk ; a, ~3) is the number of
zeros of S,,,,(z) in a < arg z < g (0 < Q - a < 2-,T), then for fixed a, g is e have

N(nq ; a, ~3)

	

3 - a
00) .

7110

	

27r (k ~

More precise results of this kind were obtained by Erdös and Turán [1] .

2 . Theorem 1

P > -\/2 .

n_

We shall construct a function g c and prove that this function satisfies
p(g) > v"2 . Let a 0 = 1 and suppose that for n > 0 we have defined
a0,a1 , . . a ( ~a =1,0 < v Vin) . If

n

S,,(z) _ Y- a,
0

and
111(r, S„) = max I 5,,,(z) ,

~zl=r
then M(1, Sn ) > 1 (n

	

1) and
M(r, S") -~ 0

(r ->- oo ) .rn+1

Take R - Rn+i as the largest value of r such that
11 (r, s„)

= i .

Then R > 1 . There is in fact only one value of r such that
M (r, sn) _ 1

rn+1
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but this fact plays no part in our arguments . Choose (

	

= R) so that
1 8,,, (~) I = M (R, Sn) and put

a,,+, -

	

~n+Y

Then

	

+r = 1 and S,,+i (z) has a zero at z = ~ . Let

y(z) = Z a,, zn ( I z I < 1)
o

Levima 1 .
lim inf R,,

	

V/3 .
n-+

be the function obtained from this construction . Clearly y e

	

and
PjY) % R„ ()L

	

1) .

	

( 1 )

Let e satisfy 0 < E < 1 and put A = -/Z - E . By Parseval's Theorem
[3, p . 84],

1

	

2n
1~12(~, Sj ~ - ~o I Ajn (~ e ~~) I r d8

n
Z

	

I r1, V 12 lA
o

Hence there is an it, -- n o (e) such that

111 (A , S,,)

	

( 1 - cA-2 11 -2)

,An+1

	

1 _ E

	

> 1 (lt, J 7GO ) .

Consequently for n > it o , Rn+i > A = V'2- - e . As e is arbitrary apart from
satisfyin(Y 0 < e < 1 the lemma follows .

From (1) and Lemma 1 it follows that p(y) We shall prove that
p(y) > -\/2 by showing that the assumption p(y) - V2 leads to a contradiction .
Suppose then that p(y) _ From (1) and Lemma 1 it follows that there
is an increasing infinite sequence {n,} such that R,

k+ 1 -'-
2 (k co) . We

now consider the behaviour of the general nth partial sum S n(z) of y(z)
and introduce a number of auxiliary polynomials . By examining these as
it through the sequence {it, { we shoe- that the desired contradiction
is obtained .

Henceforth assume that it > 1 . We have
m (R, Sn)

Rn+1 = 1 (R = Rn+i)

and so
I
ao + a i R z	+a,,R~Iz1L I GRn+'( Iz 1 -1) .

rizuu . x .i .A ., vot . 65, SECT. A
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From this it follows easily that

an-1

	

ao n1 a,,

	

R z ',-	-
Rn

a 1 -R ( 1 z 1

	

1) .

	

(2)

Let

a"-, = b ; (0 <j <n) .
a„

Then I b; = 1 (0 < j < n) and (2) can be written
b,

~1 +f

	

1 z	i
bn
n zn ~ <R(~z I <1) .

Let p(z) be the polynomial within the modulus bars on the left of (3) and
define, with R = R„+1,

1
R

Rh(z) _
z
R

As R > 1 (n 1) it follows from (3) that the image domain of z I < 1 by
p(z) is contained in that by h(z) . We also have that p(0) = q(0) - 1 . Hence
in I z I <1, p(z) is subordinate to h(z) and so there is a function

w(z) _

	

av„ zn ( z I <1)
1

satisfying I w(z) ( < 1 ( z < 1) such that

R 1 _ W(Z) ~

where

Consequently

so that w, -A 0 and

Let

w(z)
1-

R

x
= 1 + }' c, w'z (z) ( 1 z 1 < 1),

i

a,z
and if w, = t ei~ put

Q(z) _ -

	

q (ze -i ~) = d1 --- d2 z + - + d ZIL-1 ,

(R2
- 1)

(U
RI'

1 -

b,

	

(R2 - 1) zv,
R

	

R

S

	

1
,L-1 ti5 ,t 1q(z) --- z

	

z = b, + 11 2 z --

(3)

( 4 )

(>)

b, _ - (R2 - 1) iV,, .

	

((i)

(7)



where I d, I - - 1 (1 j u) . Note that apart from the a, each coefficient
in the above depends not only on the displayed suffix but also on 2n, the
order of the partial sum considered .

We now take the sequence {n,} such that R,,,+i > 2 (k > co) and examine
the situation for n. -_- n., in the above as k > oo . In what follows `k --> co'

integer N we obtain, from (4) and (5),
b, - - 2v 1 í (k > oo ; 1 < j

Hence it follows from (7) that
d, > 1 (k > 00 ; 1 < .~ < N)

	

(8)

To complete the proof we require the following result .

Lemma 2 . Let y (0 < y < 1) be given . Then- there is an 7] _ q (y) (0 < -q < 1)
such that any polynomial

A(z)=A, +A,zT . ..-; A n

satisfyin.y I A ; I = 1 (0 < j < n) and

IA,-1 1 <,7) (t) <,1

has all its zeros in. I z I >y .

Choose q = ?7(y) so that 0 < -q < 1 and

1

	

1 +1

	

1

1 - Y17

	

1 - Y7

	

Y17
171 + y

>

	

1- y

	

1- y

As the right hand side of (9) tends to 0 and the left hand side tends to
1

as ^7

where
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17)

í

1 + y

> 0+ such a choice is possible . Now for I z I < 1, with

1

A(z)

	

1 - z̀ + B,(z) + B2(z),

IB,(z)I

	

7)1_ 1 z 1 ~'1B2(Z)I<
1 1 z 1

(9)

will always refer to the k of 22J; . From (6) it follows that I ?r 1 I > 1 (k ---> cam)
since II = R,,k+ , -3 V/.j (Io --> oo) . Hence for each fixed j > 1, ue, --> 0 (k - an-)

since
00

2v(z) _ y_
1

aw,'

satisfies

	

111'(z) I < 1 ( I z I < 1) . Therefore given any fixed positive
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Hence if,-, ( I z I < 1) is a zero of A(z) we find that

As

N-1

this implies that

u

	

i+u
1- ~ zl~

	

zIz1~
1+ Z

	

1+ ~z~

	

1-~z~

The left hand side of (10) decreases and the right hand side increases as
.1 increases and so, if I z

	

y then

u

	

u_~

	

u
Y~

	

+
Y~

1-+ y

	

1-y

	

1 _ y

,But, this inequality contradicts (9) which defines -q in terms of y. Consequently
and - zero of .-1 (z) must satisfy I z I > y. This proves the lemma .

Take y of Lemma 2 to be

From (8) there is an

Proceedings o f the Royal Irish Academy .

I1

	

1

and ri g, to be a corresponding value of 7) . Let

[1]-No

integer Ic„ such that

Id;-1 I ~
I- q . (k

BY Lemma '2 all the zeros of Q(z) lie in

for b"

	

Hence., from the definition of Q (z) in (7), all the zeros of b'„,,_ i (z)

lie in

However, this contradicts the result that p(g) ? -\/Z which has already been
established. Consequently p(y) > -\/Z and Theorem 1 is proved .

3 . Thenre?7a 2 .

1 - 1z 1`	1	z IN

I'

1 - Iz

> h"o ; 1 ~~- J ~~- NO) •

1

Ú2

- u
~z1 <2 1 -!- -1 ~

	

2
=	 ti~Z .

~/)

	

1 ,-
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In order to prove Theorem 2 one has to show that there is an absolute
constant c, > 0 such that for any f e we have p(f) < 2 - c . We shall in
fact only prove the weaker result that for any f e we have p(f) < 2 . We
have adopted this approach since it will be clear how our proof of the weaker
result can be modified to give the stronger result . At the same time « e shall
avoid a number of rather complicated, but nevertheless straightforward,
technical difficulties that such a modification would entail .

We assume that there is an

a0

f(z) - ' an, zn (I z I < 1 )
0

belonging to

	

for which p(f) > 2 and show that, this leads to a contradiction .

Lemma 3. Ij'

and so

10
,f (z) - ~; a n zn ( I z I < i )

o

belongs to ' then there is an increasing infinite sequence of integers depending
on f, which we denote by o, such that

lim sup
v.

	

~
onEa

W

f(z) _

	

an zn ( I z 1 < f)
o

i

max

	

I av l z
v

	

n i a n

a, 1l° C 1 a 7, 1 ln (0 --, v Gn)

av I l_
aa-~ G l (o

	

v G n) .

Since fe it follows that for any t > 1, the sequence { I a,,, I lnI is
unbounded. Hence there is an increasing infinite sequence of integers n
such that

From this result it is clear that a sequence o for which Lemma 3 is trice can
be constructed .

Lemana 4 . Suppose that
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belongs to iF and saóis fies p(f) > 2 . Zf u is any sequence for which Lernnaa 3 is
true theca, for any fixed positive integer k we have

Corollary . Under the conditions of Lenama 4, if a* is the sequence of integers n
such that n + 1 E v, then

assuming that n is large enongh for ~n to be well defined . Then

and so, with A n = I Sn I

Suppose now that n E a and that

Then

liiIi

	

I a n -y,
I -

1
n- m
ne.

	

I an

Let ~, be a zero of largest modulus of

lim sup

	

max

	

av 1 -1 1 = 1n- ao
nEQ*

	

0 < v

	

n I a, I

n-1
n
=

	

v
an

	

a v n
0

n-1
I csn ( 1 n ~ ~

	

~ a~ I ~ „°

	

( 1 . l)
0

max

	

1 (1, 1 n1

	

- l
v !

	

n .o

	

nlcin I

n-1

	

n-n

	

l 1 - (lnhn) n1~ ~

	

n

v-o ~~

	

Á n 1 - ln~~n

As n

	

oo through Q we have lim sup In = 1 and lim inf an

	

2 so that.

1 G lim inf

	

1
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Hence it follows that lim sup An < 2 as n > oo through cr . Consequently

lim An = 2 .
n- Go

n-

For any fixed positive integer k and is > k nuy) it follows from (11) and
(12) that

~ 1,)n-'-

	

+ j i aá),; i An-k - 1 )k~

An

	

n.

	

n,

d n 1- (dn/A,)n _L lJ I a,,- ) , I An-A, _ /d n, l,
. 1

Yn

	

1 - 1n/An

	

V I a n I

	

An/
/

Letting ii -

	

through or we obtain, using (13),

1 G 1+

	

lim inf i an-k i- 1
k

	

an

so that

lim inf I an-k I
n_m

	

1 .
W-

	

I an I -

From this and the definition of the sequence u the result of Lemma 4 follows .
The corollary is an immediate consequence of Lemmas 3 and 4 .

Le)mna 5. Under the eoncdition8 of Lemma 4 we have

an- )` _ - G~ -0n (as )i > oo through o')
an

where, i)a the previous notation, ?k n = arg ~,, .
We assume that k > 1 and that we have proved that as >r > oo through a

then

(13)

From

an,"
1

_
ei°~n ( 1

an

n- )L- 1
an nn + . . . + an-, Snn-k - -

	

a, Sn
o

it follows that, using (12) and An = I ~n I ,

+1

	

a"-1

	

+ . . . - 1-
Ibn

-)`

	

k I

	

n-kI-1
1 n \

n

	

I
an

	

an

	

0

	

AAn

_
\d

n )k+ 1 1 -	 (d n/Ajn-h.

A n 1 - in/An
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Hence

By the induction hypothesis and (13) we obtain

him sup I l -1- 1

	

	1

	

1 a_,
e-ikon I

	

1ny~
11E0

	

1

	

2 22

	

2k-1

	

2k an.

	

2k

Moccediii s of the Royal Iiish Academy .

lim sup I

	

a n .-,

	

-i
n - W

	

I 1

	

- ~,
n-

	

an

hill sup I 1

	

1 an-k e-ücd, n I <- 1*
n-

	

12k-1-~_ 2k an

	

I

	

21,

1.

	

1 1 lim sup Re Ca'n-k e --ik~n

	

1
2k-'

	

2k n--

	

an

	

2k
n-

Thin completes the proof of the lemma apart from showing the result to be
true for k, = 1 so that the induction argument is valid . It is clear that this
can be done by taking k = 1 in the above discussion .

The result of Leunna 5 is valid when p(f) 2 and it -~ co through any
sequence Q for 1` hick Lemma 3 is satisfied . By the corollary to Lemma 4 we
see that Leunna r is also true vN,hen the sequence or is replaced by Q* . Hence
if p(f)

	

2, then

iIn-l-k
an-,

him

	

( a'" ee -ikon'sup Re \-
1t- 01

	

annca

From the above and Lemma 4 it follows that

an-Te

	

eik~n (n --> ()0 ; n E a) .
an

-41 - (tn-x ~n-k

	

I

	

1
an

	

`)k

- _ eikOn-1
OI

	

00 ; '11 E Q) .

	

(14)

Fro a (14) and Lemma 5 it follows that as ti --> oo through a, then

Hence as it y oo through o, then
e0n

	

_ CiOn-1, e2ilkn

	

_ gi2Gn-1

an-2
ei~n (111_2

	

ei~n-1

a n-,

an-3 " ei20n

a n-,

an-3

	

- e i20n-l .

La,-, an-1
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But clearly these two asymptotic results are mutually incompatible and so
we have arrived at a contradiction . Therefore the assumption which led to
this contradiction, viz . p(f) --= 2, is false so that p(f) < 2 .
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