Acta Mathematica Academiae Scientiarum Hungaricae
Tomus 18 (3—4), 1967, pp. 309—320,

ON SOME PROBLEMS
OF A STATISTICAL GROUP-THEORY. III

By
P. ERDOS and P. TURAN (Budapest), members of the Academy

1. Let S, be the symmetric group of n letters, P a generic element of it and
O(P) its order (as group-clement). As E. LANDAU proved® denoting by G(n) the
maximum of O(P) for P¢ S, the relation

n—co R]Ogﬂ

holds. In our first paper in this series** we proved that for almost all P’s (i.e. with
exception of o(n!) P’s) the much stronger inequality

[log O(P)—1 log? n|=w(n) log% n

holds if only w(n) tends to infinity with » arbitrarily slowly and we expressed the
conjecture that log O(P) shows a Gaussian distribution. In this paper we are going
to prove essentially this conjecture. This proof rests heavily on the inequality (14. 4)
of P. I, which we are going to expose detailed in 2; otherwise this paper can be
read independently of P.I (and also from P. II).

More exactly, we are going to prove the following

THEOREM. Denoting by K(n, x) the mumber of P's in S, satisfying the inequality

log O(P)=1log> n+x Iog’% n
the relation

A o v 3
(1.1 lim X029 _ |/ 2 [t a

n-vea ! f 2m

holds, uniformly for — x,=x=x,, X, being an arbitrarily large positive number ***%

* See his Handbuch der Lehre von der Verteilung der Primzahlen, (1909), Bd. I. p. 222.
** Zeitschr. f. Wahrscheinlichkeitstheorie und verw. Gebiete, 4 (1965), pp. 175—186. Quoted
later as P. L.
*#*#% As A. REnyl remarked the relation (1, 1) can be written in the more elegant form

1
log O(P)— = log? n i y _o?
Prob "3 =y = I e %
——log? n Var o,
3
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310 P. ERDOS AND P, TURAN

Our proof is a direct one and rather long; but a first proof can be as long as
it wants to be. It would be however of interest to deduce it from the general principles
of probability theory. Obviously our proofs could be modified so that they could
replace (1. 1) by an explicit inequality, even with a main-term plus an explicit error-
term. As to this we shall not enter into details.

2. The different cycle-lengths in the canonical cycle-decomposition of P will
be denoted by
(2. 1) (1= <ny=...<n, k=k(P)

and their multiplicity by mi,, m,, ..., m, (=1), respectively, so that

(2.2) my .. =n,

Then the crucial inequality (14. 4) from P. T asserts that for all but o(n!) P’s the
inequality

o _,

i N
(2.3) exp (—3 log n(log log n)*) = T

holds.

Also here we shall use the fact, known to Cauchy, that fixing the n, and m,
numbers with (2. 2) as above, the number of P’s in S, having m, cycles of length
n, (v=1,2, ..., k) in the canonical cycle-decomposition is

n!
my\my! . my) RPn L

2.4)

and also an easy consequence of it, namely that

@.5) S35 =1

S mtmy! . om ] n L
where the summation is extended to all systems satisfying (2. 1)—(2. 2).

In what follows ¢ will denote positive constant, not necessarily the same in
different occurences, which may depend at most on #, (in (4. 6)). If for |z =1

@)= 2 a2,

g@) = 2 bz, b,=0
v=0

we shall use the notation

(2.6) J(z2)=g(2)

if and only if

2.7) la,| =b, n=0,1,2,..).

Some positive numerical constants will be denoted by d,, d,, ... . Sometimes we

use the O-sign which refers to n-» =, depending perhaps on #.
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3. We shall need two simple lemmata.

Lemma 1. We have
s logm 1., 1 1
,,,Z;—m z ——jlog T «\<clogl_z

For the simple proof we remark only that m=2

1 = 1 3 % g log i 1
My 2 — — = = s — s
coehivplz™inlog 11—z ‘é' v(m—v) my=y v m +4 m
Lemma I1. We have
o logm . 1. . 1 s logmloglogm
,,‘,;’; m - 3 log 1—z gc,"._z; CRE L

Among the several possibilities to prove it, possibly the shortest one is based
on complex integration (and part of which can be used later too). Obviously

defl . e v l I e l
(3.1) J, == coelfs of z" in log? T (;‘,I,n og? F== dz
where / encircles the origin in |z] = I. Let L be the loop along the segment | =z <,
Trivial estimations lead to
. 1 1
3.2 e - gl 4 - .
(3.2) ho=m [ log? [~ dz

(&
On the upper part of the cut

. | | :
(3.3) Iog-l--_z - lag;_l + i,
on the lower one '
| |
! 65— 3
(3.4) ogy—; ~log —y—in

with the positive value of the logarithm. Routine-estimation gives then

€% el I ==}
3 log” —q 0 -2 . |

(3.5} J, = [, :f pmti dr = —?}!--1—3] (1+x)~m!log? = dx.

1 o
As to the remaining integral this is

10m=logm | 1 -
= Loyy=m=1 2 P T, 2 .j .
Gf (14+x)7"=1log? - dx = _log [IOiogm]

_{l _[[ . ]Oﬂ_m]_"'l - log*m . log m log log m
m m m
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312 P. ERDOS AND P. TURAN

|
and — apart from O [log = ]:;g 0%__.'”] — the same upper bound can analogously be

obtained. These prove the lemma.

4. Now we can turn to the proof of our theorem.
First step. Let x be real and

1
4.1) F,(x JMZZ’ 2 - TTPTTRTA

k=1 my ny ”3 'H?Z }nk! HTI ng‘u

where the summation is extended to all (m,, n,)-systems with

(4 2) (1%)}.‘1{1124“,<H“
(4.3) m,=1,
k
(4.4) 2, mn, = n,
v=1
4.5) nny...=exp {4 log? n+x log? n).

This is an increasing function with F,(—=)=0 and owing to (2. 5) also
F(+=)=1, Let us consider the characteristic function

o

(4. 6) outy = [ ewdF,(x) (1o =1 = 10).

—-oa

This gives for all real ’s at once
(4.7) lelr)[=1.

To get an alternative form of ¢,(t) we use the form (4. 1) of F,(x). This gives

Z log n, ]og* n

1 v=
=333, o L,

i=1 e m,y 'm2 o) n’{‘ln‘;’ Iog-In
where the summation is extended to all (m,, n)-systems with (4. 2)—(4. 3)—(4. 4).
Hence putting

t

(4. 8) e =T
logzn
i ook S (nynym ) )
(49) Dy (‘E) kgl’ .;f;.:: ﬂZ.' m, | I"k' Hm,”mz ”nﬂlk 2
we have
T
(4. 10) @.(1) = exp [— '2 Vlogn] @: (0).
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5. Next we try to find a suitable representation for ¢ (7).
Second step. We form for |z| =1 the generating function

(5. 1) D(z,7) =1+ Mz;(pf,(t)z".

Putting n=m, n; +... +myn, in the expression of @;(1) in (4. 9) we obtain

o X : 5 1 [z ™ 1 [zm)™
Diz,t)=1+2 2 (mny..m)s 2 [E] 2w [”_k] =

1
k=1 mnynz..ng. Bigy sy Mk ""i'

=1+ 2‘ (nyn,.. n,.)"[a:‘:'lNIl — 1] [e'“"j — ll [ "f.-— I] = ‘é{l + It [e':;-— 1)}

The /™ factor can be written as

{1 +(=1) (1 —e"?)} o

1

Fooli) =it

since for |z| =1

we get here
cxa I_g
o= Ll o)
l—z =2

Since the factors belonging to /=n 4 | obviously do not contribute to the coefficient
of z" in D(z, 1) we obtain the required representation of ¢,(¢).

oo

1 S 1 ) L3
(5.2) cp,,(!):exp{—i Vlogn}-coeﬁ'sofz"inj_z-ﬂ T4+ l—e ! ] =

1=2
) . 1 n . __[_:[
= exp {—g l/lagn}-coeﬂ's of z"in i _”{l-f—(i”—])(lue ! ]}

—Z=2

6. Next we simplify the expression

(6.1) D,(z, :)ﬂzzmg_{l (1 -1)[1 e‘::']}.

Third step. Obviously D,(z, ) can be written as the sum of the following four
functions

: | logl < log?l]
(6.2) ﬁ,(b}-.f____)_éln T }_
- F—1 ., logl < log?/)
(6. 3) »’;E{L)_!:‘Z2 7 == |4
Ly 1
(6.4) hs(z) = Z(f”—l)[l—e "—}]_.
=
oo }J—l ) ) _I‘_[j
(6.5) mm_z _2 - (I”—]J’[l--e l ]
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314 P. ERDOS AND P. TURAN

Owing to (4.8) we get

nooes i G 3 j nooe= if 0\
fy(z) = Z' Z[ 2o ]J [pf s I]J <= _ _,[ 2."[, ] [fflnf] =

Viogn

i=2j=2 =2 j=2\ |logn z
_ @) 5 2 L LG5 ]
T logn £h1—2 fall 2o . logn £ 12 {] 1. 2ty )22
- —= z —|14+—= -
Vlogn Viegn )1
[ . 2;0 m+2
— {2!‘”)‘ Z 2 (,-n €L ]) _!J(lgﬂ_ o pllm+2)

IOgH 1=2m=0 /

so that for n=exp (10*3) and v=4

v

B (2 - [|,02]f'
6.5 coeffsof zVin iy (2)| = —— - m 1 = | =
( ) | B b ll ?¢( ) log’r (IN"ZZ}?:V{' ) !
=2, m=0
T Ji['-PZ]‘d:ef
Clogn oI\ ! 2
2::5;

Since the possible divisors of v between v/4 and v/2 are v/3 and v/2, we get for v=c¢

(6. 6) 7 _(2_"9)_2 5| 2:04 lJr3[3_*_06 3+
. Y dogan T v v
v v [1.02) s v(L02 =} -
+ eyl [ / * y = ad L vt logn'
2= 0wy Toloay =4

This holds for v=e¢, too. As to fi5(z) we have

n L] = 1 = Hym
heyw 3 2o qu_qﬁz}% ZF]
=2 Vlogn / =2 Jlogn m=2 l

and hence for v=4

: 2t "
(6.7) [coeffs of z” in i3 (2)| = — =2 i [
o Ly vi)logn

as before. As to /h,(z) we have owing to (4. §)

hy(z)<c¢ Z"’[ Py ] 2

i—2\ylogn ) 1
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ON SOME PROBLEMS OF A STATISTICAL GROUP-THEORY. III 315

ie. for v=2

(6.8) |coeffs of z¥ in A, (z)] = — c
]Og% n

Collecting all these, (6. 1) gives

‘. , log? 1
(6.9) D"(Z‘T):ftz}og]:f.__z O_g +Zatli-v
i 25
with
(6. 10) T P (N S B
i vVlogn  vlog3n

Remarking that

coeffs of 2" in ]--_]_ —exp{D,(z, 1)} =

1 < logl 2 S log? o
= coeffs z"in exp{i‘cz i % v 28 {z’-{—Z aﬁ”z“}
| —z =2 ! 2 =2 ! i=2

the representation (5. 2) assumes the form

(6.11) @,(1) = exp {—; Vlogn}-
- coeffs of z" in l_lz exp {;‘T Z’.l_of_{ z‘—i Z’ 10% / }exp {Z aum}
= 1=2 “ =12

7. Next we want to have in the . essential” factor of (6. 11) elementary functions
only. This is performed by the

Fourth step. Here we shall use Lemmata I and I, Using (4.8) this gives at
once the modified representation of

.1 . [_ FE’ V-'mg”},
a 1 it 1 ’2 1 s
. fis of z" - loe? . . 3 (2) zv
coeffs of 2" in | —— exp iz ogin e fog? ”]og | __:} exp {vzz al }
where again for v=2
(7.2) 4| = e|— L 13--+ log vloglogv)
ve l ]og n vlogin vlog? n

8. If we want to hope that the factor exp{Z r.fiz’z"} will not matter in (7.1)
v=2

we have to know that putting

8. 1) exp{ Zasnz"}ﬂﬂu 2 a2
v=2 v=2
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316 . ERDGS AND P. TURAN

the a{*'-coeflicients are sufficiently small. This is done by the
Fifth step. By (7. 2) we have — meaning the majoration only for v=n —

ozl 1 el su+1
5 (3) 2% o oy -3 2
(8.2) ]+\%a\, z <expc{log znlng1 _:+10g % 1(;:%-1)}

&

= [l _I T]C ) -exp {¢ ]og_'}n((l —z)log (1 —2)+2)} «

i Savel e Sare]

" v=1

; ; |
Obviously we have — with clog 2n=n, — for u=n

8.3 aM o [[ + ’?u] [l - JI?0] [] + Mo } = fopl—t = i .
Ga = u 1 2 p—1 2 plog? n

As to the a!¥-coeflicients we have — with qr‘lu:)g_'%r:=11r1 — for v=2

1 .
al® = o f z=v=lexpy, {(1—2)log (1—2)+z}dz =
1

|=|=|—T

??1‘ f z " log l—]-*- exp i {(1—z)log(l —z)+z}dz =

= 2miv
1
fzl=1--
¥

1 ' 1 1
= =T ]{l z+iulog? i~ }“”‘P’n{u~‘>log(1~z)+é}dﬁ

and hence
)] = e |dz| _ clog(v+1)
' v2 Vlogn [1—z| v2Vlogn
lzl=1 =

From this and (8. 3) we get for 1=v=n

v—1 |
@] = @ +al® + 2 P al;) <
,__(_{___l . 'logff+”}
viogin vYlogn log?n i=t j2(v—j)

1 1 1 7 ’ 1 1
=cl—5+— + <c +——|.
{v log2n  v?Ylogn log2n [J‘.Z:_ v Z ]} [v login  v2)logn ]
T2

2---\:_;;-\'-]
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Hence the representation (7. 1)—(7. 2) takes the form

(8.4) 0,(1) = exp i—g V-l'og_n] coeffs z" in fi(z) {I + Zaff‘z“}
v=1
with
der 1 it o, 1 3__'_.}
8.3) W=y {2 log3 n Y log? n log” 1

where for 1=v=n

(36) |a£3j|"f—(‘[' l_+ I ]

vlog3 n V2 ﬁch:r;

9. Now we turn to the study of the coefficients e, of the Mac—Laurin series
of h(z) for m=n. This will be based on the integral-representation

9. 1) € = z=m=1h(2) dz

1
2ni

(L)

where L, means the following path. Cutting the plane along the segment | +,_:1 =
=r—=-= it comes from z=2 till z=1 +i along the lower part of the cut, then

. . : 1 N 1
encircles z=1 by the circle [z— 1| = = clockwise, it goes from z=1 i to z=

along the upper part of the cut and is finished by the arc of the circle |z| =2 in the
cut-plane. The contribution of the circle |z| =2 is evidently absolutely

{9 2) —e2-m

We shall investigate separately the contributions of the segments and the circle

lz—1] = i, respectively.

Sixth step. Using (3. 3) and (3. 4) h(z) is on the upper slit

1 2
©.3) oxp | [k}g = m] £ [lo LIS ]3
) = LT, . = in
' p 2 |0g§ n 6 |0g3 n € r— |
on the lower one
[log : ':r1:]2
: — i 3
it r—1 12 | )
(9‘ 4) = €Xp E * |0g% » i 6m [i(‘lg : — .I'T[] .
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318 P. ERDOS AND P. TURAN

We write the expression in (9. 3) as

| 1 |
log? 3 242 :
IR R W il W Bt = ¥
P12 gl 6 logn  2login 2log* n
nt lo : int? log? LE
Bt F L e
sexp | — - .
2log2 n 2log*n 6 log®n
and (9. 4) in the form
log? log? - n21?log - ]
it r—1 2 r—1 n2it r—
exp |- -

1
mtlog — int? log? = :

1 1 t2ndi

-ex +- - i
g 2login 2log*n 6log* n

The difference of these is for I+$ =r = 2, m = n absolutely

¢
-
Vlogn
and thus the contribution of the segment integrals is absolutely

2
c g dr
5 SE _ MEL - ey
2 Viogn ']1 (r—Tyrm+t
l‘l'm"
As to this last integral, we have

2 2
f dr ¢ f dr ' log m
d rmtie=1), “m? Jor=1"" m
142 8 g it
m m
and further
i +21_|_):m 142 Iof'm
| dr j L cloglogm
- = og
. rerie=1) . r=l BOeTS
L4+— 14—
m m

hence the contribution of the segments is absolutely

e log logn '

©-6) Viogn
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: . 1 s 5
10. Seventh step. We consider the integral on |z — 1| = = This is

2
2% exp (logm +i(n— @)’ — ! (logm +i(z—@))*
2 Iolgi 3

I [ 6 log* n
2 , el
n ] [[_,_ ! e"*‘]

m

and hence for m=n

) __I_ﬂ iir log’m 2 log-"’m]- ’1“[1-{»-0[ 1 ]]
"2 P log? n 6log*n) g Viogn

1 ;

2n B

err-l exp(—e?)dp =1+ 2

0

Since
1 (=1)

2 y!

(*”'W‘ dp =1
we get for this integral the value

: 2 2 3 i 1
(10, 1) oxp it log m log 111}+O! : 1 }—1—0[—— .
2login  6logdn Viogn m

This and (9.6) give for m=n

it log? 1% log? | log logn
(10.2) e, = exp s ogam_ gm+0[ +0 g =—1.

2log?n  Glogin m Jlogn

What we actually need is the case m=n
T ; 2 .
(10.3) e I itylogn {__}+ 0 lug log u]
2 6 Viogn

and for m=n the inequality
(10.4) len] <c.

319

do

11. The next (short) eigtht step is the determination of ¢, () based on the repre-
sentation (8.4) and on the inequalities (8. 6), (10. 3) and (10. 4). (8. 4) gives

n—-1 Y
: o' —iryl
0.(1) = {"n + 2 ey_ma® +a,',3’} cxp{ : I; ngn}
m=1 &
te for —t,=t=1,

(10, 5) ou(0)- e—é-sz. _ cloglogn _
. Jlogn
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320 r. FRDOS AND P, TURAN; ON SOME PROBLEMS OF A STATISTICAL GROUP-THEORY, 111

The ninth step is the application of a classical theorem of the calculus of
probability. This gives for the distribution-function F,(x) in (4. 1) the relation

_ B P2
(10. 6) lim F,(x) = l = [ d ().
n—+co 7T 8.4

The last fenth step will be the application of our theorem exposed in (2. 3).
We have to compare the distribution K(n, x) in our theorem with £,(x) and F(x)
in (10. 6), respectively. (2. 3) gives at once for all #n’s and real x's

K(n, x) = nlF,(x)
ie. for n—»~

lim
oo

(10.7)

K(n, x) _ !
al = F(x).

On the other hand. fixing x and an arbitrarily small =0 we have for n=ny(e, x)
the inequality

exp jl log? n+x log? i1+ 31og n (log log n]‘*} = exp {é log? n+ (x + &) log? n}

i.e. using again (2. 3)
(1 — F(x+e&)—an!l+(n!— K(n. x)).
Hence for n— =

(10.8) lim

2 (”'r- Y) =g+ F(x+e).

Since ¢ was arbitrarily small positive, the theorem is proved.

( Received 8 July 1966)
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