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ON DECOMPOSITION OF GRAPHS

By
P . ERDŐS, member of the Academy and A . HAJNAL (Budapest)

§ 1. Introduction . Notations

We are going to use the notations introduced in our paper [1]*, § 2. A graph
~e is an ordered pair (g, G) where the elements of the sets g and G are the vertices
and the edges of n respectively. We assume that the reader is familiar to the usual
terminilogy of graph-theory. The aim of this paper is to consider two kinds of
decompositions of graphs called vertex- and edge-decompositions respectively .

DEFINITION 1 . 1 . Let S1=(g, G) be a graph and let

	

=(gt , G,), 1! <~ be a
sequence of type of graphs .

The sequence

	

, ~ - is said to be a vertex decomposition of V if the g, are
disjoint, U g, =g and

	

is the subgraph r,(g) of ~7 spanned by g, in ~0' .

The sequence

	

, - is said to be an edge-decomposition of ~1/ if g, =g for
every

	

the Gs are disjoint and U G,=G.
5<

The cardinal number 1~1 will be said the type of the decomposition, and the
graphs S will be called. the members of the decomposition in both cases .

We mention that the expression decomposition is usually used for the edge
decompositions, in some cases vertex decompositions are called colourings .

Our problems will be of the following type . Let ~J be a graph and P a property
of the graph usually expressing that w is "small" in a certain sense . Let further V
be a stronger property usually expressing that the graph having property P' is
even "smaller" . We investigate the problem if then necessarily has vertex- or
-edge-decompositions of relatively small types where the members of the decompo-
sition all have property V .

We will investigate these problems in details, when (1) and V are properties
expressing that <jP does not contain complete a-graphs . We also have results when
the properties in question are that ~ does not contain rectangles or is a tree . We are
going to discuss the different problems in different sections and we give a short
summary of the results there . We have very little information on edge-decomposition
problems. We discuss some obviously not final results- for them since we think
that some of the open problems are fundamental . Though we have been motivated
mostly by infinite graphs when starting this paper almost all the problems are relevant
for finite graphs, and there remain some interesting unsolved problems for finite
graphs too .

* These are mostly the usual notations of set theory . We mention that ordinals are introduced
so that every ordinal is the set of smaller ordinals . In some parts of the paper we consider finite
problenis and we use negative integers as well . Tn these parts we naturally do not assume that an
integer is the set of smaller integers .
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Y. ERDÓS AND A . HAJNAL

§ 2 . The decomposition problems for graphs characterized by complete subgraphs .
Further notations and definitions . Preliminaries

DEFINITION 2 . 1 . Let fl(~V) denote the least cardinal number for which the
graph

	

does not contain a complete #-graph [/3] .
We have obviously /l(W) -_2 if g 0 and (3([P]) =/3+ .

	

=2 iff g /- 0 and
has no edges . These graphs will be called independent graphs.

We remind the reader that by [1] 2. 1 a(/) denotes the cardinal ~gj .
We are going to consider the following problems involving four cardinals

a, /, J . Is it true that every graph ~N with a(P) = a, fl(S) --Q has a vertex-de-
composition or an edge-decomposition , ~ < y of type y such that (3(áy) b
holds for all members W} , ~ < y respectively?

To have a brief notation we introduce the symbols

[a, fi] -' [Y, 5], (a, I3)

	

(Y, b) .

DEFINITION 2 . 2 . [a, (3] --> [y, (5], (a, /l) - ( ,j, 6) denote that the answer to the
above problem is yes in case of vertex-decomposition or edge-decomposition res-
pectively . As usual [a, []-1• [y, (>], (a, /3)-+-(y, ó) denote the negations of the respective
statements .

Both symbols are obviously decreasing in the cardinals standing on the left
and increasing in the cardinals standing on the right .

We always assume fl, b ~-- 2 .
The following statements are trivial .
2. 3 a) For every x, (3

[a, (3]->[1, S] and (a, /3)x(1 , d)
iff (5 =[" .

b) For every a, /i [a, /i] [a, 2] and if a - w, then (a, /3) (a, 3) .
Hence the relavant cases are only a - y -2, b --fl . Note that [c4, fl] -- [7,

means that each graph In with a(f)=-a, /3(x) =/3 has chromatic number at most y,
hence in case of vertex-decom positions the case 8=2 is very important . On the
other hand, we trivially have (a, /3) t- (y, 2) if a 1, /3= 2 and y is arbitrary . Hence
for edge-decom positions the simplest relevant case is J-3 .

There is an obvious connection between the decomposition problems and the
Ramsey problems treated in the partition symbol a >(~ s) defined in [2] and rather
completely discussed in [3] .

Using our present terminology we redefine the special cases r=1, 2 of the
symbol. The rather trivial case r= I is connected with vertex-decompositions, the
case r=2 is connected with edge-decomposit ions .

DEFINITION 2 .4. The symbols

	

(r=1,2) denote that the following
statements are true .

The complete a-graph [al has no vertex-decomposition or edge-decomposition
P , ~ < y of type y satisfying /i(S,) /3, for ~ < y for r= l or r=2 respectively .

a- (/3,)y denotes the negation of the respective statements .

Al ". 1 A1,11/1
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ON DECOMPOSIHON OF GRAPHS 361

If all the /1, are equal to fl we use the notation a

	

If Z y j = y and y j
(3, equal to /3, we use the notation

	

j<i

a-~ . . ., (Íl i _ i ) ., ._ 1 ),
or

In case some y j is l we omit it . As a corollary of the results of [2] (see Theorem
39) corresponding to every sequence (/3,), < , for every r (r =1, 2) and for every
y there is an a for which

	

holds .
Let a((34 , y, r) denote the least a of this kind . This function is said to be the

generalized Ramsey function . We will use for it the same obvious abbreviations
as for the corresponding symbols .

As an immediate consequence of the definitions we have
2. 5 . Assume a < fl, y , 6 --2 . Then

[a, a] -- [y, s] and (a, /l) -(y, d)
hold iff a < a(8, y, r) for r =1 and r = 2 respectively .

The if part holds for every a in both cases .
2. 5 shows that we get new problems only in case a /~ .
As an easy consequence of theorems of [2] and [3] we have
2. 6. A) a

	

holds iff [3 < a and y < a or /3 = a and y < cf (a) provided 13 1,
a-a) .

B) 2"-i(3)á for every a .
As a corollary of 2 . 5 and 2. 6 we obtain
2.7 .

	

[a, /3] > [cf (a), a]

(2° ,

	

3)
hold for every i3 and for every infinite a .

Hence in case of edge-decompositions we have a best possible positive result
if a - 2 1 .

The following lemma establishes a connection between the two types of decom-
positions .

LEMMA I . Let ~~ he a graph ii , hich has a vertex-decomposition of tyhc-
y satisfying 136for every g -y. Ascunze firther that holds for some y' .
Then 5 has an edge-decomposition t7 - 7'+ 1 of type y' + 1, such that AS,) - 6
for every ri < y' + 1 .

PROM7. By the assumption the complete y-graph [y] with the set of vertices y
has an edge decomposition ; , it y' satisfying (i . For an arbitrary x F_g
let ~(x) be the unique ordinal ~ for which xEgg .

We define the edge-decomposition
V,1, q <

y' + 1 of as follows . Let fx, y) E G
be arbitrary

if ~(x) / ~(y), (x, y) E G,, iff f ~(x), ~(y)) E G,, for some it y',
if ~(x)= (y), {x, y) E G,, .
~,, , il < y'+ 1 is obviously an edge-decomposition of type y'+ 1 of S . It is

A,ta J wh,!;urtica elurdeutrac Sc«ut ar un (liurg trfcac 18, ty67

obvious that /3(t,,:)
since (3( F,~) - 6 for

(5 because of 13(N)-5 for
< y' .

< y . On the other hand /3(án) 6

COROLLARY 1 . Assume [a,

	

5], y -2 ,', S --3 . Then (a, fl)- (y'+ 1, (}) .
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PROOF . By Lemma 1 and by 2 . 6 . B) .
2 . 8 . Assume that [a, fl] -i--[y, (S] holds for every y < a, a w. Then there is a

graph S, with a,(S) =a, /l(S) =(3 such that no vertex-decomposition 9,, < y of type
y < a of 5 satisfies /3(W,) - 6 for every ~ < y .

PROOF . For every y < a let gy be a graph satisfying the requirements of [a, /3]-+-
+~ [y, 61 . We may assume that the sequence gy , y < a is disjointed . Put =(g, G)
g= U gy , G= U Gy . w obviously satisfies the requirements of 2 . 8 .

y<a

	

y<a

P. ERDé)S AND A . HAJNAL

§ 3. The vertex decomposition problem for graphscharacterized by complete subgraphs

As we have already mentioned [a, /i] -- [y, 21 means that if aO = a and
/3(S) -- /3 then ~, has chromatic number p. It was proved by P . ERDŐS and R . RADO
that for every infinite x

[a, 3]-4-[y, 2] holds for every y<a

in other words by 2 . 8 this means that for every infinite a there exists a graph of
power a not containing triangles and having chromatic number a (see [4]) . Using
a well-known compactness argument this also implies that for every finite y there
exists an a, < w for which [a,„ 3]-+-[y, 2] holds .

This result was obtained by several other people (for references see [1]) and
a very good estimation for ay is given by ERDős [5] .

We are going to prove the following generalizations of this theorem .

THEOREM 1 . For every infinite cardinal a and for every integer h --2

[a, 5 + 11- - [ y, (S] holds for every y < a .
THEOREM 2. For every infinite cardinals x, tS [xó, 8+]~i[y, 6] holds for every y<a.

As a corollary we obtain

THEOREM 3 . Assume G . C. H. (generalized continuum hypothesis) . Let a be
infinite, a ' /3, a > y, /1 > 8 -2 then [a, /3]-+- [y, 6] .

In view of the preliminaries collected in § 2 this is a best possible negative
result which settles all the problems concerning the vertex-decomposition symbol .
From 'Theorem 3 and 2. 8 we obtain

COROLLARY 2. Assume G. C . H ., a -= w, a - : /3, fl > 6 2 . Then there exists
a graph « with a(~fl =a, /3(~) _ fl such that for every y < a and for every vertex-
decomposition

	

~ < y of type y of «' we have #((P,) >8 for some ~ < (S .
In case a is a limit cardinal Corollary 2 is a slightly stronger statement than

Theorem 3 .
We postpone the proofs of Theorems 1 and 2 . First we prove Theorem 3 using

these theorems .

PROOF of THEOREM 3 . Considering that # :-(J by the monotonicity of our
symbol it is sufficient to prove that

[a, 6
holds for

Actc ~llrrtbematiar Acadeiiiie Scientiarrena Ilungitrrrae i3, 1967



ON DECOMPOSITION OF GRAPHS

If a is regular, then a ó = a by G. C. H. and the statement follows from Theorems 1
and 2 for finite and infinite a respectively . If a is singular then a ::- S+, hence there is
a regular a' satisfying max (y, b+) --a' < a . [a', b] holds for this a', hence
by the monotonicity we have [a, h+] +- [y, 6] . Note that the special case a = co of
Theorem 3 implies

COROLLARY 3 . For every finite y and 6, y ~ 2, (5 2 there is an a ,, b -_ o) such that

[av,s , (5+11-[ -/, d] •

This has been proved previously by P . ERDŐS and A . ROGERS in [6], where a
good estimation for a, ,ó is given . We return to the discussion of this result in § 4,
where we consider further refinements of the vertex-decomposition problem .

For the proof of Theorems 1, 2 we need some definitions and lemmas .
DEFINITION 3 . 1 . Let a, b >0 . We define the usual lexicographical ordering

of the set la as follows . Let f hE sa, f~ a , ó h iff f~ -< h, for the least ~ for which
f h 4 .

We denote typ

	

briefly by typ 'Lx .* In case b =0 we put typ ' a = 1 .

LEMMA 2 . Assume b is finite, 6 1, a w, a is regular . Then á a, ó is a well
ordering of óa .

(A) Let ~ a s be briefly denoted by -< . Assume gc'a, typ g(-{)=typ sa .
Let further g = U g~ for some cardinal y < a . Then there is a < y such that

4<Y
typ 94 ( ) = typ aa .

(B) Let g

	

typ g(-<) = typ ó a . For an arbitrary < a let a, _ (fE g Cl as
fo = ~). Then the set

(~ <a : typ a,(-<)=typ ó- 'a)
has power a .

Lemma 2 is well-known and we omit the proof .
We need

363

LEMMA 3 . Let 1=-- 6-co, 1 -/, a co, a regular . Assume gc sa, typ g(-< a, 8)_
=typ óa . Let ak =(i(k), j(k)), k < Z S he an enumeration of all the pairs (i, j), i < l, j < h
such that
(1)

	

ak = (ij), ak' = (r ' , j ' ), j --j' implies k < k' for every i, i ' < 1.

Then there exists an increasing sequence ~k, k < 1.6 of ordinals < a and a sequence
f', i < I of elements of g such that

fj=bk if (i,j)=ak .

PROOF . For every k<1•6 consider the sequence (i(k), j)=ak( ;,k), j-j(k) .
Then k(j, k), j-j(k) is an increasing sequence of integers -k, k(j(k), k)=k.

We define the sequence ~ k , k < I • h of ordinals less than a by induction oil k

* Note that in case 8 is finite óa equals to the ordinary ordinal power a ó , a notation we can
not use since we denoted by a ó the ordinal power and if azco this equals to a and not to typ ó a .
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as follows . Assume that for some k < 1-6 bk' is defined for every k'-<k in such a
way that for the set

(2)

7 . ERDŐS AND A . HAJNAL

A k, _ {f E oa r1 g : fi = ~k(,,k') for j -j(k')}

tYh Ak'(_< a, s)= typ s - .i(k')- J a

holds. Put k(j (k) -1, k) =k' if j (k) > 0 . In case j (k) = 0 putj (k') _ -1, A k, = g .
Then k(j, k)=k(j, V) for j-j(k)-1=j(k') .

The set A, has a natural isomorphism on a subset Bk, c_s-i(k')-'a, with respect
to the orderings

	

and
It follows from Lemma 2/B that there are a ~ for which

typ (fEBk, :fo=~)

	

i)= typó-i(k')-2 a .

Put _ ~k for the least ~ of this type satisfying ~ > ~ k- i . Then

A k = { f E as 0 g : fi = bk(i .k) for j -_j (k)} _

ljE saÍl9 : fi = bk(i,k) _Sk(i,k') for j<=./(k)-I and fk(i,k)=fk=4),

Hence typA k(-< a,s)=typs - i(k ')-2a=typs - i(k)- loc . Thus the increasing sequence
~k , k < 1, ó of ordinals is defined and satisfies (2) for every k-1-6 . For every i---::1
there is a k -< 1 .6 such that ak =(i, b -1) .

BY (1 ) typAk(-<a,s) = typ°a= 1 .
Let f ` be the unique element of A k . Then by (1) fì _ 4(i, k) for ,j --j(k) = S -1 .

This means that ~ k and f ` satisfy the requirements of Lemma 3 .

PROOF OF THEOREM 1 . By monotonicity we may assume that c(=7+ and so
a is regular . We are going to define a graph W=(g, G) . g will be a subset of a+'a .

(1) Put g={fE"+ ' a : fo < . . . <f,5 } .
Let f, h E g, fr h .
(2) Put {j;h}EG if there exists a j, 2=j-8 such that fi - i < h o <fi< h i .
We prove that the graph

	

defined by (1) and (2) satisfies the requirements .
It is obvious that a(W) = a .

First we prove
(3)

	

[S + I] gi W .

Let fO, . . .,fa be 5 + 1 different elements of ~ . We have to prove that there are
two f ` not connected in S . We may choose the notation so that f00 -_Jó for i -_ 6 .
Assume that f o is adjacent to each f ` for 1- i -_ d. Then by (1) and (2) for every
i, 1 _i--J there is a . ji , 1--ji =b such that

(4)

	

fJ°-' <j0 <f,° <fl
It follows that there are i / i', 1 - i, i' - 6 satisfying (4) with ji =, ji, . It fol lows

that jó <ff and fó <ji, hence by (1) fo < fj for 1 -j-6 and fo"' <j for 1 -j-b.
Hence by (2) { f i , f ` } q G . This proves (3) .

Now we prove
(5) Let w,á, ~ < y be a vertex-decomposition of type y of 5 . Then /3(~ ) =8 + I

for some < y i .e . [il c ~1~ for some ~ < y .
Let

	

be briefly denoted by -< .
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ON DECOMPOSITION OF GRAPHS 365

It is well known that for the set g defined in (1) we have typ g (-{)=typ ' + ' cx .
follows from Lemma 2/A that there is a < y that

typ gz(<)=typ a+1 a .

Hence by the definition of the vertex-decomposition it is sufficient to prove

(6)

	

If g' C~- g, typg(<)=typ`cc then S(g)IDI 6 1 .
To prove (6) we have to define a sequence J'O , . . ., J'6- I of elements of g' so that

every pair of them is connected in w. Considering (1) and (2) it is sufficient to define
the f'-s for i < J so that fi G g' and the ordinal numbers fi, i < J, j < c5 + 1 satisfy
the following conditions
(7 ) fú < . . . <fá for i < J .
(8) For every i < i' < J fi`_ i <fo <fi`-i+ I <fi

Let ak =(i(k), j(k)), k < 6 .(6 + 1) be the following enumeration of the pairs
(i, j), i<b, j<6+1 . If ak =(i, j), ak,=(i',j') then k--::k' iff either i+j<i'+. j'
or i +j = i' +f and i < i' . It is easy to see that

(9) any of the following conditions a)-d) imply k < k'
a) i = i' and j -j ,
b) i<i' and j=i'-i,j'=0
C) i<i' and j=i'-i+I,j'=1
d) i i' and .j = o, j' = i - i'+ 1 .

It follows from Lemma 3 that there is an increasing sequence ~ k , k < J • (J + 1)
of ordinals and a sequence f', i < ó of elements of g' satisfying fi = bk for ak =(i, J),
k < J • J + 1. Considering that the enumeration ak satisfies (9) the ordinal numbers
f satisfy (7) and (8) . This proves (6) . By (3) and (5) ,§ satisfies the requirements
of Theorem 1 .*

For the proof of Theorem 2 we need further preliminaries .

LEMMA 4 . Let J -co. Let >-,,ó denote the conuerse of the lexicografical ordering
< a, a defined in 3 . 1 . Let g sa and assume that g is Ivell-ordered by }a, a . Then ~gj -J.

PROOF in outline : If this is not true, then there exists a gg s a such that
typ g(>- , 6)=J

+ .

It is easy to see by induction on < J, that for every < J there is an f s C a
such that the set

A4 = ff'Cg :ff S fs}
has power J. Then ./"' =f [ h for every q < < J . The set g- U A 4 has power J+,

~<s
because ág1 = J+ but for each element f of it J'[ ~ =f, for every < J . This is a con-
tradiction .

DEFINITION 3 . 2 . Let A be a set ordered by the relation < . We say that < is a
(5-well ordering of A if every subset B A well-ordered by the converse ordering
} has power < J . o)-welt-ordered sets are the ordinary well-ordered sets . Our
previous lemma states that sa is J+-well-ordered by <a,a for every infinite J .

The next lemma contains the essential idea of the proof of Theorem 2 .

The proof of Theorem 1 makes use of an idea of E . SPECKER [7] used for the proof of typ 3 w +•
i- (typ3 w, 3) 2 . The same idea is used in [4] .

Ada A1at1 einatica Acadenniae Scientiarrtm Hiangaricae i8, i967
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LEMMA 5 . Let a, J (t) . Then sa is not the union of less than a sets (5-well-ordered
by

PROOF . Let g,,

	

y be a disjointed sequence of subsets of sa, J-well-ordered
by

	

We have to prove that
sa

U g~
~<v

First we prove
(1) Let g la be J-well-ordered by

	

Then for every f(g there is an q < J
such that for every h Cg h t rl =g t a1 implies that h(q) -f q) .

In fact if such an n does not exist then for every al < J there is an h" Cg such
that hn t h =f't q and hn(h) >f(ri) . But then h11>-,,,6h1( for every q -- al' < J and {h''},a< ,
is a subset of g of power J well-ordered by } a,s , a contradiction.

It follows immediately from (1) that the following assertion holds .
(2) Let gc_-_lot be 6-well-ordered by -<

	

For every fEg let al (f) be an ordinal
j satisfying (1) . Let f, h Eg be such that rl (f) =>7 (h) =al and f t al = h,, rl . Then

.'(a1) = h (a1)

(3) Put g= Ugs . For every fEg put ~(f)= for the unique for which

fEgs and let al(f) be an ordinal -6 satisfying (1) with g~tf> instead of g .

(4) Put a s ={fEg: al(f)=al} for al-:J. We have

(5)

	

g = U ar,

We define a function fE óa-g by defining f;,, ql 5 by transfinite induction
on q as follows . Suppose that for some h < J f ;,- is defined for every n' <rl, hence
J 't al is defined . it follows from (2) and (4) that for each ~ < y there is an ordinal
number to (~, rl) such that for every h Ego n a,, h t rl =ft rl implies h(q) _ ~) (~, rl) . Con-
sidering that y < a there is an ordinal number f;, < a such that f,, 71 e (~, ) l) for every
~ < y . This defines the function f and it is obvious that fC óa . Assume fEg. Then
by (3) fcg, for ~=-~(f) . Let q(J) =q. Considering that ftq=f1 il, .Ín=o(5,q) a
contradiction, since fEg (1 a,, . This proves Lemma 5 .

PROOF of THEOREM 2 . We define a graph 's =(g, G) . Let g= 5a. Then a(') =a~ .
Let f be a one-to-one mapping of 2 onto g . Let (fE , f;) o a' --an be arbitrary .
Put (f„ IJCG lff fp}a,SJa • *

First we prove a lemma .

(t) Let a-_ ' a and let (f =(o be arbitrary . Then [pi c-_ 51(a) iff' a is not f3-u , ell-
ordered by

The only if part is trivial from the definition of ~ . Assume a is not fl-well-ordered
by áx , ó . Then by 3 . 2 it contains a subset h ca such that ~bi =Í7 and typ b (>- x,a) =Íl,
i .e . b is well-ordered by >- a, ó . It is well known that then b contains a subset ebb,
lcl=/1 such that for each fe, fQ Ec f,}a ófQ iff Q>e .

For the convenience of the reader we mention that this can be easily proved
using a theorem of [3] which in terms of the partition symbol defined in 2 . 4 states

* The idea of graph definitions of this type goes back to SIERPJNSKL We call it t Sierpi6skísation
of the complete graph .
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ON DECOMPOSITION OF GRAPHS 367

that # - (f3, w) 2 holds for every P - w- The proof is simply a Sierpinskisation of the
complete graph with set of vertices b, using the two different well-orderings .

It is obvious that the complete graph with vertices c is a subgraph of K This
proves (1) .

By lemma 4 and (1) we have [S+1 ~, hence f3(á) =d+ . On the other hand if
y - _ x and ~y,, < y is a vertex-decomposition of type y of 5 then by Lemma 5,
there is a _ y such that g, is not J-well-ordered . Then, by (1) [81 c ft,), hence

This proves the theorem .
We wish to discuss two possible strengthenings of the theorems of this section .

It is possible that under the conditions of Theorem 3 there always exists a graph ~",
with a(te) = a, f3(S) = 13 such that for every vertex-decomposition , ~ < y of type
y of N we have 13 (S) = f3 for some ~ < y . As a corollary of Theorem 3 this is trivial
if 13 is not a limit cardinal, and it is easy to see that if # is a limit cardinal then a
further condition f3 < a or y < cf (a) is necessary . In case Q = co we can prove the
following

THEOREM 4 . Let a - w be regular. Then there exists a graph S with a(IN) = a,
f3(N) = w such that, fo, every y < a and for every vertex-decomposition < y
of it, f (S~) = w for some ~ < y .

We postpone the proof.
We do not know whether this result can be generalized for limit cardinals

/3>w . The simplest unsolved problem is

PROBLEM l . Assume G .C.H. Does there exist a graph S with a(~)=ww+i ,
/3(,V)=w1U such that for every vertex-decomposition S,, <o),, of type w. of 9,
f3( )=ww holds for some ~<w.?

The second generalization of Theorem 3 would be that under the conditions
I,f Theorem 3 and the additional condition a >Í3 or of (a) > y the following assertion
is true . There exists a graph S with a(S)=a, f3(á)=/3 such that for every vertex-
decomposition ~ , ~ y of type y, there is a y for which Cpf~ contains a sub-
graph isomorphic to `4' .

We did not investigate this problem very closely, but we mention that e .g .
the graph constructed for the proof of Theorem 1 has this stronger property in
case a is regular.

Now we give the

PROOF OIL THEOREM 4. Let g= 'a . Assume j; h Eg and f(0) -- h(0) . Put {f; h } E G
ifff(0)<g (0) and f(1) ::-g(1) . Obviously a(ef)=a .

We prove
(1)

	

l3 (á)= w-

It is obvious that f3 (N) --'= i for every i < w . If fl(S)>o) then [w] '=-W, i .e . Y,[g'1 c
for some g'cg, Ig'I =w. We may choose the notations so that g'= ffi } i, where
f ` Ifi and f i(0) -fj(0) for every i < j < w . Then by the definition of f i(0) < fj(0)
and f i(1) >fi(1) for every i < j < w- This is a contradiction, hence (1) is proved .

Let now ;,, ~ < y be an arbitrary vertex-decomposition of type y < a of K
Then by Lemma 2/A there is a ~ < y such that

typg

	

typ 2a .

8

	

Acta Afathematica Academiae Seientiatune fl-gwicae t8, 1967



3 6 8 P . ERDŐS AND A . HAJNAL

It follows from Lemma 3 that for every i a) there exists a sequence ff'}j, i of
elements of g, satisfying the conditions

f°(0)< . . .-j"(0)~f -'(1)< . . .<f°(1) .

Hence by the definition of

	

[i] (, for every i < c), hence fl (5,) = w. This proves
Theorem 4 .

§ 4. Further refinements of the vertex-decomposition problem

As a corollary of a theorem of [6] which also follows from our Theorem 2 we
know that for every integer /i, y --2 there exists a finite graph ~ with /3(~) =a + I
such that in every vertex-decomposition , ~ < y of type y of S there is a member

with /I(S,) =/3+ 1 . L . Lovász pointed out to us that possibly this theorem can be
improved so that one can find such a graph which satisfies even further conditions
expressing that S does not contain "greater" graphs, other than the complete /3-
graph [fi] . He gave in the special case fl = 3, y = 2 a tricky construction of a graph

which does not contain a quadrilateral with a diagonal (hence does not contain
a [4]-graph) but has no vertex-decomposition of type two where the members do
not contain triangles .

It turned out that using the methods of our paper [1] one can easily prove a
very general result in this direction . This will be given in Theorem 5 . An interesting
feature of this theorem is that unlike the previous results it does not generalize
for infinite graphs . In Theorem 6 we prove that if a graph

	

with P(g) _ fl + 1,
2--fl-<o) does not contain a subgraph of fl + l-vertices and (f 2 11-

I edges
(i .e . a complete 13 + 1-graph minus one edge) then it has a vertex-decomposition
~ , ~ < w of type w such that /3(~ ) --/3 for every ~ < co .

Before stating the theorems, for the convenience of the reader we recall some
definitions given in [1] .

DEFINITION 4. 1 . A pair

	

=~h, H) is said to be a set-system if U Huh.
is said to be uniform if IA I _ IB I for every pair A, B E H. 1f )e is uniform then

the cardinal of the elements of H will be denoted by x(H) . A graph S is a uniform
set-system with x(H)=2 . The chromatic number of a set-system denoted by
Chr (A') is the least cardinal y for which there is a decomposition h~, < y of type
y of h such that no h, contains an element of H as a subset .

Let s be an integer, and let ' be a uniform set-system with x(~P) = k, 2 -- k < w .
is said to be s-circuitless if for every 1 -_ t -_s, H"--- H, ~H' I = t we have I U H'

1 +(k- 1)t . A graph S as a set system is s-circuitless iff it does not contain cir-
cuits of length --s .

We need the following

DEFINITION 4. 2 . Let be a graph with /3(S) = a + 1, 2 f~ < co . Let 51p, denote
the set system (g, <j1 Ipj ) where

G l pi = fg' (--g : g'I

	

and Y2 [g'] C_- G)

i .e . the system of complete /3-subgraphs of I'C Let s be an integer. The graph IV is
said to be /i, s circuitless if St Ip i is s-circuitless .
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We need the following

LEMMA 6 . Let 2 - Q < w. Let Jt' =(h, H) be a uniform s-circuitless set system
with x(H) =13, s ::- f3 . Let

	

- be the graph (g,, G,) defined by the following stipu-
lations :

gye -e=h, G y( -= U [A] .

c- G implies that there is an A E for which g' c A . For t = 2 this is trivial by
the assumption. Assume 2 < t -fl + 1 and that the statement is true for t-1 . Let
g' (- h, g' I = t, 92 [g] c- G x, . Assume that g' J- A for any A E JK The by the induction
hypothesis there is an H'= [A,, . . ., A t_ I }C H, ~ H' J = t so that the A s contain
the different subsets of t- 1 elements of the set g' . Then

~UH'I -t+t(f3-t+1)=t(/3-t+2)-t •(Q-1)
since t='3 .

Considering that ,K is s-circuitless for s =fl + I this is a contradiction, hence
g' c- A for some A E H. In case (3 + 1 = t this is impossible, hence [/3 + 1] q W r
In case t=Í3 the statement just proved implies that r fl =JP Hence by the assump-
tion and by definition 4 . 2

	

is /3, s-circuitless .

THEOREM 5 . Let /3, y, s be integers, a, y --2 . There is a finite graph with
(3(W)=13+ 1 such that is f3, s-circuitless and every vertex-decomposition W 4 , < y
of type y of W contains a member Wj~ with /3 (IN4) = Q + 1 .

PROOF . By Corollary 13 . 4 of [1] there exists a uniform set-system Jf=(h, H)
with x(H) = l3, Chr (Jr) - y + 1 which is s' circuitless for s'= max (s, /3 + 1) . Then
by Lemma 6 the graph , satisfies /3(W,)=Q+1 and is /3, s-circuitless .

Let Sl,, ~ < y be an arbitrary vertex-decomposition of type y of WY. Then
g~, < y is a decomposition of h . Considering Chr (J~) = y + 1 there is an A EH
and a < y such that A Ug, but then by the definition of J2 [A] (g ), hence
Ial E W , /3( )=/3+ t .

Note that the proof of Theorem 13 . 4 of [1] makes use of the so called proba-
bilistic method .*

THEOREM 6 . Let ~rj be a graph with /3 (IV) =Q + 1, 2 -Í3< w. Assume that W
does not contain a subgraph ' _ (g', G') such that lg'J= #+I, G' _ Yz [g'] - {x}
for some x C,2[g] . Then there is a vertex-decomposition W~, < w of type o) of W
such that

for every s < (o.

PROOF . Let -, lal =(g, G tfl ) be the uniform set-system defined in 4 .2. Then it
satisfies the requirements of Theorem 12 . 1 of [1] with f3=(o and therefore has

* After having prepared this manuscript the authors learned that L . Lovász obtained a
constructive proof of Theorem 13 . 4 of [L] and so a proof of Theorem 5 . We will point out that
this gives a constructive proof of the theorem of P . ERDŐS [5] concerning the existence of graphs
containing no short circuits and having large chromatic number . His proof is to appear in the next
volume of Aata Math. Acad . Sci. Hung .

8*
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chromatic number w. This means that there is a decomposition g,, ~ < w of type
o) of g such that A g~ for any A E Gl# , . Considering the definition 4 . 2 of Gi ll, this
means that W,=9(g,) satisfies the requirements of the theorem .

We mention that Theorem 6 is trivial for #=2 even with 2 instead of w. This
is no longer true for # ::-2. The reason for this is that a f3, 2-circuitless graph satis-
fies the conditions of Theorem 6 for /3=3 but not for =2 since each graph is
2, 2-circuitless .

It is known that there are 2, 3-circuitless graphs of arbitrarily high chromatic
numbers but by 5. 6 of [1] a 2, 4-circuitless graph has chromatic number =-co .

§ 5. The edge-decomposition symbol

In view of the preliminaries collected in § 2 a best possible negative result
similar to Theorem 3 would be that under the conditions

(1)

P . ERDŐS AND A . HAJNAL

a >2Y, a -w • f3, p b = 3, 7 -- 2, (a, fi) -+- (y, b)
hold. In fact the condition a >-2 7 is necessary by 2 . 7, the case a < P is covered
by 2. 5, by the discussion of the Ramsey function while the other conditions except
a-co exclude trivial and irrelevant cases . The case a of will be discussed separately .

We do not know any theorem which would disprove (1), but we have only
partial results . The only genuine result relevant to the problem we have is the following

THEOREM 7 . Let a = (2tw>')+, y -_w . Then (a, (o)-t• (y, 6) holds f0)' every 6 -< o) .

COROLLARY 4. Assume G.C.H. Then (co e+4 , c))-1-(C)B, h) holds for every O
and for every 6 < w .

The simplest unsolved problem is

PROBLEM 2. Assume G.C.H. Is (co„ oJ) - (c ), 6) true for i =2 or i = 3 and
for some cS < (o?

The only other information we have is a further corollary of the results con-
cerning the partition symbol 2 . 4 .

THEOREM 8. A) Let a = (2Y)+, y = w . Then

(a, a) -i - O" y + ) •
B) Assume G.C.H, a--o) then (a+, a' - ) i-(y, a) for y<ef (a) .

COROLLARY 5. Assume G .C.H. Then

(o),+ i , (0 -I)-~ .

	

for

	

cf (o) s ) .

All other instances of (1) remain unsolved . We will point out only one special case
which seems intrigueing .

PROBLEM 3. Does (a., o),) -(,/, o)) hold for any pair a >2 , y -- o)?

PROOF OF THEOREM 7 . The graph we construct will be a subgraph of the graph
constructed for the proof of Theorem 4. Put (2v)+ (then a =(2ü)+) and g =
={frla :f,-=/l} . Assume .f,hCg,fo'go'
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(1) Put (f, h} (-G iff f,-<g, and f, ::-g, . Then as in the proof of Theorem 4
we have

00) = a, fl( 1-6) = w .

Let ' ,

	

y be an arbitrary edge-decomposition of type y of 1 . We prove
(2) There is a ~ < y such that #(~) =w .
This is a slightly stronger statement than that of Theorem 7 . (To prove the

theorem it would be sufficient to show that for every 6 < w there is a ~ depending
on (5 such that

	

Let v < p < a . We define an edge-decomposition W (v, ,u),
< y of type y of the complete graph with set of vertices # as follows .

(3) Let rl < < l3 be arbitrary . Let f, h be the elements of g satisfying

.fo=t1, .f,=,u, h o =C, h l =v .

Then by (1) (j, h} E G, hence (f, h} E G~ for some ~ < y .
Put jq, ~) E_ G~(v, p) for this ~. By Theorem 4 of [2] we have (2Y)+ ( y +) Y

for every y -- w. This means that by 2 . 4 corresponding to every v < Et < a there
exists a ~(v, it) < y and a set B(v, p) C- fl such that

(4)

	

Yz [B (v, it)] 97 G~ (y,,)(v, µ)
and
(5)

	

~B(v, It)~=y.*

(6) Let A be the set of those fu nctionsa with .9(a)=2, for which ao C/7, a, E9.
Considering that ((2v)+)z'=(2v)+, we have

(7)

	

1A I _ P .

We define an edge-decomposition 5.1 , a E A of type fl of the complete graph
with set of vertices a as follows .

(8) Let v < it < a . Then by (4) and (6) a o = ~(v, p), a, = B(v, It) for some
a ( A . Put then (v, it} (Sao .

By (7) this edge-decomposition has type /i . Considering again Theorem 4
of [2] it follows that there exists an aFA and a subset Cc__ a, such that

(9) ICI=/I -1 and Yz [C] G;' .
Put ao = S, a I = B, D -_ (fF g : . f, E B and f, E C) . We have by (8) and (9)

~(v, Et) = g, B(v, It) = .B for every v - It, v, It E C . If f, h ( D, fo -ho and (f, h} E G
then by (1) .fo<ho,f,>ltl, fo , h o EB,ft, h,EC. Hence B(h,,f,)=B, ~(i,J,)= ,
hence by (4) (f,, ho) E G~(h, , ft) and that means by (3)

Using (5) and (9) it follows that for every i -w there are sequences of ordinals

.fó < . . . < fó - I < f,

	

f E B for j i

a > flo > . . . > f,` - t ,

	

.fi' E B for j < i.

* The theorem gives a B(v, p) with ~B(v, /# = ya but we choose B(v, /t) as a set of power
y for the sake of argument given for the proof of (7) .
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Let fi, j < i be the corresponding sequence of elements of g and let g'= ff'}; « .
Then g' = i, by (1) Y, [g'] C G, by the definition of D we have g' D, hence by (10)
92 [g'] G,, That means [il C for every i < (o and thus fl (f~) = co. This proves (2) .

REMARKS . The set D obtained in the proof is such that IB =7, ;Cl =/3 +
Using the G.C.H. we obtain e .g. in the simplest case y=co that JBI =co, ~C1 =CU 3 .
If the hypothesis is assumed this can be improved so that BI =co y since in the proof
of (7) we can use that ((20)+)"- (t)z=(2`°)+

We mention that even assuming the G .C.H . we cannot decide the following

PROBLEM 4. Let S' be the subgraph of S defined in the proof of Theorem 7
spanned by the set g' _ {f E 2a : fo -< (2w)+, f, < ( 2°')+ } .

Does then ' have an edge-decomposition N , moo of type ct) with members
f3(~e)<co for ~<oo?

To prove Theorem 8 we need

LEMMA 7 . Let a, fl, /3', y, 8 be cardinals such that

a)

	

a -F-(Q, Í3l ) 2
and

b)

	

(a)Y)Y+l
hold. Then (a,

PROOF . By a) the complete graph with set of vertices a has an edge decomposi-
tion T1°, l of type 2 such that /3(V)--/f, /3(S1)-/3' . The graph S' satisfies the
requirements of our theorem . In fact if W~, ~ < y is an arbitrary edge-decomposition
of type y of 0, then S1 1 , % , ~ < y is an edge-decomposition of type y + 1 of the
complete graph with the set of vertices a . Then by b) considering that
there is a <y such that /3(áy)>h .

PROOF OF THEOREM 8 . By Theorem 7 of [2] and by Theorem I of [3] we have

(2 ') 4 - ((2Y)+, (Y+)Y.)2 + ,

	

for y

	

cg,

	

a+- -(a

and a+ _ (a)2 if the G .C.H . holds and y cf (a), a=w. Hence the theorem follows
from Lemma 7 in both cases .

NOTE . If we assume G .C.H ., then by the results of [3] 1 , /3') 2 holds
iff /3' = a+ and cf (a) = w . On the other hand, a+ (a+, (3)'x) 2 holds if cf (a) = co .
Hence no information concerning Problem 3 can be obtained using the above
method .

§ 6. The edge-decomposition symbol for finite graphs

Let now a, /3, y, 6 be finite, and assume a b~3 . It is obvious from the
definition 2 . 4 of the Ramsey function that if Q >a((b) Y , y, 2) then (a, 6)
holds .

It is not known whether (a, /i)->(y, 6) holds for any /3 a((8) Y , y, 2) . Probably
for every integer y 2 and 6 3 there is an aY, ~ such that b + 1) -(y, ó)
holds .
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The special case y =2, h = 3 was suggested by the authors as a problem to
several people . It is known that x((3) 2 , 2, 2)=6 and in fact it was prowed by several
people* that there is an a such that (7, 6)-4-(3, 2) holds .

L . PÓSA proved the existence of an a for which
(a, 5)-+-(3, 2)

holds, but the problem whether (a, 4)--(3, 2) holds for every a, is still unsolved.
We Outline PóSA's proof .
By Corollary 3 there exists a graph W'=)g', G') such that fl(V)=4 and o'

has no vertex-decomposition Wó , WI such that fl (Nj) --3 for i < 2. Let g consist
of g' and of one new vertex x, and let G=G' U (x, y), i .e . the new vertex is con-
nected to each of the old ones .

	

Y( q ,
Then f3(á)=5 and § has no edge-decomposition So , S, of type two with

(i(Wi ) -- 3 for i < 2 for if not, then put gi _ (y E g : (x, y) EGj j for i--2 .
Then V(gó) 1I , §'(g,)

	

hence C(gó), S'(g-;) is a vertex-decomposition
of W with f(W'(gi)) .- 3 for i-2, a contradiction .

§ 7. A special edge decomposition problem

We say that a graph W is a tree if it does not contain circuits . The problem
arises what graphs have an edge-decomposition of type y where all the members
are trees . In Theorem 9 we give a necessary and sufficient condition for T--o) .
NASH WILLIAMS gave in [8] a necessary and sufficient condition in case y < co . The
condition is that every finite subgraph of i elements has at most (i -1) • y edges .
The necessity of this condition is obvious . Our Theorem 11 gives a more difficult
necessary condition . It states that the union of 7 trees and even more general graphs
have colouring number =2y .

In Theorem 10 we state a corollary of our previous results, that a graph not
containing a quadrilateral has an edge-decomposition into co trees .

To state our theorems we need some concepts defined in [1] .

DEFINITION 6 . 1 . Let be a graph, and let -< be an ordering of g . For any
arbitrary g'c-g, V(x, g')=(y : (x, y)EG and yEg'} T(x, g')=IV(x, g)Í . For xEg
gl-<x is the set (yEg :y-<,x} .

The colouring number of is the least cardinal 7 for which g has a well-ordering
such that T(x, g -<x) < y for every x Eg . The colouring number of S is denoted

by Col (W) .
We prove

THEOREM 9 . Let T-w. The graph has an edge-decomposition onto the union
of y trees if and only if Col (1) -- y +

As a corollary of this and a result of 1 we prove

THEOREM 10. A graph <26 not containing quadrilaterals' has an edge-decomposition
of type o) iI'here all the members are _trees .

G. L. CHERLIN, R . L. GRAHAM, VAN LINT .
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We need the following

LEMMA 8 . Let be a graph and let p,, < y be an edge-decomposition of type
y of such that Col (~) -- y+ for every ~ < y. Then Col ( ) _ y+ .

PROOF . By the assumption for every S < y there is a well-ordering -<~ of g
such that 1V(x, gf -<,x)j--y . Put

f(x) = U V(x, gI -<0-
s<

Then f(x) is a set mapping of order

	

y+ . It is obvious that {x, y) E G, iff y E.f(x)
or x Ef(y) . Hence the statement follows from Theorems 6. 3 of [1] .

PROOF OF THEOREM 9 . Let W be a graph and assume that Col (W) y+ . Let
be a well-ordering of g such that

i(x, gl-<x)--y for every x(g.

It is obvious that one can define the graphs 9,, < y on such a way that if y z,
and y, z E V(x, gj fix) then {y, x), {z, x} belong to different -s. Hence ~P is the
union of y trees .

On the other hand, assume now that S,, < y is an edge-decomposition of
type y of S where all the ,-s are trees. Then Col ( ,I) = 2 for every s < y. Hence
the statement follows from Lemma 8 .

PROOF of THEOREM 10 . Let 1§ be a graph not containing quadrilaterals (or more
generally [i, wj-complete even graphs) for some i < w. Then by Corollary 5 . 6
of [1] Col (f) -- w, hence the statement follows from Theorem 9 .

Assume now y < w. Using an argument similar to the one used in the proof
of LeYnma 8 and using Theorem 6.5 of [1] it would be easy to obtain that if has
an edge-decomposition to y trees then it has colouring number -2y + 1 . However
this is not a best possible result . We will prove the following stronger

THEOREM 11 . Let y < w. Assume that 1, has an edge-decomposition T04 ,

	

y

ii ,here the

	

-s are trees. Then
Col (W) -- 2y .

This is best possible since by a well-known result (see e .g . [9], p . 185) the complete
2y-graph 12v1 has an edge-decomposition to y trees .

Theorem 11 can be proved with a similar argument to the one used for the
proof of Theorem 9. 1 of [1] saying that for every 2-/i<w a graph all whose finite
subgraphs have colouring number /3 has colouring number -2/i-2 . We mentioned
in [1] that the same argument should be used to the proof of Theorem 6. 5 of [l] .

For the convenience of the reader we outline here the proof of a more general
theorem, which implies theorems 9 .1 and 6.5 of [1] and Theorem 11 as well .

THEOREM 12 . Let be a graph and 0 E 9w, o(x) >0 for x Eg . For an arbitrary
A E<9,(g) put

v(A, Ti) = 2lG(A)1 and E)(A, ',) =

	

o(x).
xCA

lVé briefly n •r ite r(A, C9) _- r(A), L'(A, `~í) _ ~)(A) .
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Assume that v(A) --e (A) for every A (9,,(g), A r1 0. Then g has a well ordering
such that

T(x, gI -< x) < C)(x) for every x (g .

COROLLARY 6. Let 'P be a graph, 1 y -<a) . Assume that every finite subgraph
of i>0 vertices has less than i .y edges. Then has colouring number --2y .

Corollary 6 follows from the case C(x)=2y of Theorem 12 and obviously
implies Theorem 11 .

PROOF OF THEOREM 12 (in outline) . If § is finite, the assumption implies that
there is an x ( g such that T(x, g) < Q(x) since v(g) _ Z T(x, g)< Z Q(x) = o(g) .

xEg

	

xEg
Hence the result follows by induction on a(g) .

Assume a(S) -co . Let A cg. We shall briefly say that A is closed if for every
B (.So,(g - A)

	

-
(1)

	

T(x, AUB) < 0(B) .
x(R

The following assertions are evident :
(2) If A is not closed then there are A'(ffw (A), B(9'w (g-A) such that

G T(x, A' U B) ~~ (B) .
x(II

(3) If for every A' (Y~ (A) there is an A" (---A such that A' A" and A" is
closed then A is closed .

(4) If {A,),,,, is an increasing sequence of closed sets then U A~ is closed .
4<tt

We prove
(5) If A ~g then there is an A' _g, A '- A' such that A' is closed
a) IA'l<rD

	

if

	

JAI <(o
b) IA'1=1AI

	

if

	

JAI -- w.
First we prove (5) a) .* Assume that the assertion fails for some finite A . We

define by induction on i an increasing sequence A i of finite subsets of g as follows .
Put Ao -=-A . Assume i >0 and that Aj is defined for every j < i such that Aj is finite .
Then A = U A i is finite, hence it is not closed by the indirect assumption . Let then

j<i
A i be a finite subset of g ti U Aj such that

.i<i

(6)

	

Y 2(x, U Aj)

	

(Aj ) .
x(Ai

	

j<i

Thus the sequence A i is defined and (6) holds for every i < w. By the assumption
z (A i) -= L) (A j ), T (x, U Aj) ,' 0 holds for at least one x ( A i . It follows by induction

j<i
on i that

v( U Aj ) = >' t) (A j)+i for i -- 1 .
jSi

	

i=1

This is a contradiction since the right hand side is at least

The proof is similar to the proof of Lernma 9 . 4 of [ll .
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1)(UA j) if i-L)(A,) .
jz~i
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Thus (5) a) is proved . Let A' denote a set satisfying (5) a) for every A Ey,(g) .
To prove (5) b) let A Cg, (A) co. Put Ao =A, Ai+ I = U B', A'= U A i . Then

B( .f_(Aj)

	

i<w
obviously I,A'I _ JA I and by (3) A' is closed . This proves (5) b) .

Put a(S) = a - w and assn me that the theorem is true for every graph §' with
a(~') < a .

Using (5) it is easy to define by transfinite induction an increasing sequence
A~, ~ < a of type a of subsets of g such that

(7) g= UA s , A S is closed and i,A,'I<x for every <a .

Put B S U U A,i for < Y., Bo = 0, C~ = A S - BS . By the assumption the empty
n<s

set is closed, hence by (4) B~ is closed for every < a .
Put T 1 (x) =T(x, B,) for every x E C4 , ~ < a .
Put , _ S (C) for ~ < a . Then a. (~ ) < a by (7) and T, (x) < o (x) for every x E C~

since B, is c'_osed . Hence

o(x, ) = o(x) - T,(x) > 0 for every C4 .

We will apply the induction hypothesis for the graphs I, and the functions
o(x, ~) . Let BEY,(C) . Put briefly

v s (B) = v (B, r, á), Q5(B) = o (B, S4) _ '2; o (x, ~) .
xCB

Then v,(B) _

	

T(x, B) . Hence
xCB

v, (B) + T, (x) = G T(x, B U B~) < o (B) _ Z o (x)
xCB

	

xEB

	

XEB

since B~ is closed and Bc C,. Hence

v, (B) < Z o (x) -- i,(x) = o~ (B) .
xCB

It follows that P satisfies the conditions of the theorem . It follows from the induction
hypothesis that there is a well-ordering -<s of Cy such that i(x, C, I -<~x) < o(x) -T,(x)
for every x C C, . We define a well-ordering -< of g by the stipulation x-<y if x E C~,
yEC,i and either ~ -h or ~ = q and x-<~y .

By (7) -< is obviously a well-ordering of g and

T(x, gI-< •):)=-11(r)+T(x, C~~-<~x)

for every x E C~, ~ < x. Hence T(x, gl-<x) < o(x) for every x (g .

(Received 14 September 1966)
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