
holds if only w(n) tends to infinity with n arbitrarily slowly and we expressed the
conjecture that log O(P) shows a Gaussian distribution. In this paper we are going
to prove essentially this conjecture . This proof rests heavily on the inequality (14 . 4)
of P. l, which we are going to expose detailed in 2 ; otherwise this paper can be
read independently of P.I (and also from P . 11) .

More exactly, we are going to prove the following

THEOREM . Denoting by K(n, x) the number of P's in

3
log O (P) - z log e n+ x loge n

(1 . I)

	

lim K(n, a)

	

e-3-Az d~
n!

the relation

Adta Mathernatica Academiae Scientiarum Hangaricae
Tomis 18 (3-4), 1967, pp . 309-320.

ON SOME PROBLEMS
OF A STATISTICAL GROUP-THEORY . III

By
P. ERDŐS and P. TURAN (Budapest), members of the Academy

1 . Let S,, be the symmetric group of n letters, P a generic element of it and
O(P) its order (as group-element) . As E. LANDAU proved* denoting by G(n) the
maximum of O(P) for PE S„ the relation

log G(n)

	

1lim -	 =
n~`° /nlogn

holds. In our first paper in this series** we proved that for almost all P's (i .e . with
exception of o(n!) P's) the much stronger inequality

3log O(P)-i logz 111 <w(n) logz n

holds, uniformly for -x o x`xo , x o being an arbitrarily large positive number .***

* See his ffandhich der Lehre von cter Verteiling der Primzahlen, (1909), Bd . I . p . 222.
** Zeitschr . f. Wahrscheinlichkeitstheorie and verve . Gebiele, 4 (1965), pp . 175-186 . Quoted

later as P . 1 .
*** As A . RÉNYI remarked the relation (1 . 1) can be written in the more elegant form

log O(P)-

	

log, //

	

y

	

v2
Prob

	

? -- -

	

y - - I

	

f e 2 dv.
_l

	

3

	

}~2nn

	

-~
v
-
3

log~

S„ satisfying the inequality
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3 1 0 P. ERDŐS AND P . TURÁN

Our proof is a direct one and rather long ; but a first proof can be as long as
it wants to be . It would be however of interest to deduce it from the general principles
of probability theory. Obviously our proofs could be modified so that they could
replace (l . 1) by an explicit inequality, even with a main-term plus an explicit error-
term . As to this we shall not enter into details .

2. The different cycle-lengths in the canonical cycle-decomposition of P will
be denoted by
(2 . 1)

	

(l 01, -:n2 < . . . <nk

	

k=k(P)

and their multiplicity by in,, in,, . . ., in, ( =1), respectively, so that

(2.2)

	

ml n1+ . . .+mknk=n .

Then the crucial inequality (14. 4) from P. I asserts that for all but o(n!) P's the
inequality

(2.3)

	

exp (-3 log n(log log n)4) - O(P)

	

1
n, n2 . . . nk

holds .
Also here we shall use the fact, known to Cauchy, that fixing the nv and in,

numbers with (2 . 2) as above, the number of P's in S„ having n7,, cycles of length
n, (v=1, 2, . . ., k) in the canonical cycle-decomposition is

(2.4)
n!

nz,! M2! . . . Mk! nlln-2 nkk

and also an easy consequence of it, namely that

(2 .5)
1 = 1,

k=1 m„ n„ Ml! M2! . . . Mk! n- . . .nkk

where the summation is extended to all systems satisfying (2 . 1)-(2 . 2) .
In what follows c will denote positive constant, not necessarily the same in

different occurences, which may depend at most on to (in (4 . 6)) . If for IzI < 1

we shall use the notation
(2.6)
if and only if
(2 . 7)

f (z) _

	

a, z
v=o

g(z) _

	

b,,z

	

bv -- 0
V=o

f(z)«g(z)

Ian1-bn

	

(n=0, 1, 2, . . . ) .

Some positive numerical constants will be denoted by d, , d2, . . . .
use the 0-sign which refers to n --> -, depending perhaps on to .

. ~ . nr alatbeutalint Academiae Seicutiariun Hmzgariwc iS, 1967
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ON SOME PROBLEMS OF A STATISTICAL GROUP-THEORY . III

3. We shall need two simple lemmata .

LEMMA 1 . We have

log an
zr" - - 1 loge 1 I- z < c log 1

i z

1 ,or the simple proof we remark only that in = 2
n7

	

I
coeffs of z"' in loge - 1 -- =

	

1 -

	

_ 2

	

1 = 2-log m + O -~
1--z

	

v=

	

fit -v)

	

m = v

	

an

	

m

LEMMA 11 . We have

loge an
z171 - 1 log3

1 -
`<

	

logm log log III Z n,

7n=2

	

na

	

3

	

1-z

	

,n-2

	

m

Among the several possibilities to prove it, possibly the shortest one is based
on complex integration (and part of which can be used later too) . Obviously

(3 . 1)

	

J,n der coeffsofZ'"in log , l 1

	

- 1

	

„7-l log 3 1- -dz
2rci (1)

	

1--z

where Z encircles the origin in jzj 1 . Let L be the loop along the segment l -z

	

- .
Trivial estimations lead to

(3 .2)

	

J- 1 f Z-,-i log 3 -1--dz .
'n - 2ni

(L)

	

1- z

On the upper part of the cut

(3 . 3)

on the lower one

(3.4)

1

	

1
log -1-_ Z

	

log --1 + iar,

log

	

1

	

1 -1.n
1 -z i log r- 1

with the positive value o_` the logarithm . Routine-estimation gives then

(3 . 5) J,,, - 1 Jn, ~ _

-
3 loge

r 1 1 -
7 2

J

	

rn,+1

I

2

dr = - - + 3

	

(1 ~- s) - n7-1 log 2 -- dx .
711

	

-

o

As to the remaining integral this is

loin - ' 109111f

	

(1

	

loge
x dv

j m loge 101ao m
0

	

g

j i - I 1 + 10
log na 1- I'll

	

loge in

	

L log m log log an

l l

	

m J J

	

m - _

	

an
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logn?and - apart from O log
m log

( - -

		

- - the same upper bound can analogously bem
obtained . These prove the lemma .

4. Now we can turn to the proof of our theorem .
First step . Let x be real and

def
~

	

~	 1	
(4.1)

	

F" (
x

)

	

n

	

11, m l ! m 2 ! . . . mk ! n'1'In2'
2 . . .n'k'k

where the summation is extended to all (m,, nj-systems with

(4.2)

	

(1 --)n 1 < 112 < . . . < n k ,

(4.3)

	

m,,' 1,
k

(4.4)

	

Zin, n, = n,
v=1

(4 . 5)

	

n 1n 2 . . .nk =exp (1 loge n+x log
3
e n} .

This is an increasing function with F„(--)=0 and owing to (2 . 5)

F„( + -) = 1 . Let us consider the characteristic function

(4.6)

	

(P" (t) = f ei", dF (x)

	

(- to '_ t ' to) .

This gives for all real is at once
(4.7)

To get an alternative form of (p„(t) we use the form (4. 1) of F„(x) . This gives

k=l

(4 .9)

we have

(4 . 10)

P. GRDŐS AND P . TURÁN

1

	

-- ._ •-

	

-1

	

- •ex

	

it
m 1 ! m 2 ! . . . Mk! nl' n2'z . . .nkk

	

p
log n'-

1
2 log e n

also

log2 n

where the summation is extended to all (mv , n,,)-systems with (4 . 2)-(4. 3)-(4 . 4) .

Hence putting

(4.8)

def
9 11

(f)
k=1 m„

t

logz n

n„

Acla A1n.Genrrttua Aatdenriae Scienlrarum Hun.ga cae ni, 1967

n 1 n2 . . .n k s

m t ! . . .ink! n'~ n2 . . .n'kk '

rP„(t) = exp
(_2

Vlogn 9„ (i) .



n

	

l

	

n2

	

nr

	

l

= 1 + 2;

	

(n, n 2 . . . n k )1 S (2 ri 1, - 1 1 (e 112 - I ) . . . (e 11j` - 1 1

The I'I' factor can be written as

since for jzj -< I
zI

	

I
%% exp

	

-

we get here

D(z, T) - I 11 {I+ (Pr-1) I-e
_

I )I -I - Z I=2

Since the factors belonging to l=n+ I obviously do not contribute to the coefficient
of z'1 in D(z, T) we obtain the required representation of cpn (t),

J-2
it

	

l

	

1

	

l~
(5 .2) (p n (t)=exp}~logn} •coeffsofz"in~._ z ~ 1-{-(1`r-1) 1-e ' J-

111

	

1=2

=exp-
rt

)/log n •coeffsofz"in - -'1

	

1-e r~)} .
2

	

I -z r=2

(6.2)

(6.3)

(6.4)

(6 . 5)

ON SOME PROBLEMS OF A STATISTICAL GROUP-THEORY . III

5. Next we try to find a suitable representation for
Second step . We form for ~zj < I the generating function

(5.1)

	

D (z, T) - I +

	

(Pn (T) Z" .
n=1

Putting n=rn I In,{-...+niknk in the expression of cp„(i) in (4 . 9) we obtain

1 m1

	

Znk mr:
ir

	

1

	

1
D (z, T) = 1

	

(n , nz . . . nk)

	

~z
n

k=1 nl112 . . .nk

	

m

	

.,n 111 ,

	

n,

	

Mk ,

	

nk

r

	

1

	

,

{1+(hr-1)(1-e I)}er~

= ÍI{I+1`~(e r

6. Next we simplify the expression
r,

(6 .1)

	

Dn(z,T)dee

	

1091l+(hr-1) 1-e

	

} .
r=z

Third step . Obviously Dn (z, T) can be written as the sum of the following four
functions

!r, (Z)
=

	

iT
log/

	

T 2 log2 !~

,=2

	

l

	

2

	

Z
" 11r-1

	

log l

	

T2 ]og21

	

,h,(-7) _ ~ 1 -- -IT Z--+2-
l

n

	

_ ~ `r

	

z I
1 21 3 (Z) _

	

(li ' -- 1) 1- e.1
l=2 l

	

'

(-I)j-1 (hr 1)'(1-c rf
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Owing to (4. 8) we get

4( )

	

_ . .~~

	

1
lt z «

	

2t°

	

e i
l=2 i=2 j~logn

P . ERDŐS AND P. TURÁN

1
l-

	

l- 1+
2to

	

zi
y log 11

2to

(2t o )°

	

hlog n
G (n1 + 1)

	

-
log n l-2 m=o

	

1

so that for n >exp (10 4to) and v-4

(6.5)

	

~coeffs of zv in h4(z)l'
(2,

0 ) -

	

m+ 1) ~ 1 2
Iogn (m } 2 l=v

l_ 2,m_o

(2to)
log n

`° Z 21

(2í0) z

	

V 1,02 , derZ
log n l

	

l ( Z )
- l

v2-1=-2

112 (Z) « c

A,la 11~u/~cnmtiut A-demiae Sricnlimulrz IJauga~iua : 1Y, 1y67

v

	

v

2t,,

l= z y,log n

	

Z

i 1l )i =
2 i-2 ( 1/1g11 l 1?Z=

1
12

	

1-(1

	

2to I ZI 2

l

	

y log n l

Since the possible divisors of v between v/4 and v/2 are v/3 and v/2, we get for

(6.6)

	

(210)2 ~2 2,04 2 + 3 (3,06
3 +log n

+

	

z

	

v ~ 1,02 l +

	

c

V

	

l

	

vz log n
=,- lologv

	

- iölogv ~~ - -4

This holds for v - c, too. As to h 3(z) we have

h3 (z)
«

	

2to
-- e l -- 1-

1

	

21,

	

(Zlf
l=2 y'log lt

	

l

	

ylogn m=2 l

and hence for v _ 4

(6.7)

	

jcoeffs of z° 1" h3 (Z) 1

	

2t ll

	

nt "'

	

c

y'logn

	

„ t 1 v

	

v

	

v2 rlogn
z -"' - i

as before. As to h 2 (z) we have owing to (4 . 8)

Z[(m+2)

v>c



i .e. for v 2

(6.8)

	

coeffs of z" in h 2 (z) j <	e 3
v logz n

Collecting all these, (6 . 1) gives

(6.9)

	

D„ (z, ,r) = Iz

with

(6. 10)

Remarking that

(7. 1)

1

2
coeffs z" in

1
1

-- exp i
1'

log 1
z1

z

z

	

{

	

-1
- --

•

	

coeffs of z" in 1 1
z
exp i

ON SOME PROBLEMS OF A STATISTICAL GROUP-THEORY . III

a(1)I ` e

	

1

	

1

v2 ~ n v log' n

coeffs of z" in 1 --z exp {D" (z, i)} _

1 2

(MO =

E,-- z1-}-

	

(1) ,V
=2

	

1

- log' 1 1+
2

	 1 z

the representation (5 . 2) assumes the form

(6.11)

	

(p"(t)=exp --2 log n7

exp [ 2 ~log n

i=2

1=2

log l zl

	

2 1 - 1og21
z 1 } exp J, t a,i) z°~ .

111

	

v=2

315

7. Next we want to have in the „essential" factor of (6 . 11) elementary functions
only. This is performed by the

Fourth step . Here we shall use Lemmata I and It. Using (4 .8) this gives at
once the modified representation of

•

	

coeffs of z" in - -
1

-- exp --
it

log2 1 -- - (- - log3 -
1 -z

	

2 loge n g 1--z 6 1og3 11

	

1 -z

where again for 1, -2

(7 2)

	

áa(2)

	

1

	

1

	

logv log log v

v'ylog n vloge n

	

vlog3 n

8. If we want to hope that the factor exp ~~ ay 2)z° will not matter in (7 . 1)
v-=2

we have to know that putting

v= 2
(8.1)

	

exp ~

	

v2) z° }
aer 1-1- ~ ay3) z°

v=2

exp
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the av 3 >-coefficients are sufficiently small . This is done by the
Fifth step . By (7. 2) we have - meaning the majoration only for v-_ n -

1+

	

a(3)-v«ex cilo 3n.l0	 1

	

lo zn

	

zµ+I }(8 .2)

	

p

	

g

	

g-1-z+ g-- '-1
fi(h+1)

3

clog zn

(1

		

exp{Clog n((1-z)log(I-z)+z))
-z

~1+

	

~ 4) z"} {1+

	

a(s) z°} .~L

	

l

P . ERDŐS AND P. TURÁN

Obviously we have - with clog -2 n=rio - for µ-n

1aµ411 = q0 1 + 170

	

1 + - . . . ] +-
h
° - - < tl o t1zij~- i

	

c
µ

	

1

	

2

	

µ- 1

	

µ loge 11 .

As to the a,(,' ) - coefficients we have - with c log-2 n=ri i - for v--2

(8 . 3)

and hence

a;, s ) =
1

	

z- ° - ~
2ni

	

expq, {(1-z) log (1-z)+z} dz =

2rziv j ,

i'

z -''log- 1 ~-
z
-expq,{(1-z) log (1-z)+z}dz=

-

III

	

J

	

`'+i --1 -+-n,log2 1 --} exprf i {(I-z)log(I-z)+z}dz
2niv(v-1)

	

Z-

	

-z

	

I-z
jzj~l- 1 -

a~sl	 c -

	

dzl

	

clog (V + 1)V 2 flogn f 1 1-z j

	

v2 Vlogn

From this and (8 . 3) we get for 1 v ~ n

la 11 l =
a ;`) + a,5) +

1

	

1

V logz n v2 riog n log2

A<!a iV«~lrgiatica Ac,W,niae Scicuiionun llun,(rnirar ~,Y, i96-,,

1

1

	

1

	

1

	

1

	

1
V 10g2 n

	

v2 ) logn

	

log2 n ~_v

	

2-<J
--}, -i

	

v logz n

	

v2 j log n



(8 .4)

with

(8 .5)

where for 1 - v - n

(8.6)

(9.3)

on the lower one

ON SOME PROBLEMS OF A STATISTICAL GROUP-THEORY . III

Hence the representation (7 . 1)-(7. 2) takes the form

cp"(t)= exp
{ 2
-i ~log n} coeffsz"inh(z)j1+

	

a (3) z°
111

	

l

	

V=I

1

	

1 2

	

3

	

1
101 -z

	

2logz n

	

61og3 n g 1-z

la (3)
< C

	

l 3--+-

	

1
v logz n

	

v z }/log n

h(z) dee -1 - ex p j -- it - - logz

(9.2)

	

< c -2 - 111 .

9. Now we turn to the study of the coefficients e„, of the Mac-Laurin series
of h(z) for m--n . This will be based on the integral-representation

(9 . 1)

	

e= 1 - fz- 'Pl- lh(z)dz

27rí
(Lil

where L, means the following path . Cutting the plane along the segment I + Im

it comes from z= 2 till z = 1 + 1 along the lower part of the cut, then
m

encircles z = 1 by the circle ~z - 1 = 1 clockwise, it goes from z =1 -1- 1 to z = 2

M

	

m
along the upper part of the cut and is finished by the arc of the circle ~zj =2 in the
cut-plane. The contribution of the circle jz~ =2 is evidently absolutely

We shall investigate separately the contributions of the segments and the circle

Iz -1 I = 1 , respectively .
m

Sixth st(,p . Using (3 . 3) and (3 . 4) h(z) is on the upper slit

1

	

.
it

log r-1 +t7E

z

	

tz

	

1

	

13

exp 2

	

log3 n

	

6 log3 n
log

r- 1 { In

1

	

2

9.4

	

ex

	

it

	

log
r-

j--i>t

	

tz

	

log
/'

I
p 2

	

log 11

	

6 log3 n

	

g r-1

317

Ada iL4atbemalica Academiae Scienliarum Huirgaricae i8, 1967



3 1 8

(9.5)

We write the expression in (9 . 3) as

it log' r-
1

I

	

t z
log3

	

I
r- 1

exp

	

3	32

	

logz n

	

6

	

l og 3

fis to this

and further

P . ERDŐS AND P. TURÁN

and (9 . 4) in the form

1

	

int z logz 1

	

z n •3r-1

	

r-1

	

t

	

i
	 exp 3 +

og2 n

	

2log 3 it

	

6 log 3 n2

logz

	

1

	

log

	

1
it

	

r- 1

	

t z

	

r- 1
exp - •

	

32

	

log2 n

	

6

	

log 3 r7

7T1 log

	

1

	

int'- logz -- 1

	

tz 31- 1

	

1-

	

n l
exp

	

2 log3 n +

	

2 log 3 n

	

6 log 3 11

The difference of these is for 1 1- - r

	

2, in __ n absolutely
111

and thus the contribution of the segment integrals is absolutely

last integral, we have

r+1

z

1+z

c
y'logn

dl •
1-ip+ 1 (1•- 1)

1+z tog "'
M

dr
r '~'+ t (r- 1)

C
C

rlog lt

z

C

	

Z
dr

	

logm
m-

	

1 r-1

	

in z
I+ --

m

m

hence the contribution of the segments is absolutely

(9.6)

	

c log log n< -
Vlog n
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1
n

. t

	

71z t z log r-1
2 logi n

	

2 loo n

1
7T z it

	

n z
t
z log

r- 1

2log3 n

	

2 log' n

dr
r• -- 1

< c log log It?,



and hence for m ti

Since

10. Seventh step . We consider the integral on Iz-l I = 1 . This is
311

2
2rzexp

	

it3
(loaIII+i(7r-áp))2-

	

1
- (log m+i(n-(p))3

1

	

2log'2 11

	

6 log 3 11

27t j

	

1

	

m+I

u

	

1 -} - e"i1
711

zrz
1

ex

	

it log2 ng

	

t2 log177

	

2
1+0

1
27E

	

I

	

lOge 11

	

61og 3 n

	

,;

	

I' log n

•

	

~ 1-I- O exp ( -et<P) (hp.
m

2rz
1

27r
f exp (--e'<P) (1(p = 1 +

we get for this integral the value

This and (9.6) give for n1-it

it log2 1,1

	

t 2 log3 111

	

1

	

log log n
(10. 2)

	

e,,, = exp

	

a

	

+O~ ~ -~ O
2 log~ n

	

6 log 3 n

	

ng

	

1 , 10g11

e= ex
it rlog 1 _t2 + 0 log log 11

p

	

2

	

6 y log n
and for m-n the inequality
(10.4)

	

j em 1-- e .

11 . The next (short) eigtht step is the determination of (p„ (t) based on the repre-
sentation (8 . 4) and on the inequalities (8 . 6), (10. 3) and (10. 4) . (8 . 4) gives

(10.3)

i .e . for

(10.5)

5

What we actually need is the case m=n
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1
2rz

(_
1)v
f c'°~o dtp = 1

gt log2 ng

	

/ 2 log3 m

	

~

	

1

log~ n

	

~ 1
ex p

	

O l

	

-}--O
p 1 2

	

6 log3 n

	

t }%log n

	

171

~ ( ) _ ~ + ~,

	

t3j -~ ar31 J eXp ~=it~logn
n t

	

en

	

e,,-,,,a,,,

	

n

	

2m = 1

--I,- t - t o
-6 t 2 c log log n

(Pn(t) -- e
f logn

dcp
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The ninth step is the application of a classical theorem of the calculus of
probability. This gives for the distribution-ftnnction F„(r) in (4. 1) the relation

(10.6)

	

11 m F„ (x) _
11-

The last tenth step will be the application of our theorem exposed in (2 . 3) .
We have to compare the distribution K(n, :v) in our theorem with fI,(x) and F(.v)
in (10. 6), respectively . (2. 3) gives at once for all n's and real Vs

K(n, v) - n! F„( .v)
i .e . for

3

	

3- % Zf

	

dde -2- dl --= F(x) .

K(n, Y)
(10.7)

	

lim

	

= F(x).

On the other hand, fixing v and an arbitrarily small r ; >0 we have for n >i2 s, x)
the inequality

exp j-2 logI n+ .v log?- n +3 log n (log log n) 4 -- exp
-2
log' n+( .v+ .) loge n

i .e . usin

g

g again (? . 3)
n! (1 -F;GV-1i:))-r:n!+(n!-K(n, .v)) .

Hence for n
K(n, :v)

(10. K)

	

lira

	

' E } F(a { a) .
111-

	

n!

Since r : was arbitrarily small positive, the theorem is proved .

i

(Received 8 July 1966)
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