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ON DECOMPOSITION OF GRAPHS

By
P. ERDOS, member of the Academy and A. HAJNAL (Budapest)

§ 1. Introduction. Notations

We are going to use the notations introduced in our paper [1]*, §2. A graph
% is an ordered pair (g, G) where the elements of the sets g and G are the vertices
and the edges of % respectively. We assume that the reader is familiar to the usual
terminilogy of graph-theory. The aim of this paper is to consider two kinds of
decompositions of graphs called vertex- and edge-decompositions respectively.

DerINITION 1. L. Let ¥={g, G) be a graph and let 4. =(g.,G.), £<{ be a
sequence of type { of graphs.

The sequence %., £ = is said to be a vertex decomposition of % if the g. are
disjoint, |J g.=g and %, is the subgraph %(g,) of % spanned by g in %. _

E<l

The sequence e, &=L is said to be an edge-decomposition of 4 if g.=g for
every ¢=(, the G; are disjoint and |J G.=G.

The cardinal number [{| will be said the type of the decomposition, and the
graphs %. will be called the members of the decomposition in both cases.

We mention that the expression decomposition is usually used for the edge
decompositions, in some cases vertex decompositions are called colourings.

Our problems will be of the following type. Let % be a graph and @ a property
of the graph usually expressing that @ is “small” in a certain sense. Let further &’
be a stronger property usually expressing that the graph having property @’ is
even “smaller”. We investigate the problem il then @ necessarily has vertex- or
-edge-decompositions of relatively small types where the members of the decompo-
sition all have property @’

We will investigate these problems in details, when @ and @" are properties
expressing that ¢ does not contain complete a-graphs. We also have results when
the properties in question are that % does not contain rectangles or is a tree. We are
going to discuss the different problems in different sections and we give a short
summary of the results there. We have very little information on edge-decomposition
problems. We discuss some obviously not final results for them since we think
that some of the open preblems are fundamental. Though we have been motivated
mostly by infinite graphs when starting this paper almost all the problems are relevant
for finite graphs, and there remain some interesting unsolved problems for finite
graphs too.

* These are mostly the usual notations of set theory., We mention that ordinals are introduced
so that every ordinal is the set of smaller ordinals. In some parts of the paper we consider finite
problems and we use negative integers as well. In these parts we naturally do not assume that an
integer is the sct of smaller intcgers.
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360 P. ERDOS AND A. HAJNAL

§ 2. The decomposition problems for graphs characterized by complete subgraphs.
Further notations and definitions. Preliminaries

DerFNITION 2. 1. Let f}(%) denote the least cardinal number for which the
graph % does not contain a complete fi-graph [f].

We have obviously f(%)=2if g#0 and p([f])=p*. p(¥)=21iff g0 and ¥
has no edges. These graphs will be called independent graphs.

We remind the reader that by [1] 2. 1 «(%) denotes the cardinal [g].

We are going to consider the following problems invelving four cardinals
o, ff, p, 8. Is it true that every graph @ with o(%)=ao, f(%)=/f has a vertex-de-
composition or an edge-decomposition %, =y of type y such that f(%,)=4d
holds for all members %., £ =y respectively?

To have a brief notation we introduce the symbols

[, B1-[7 61 (o B) (7, 9).

DerINITION 2. 2. [o, f]1=[y. 0], (=, /) (7. 8) denote that the answer to the
above problem is ves in case of vertex-decomposition or edge-decomposition res-
pectively. As usual [oe, ff14-[y, 0, (=, /)~=(y, 0) denote the negations of the respective
statements.

Both symbols are obviously decreasing in the cardinals standing on the left
and increasing in the cardinals standing on the right.

We always assume f3, 0 =2.

The following statements are trivial.

2.3 a) Forevery o, f

[z, B]1—[1, 6] and (o, f)—(1,9)
iff 6= ﬁ.

b) For every o, fi [o, f]1—[z, 2] and il 2 =w, then (z, ) —(x, 3).

Hence the relavant cases are only a=7p=2, <f. Note that [« ][y, 2]
means that each graph 4 with «(%) =u, (%)= f has chromatic number at most 7
hence in case of vertex-decompositions the case 6 =2 is very important. On tlie
other hand, we trivially have (x, ff) +(y,2) if e =1, i =2 and y is arbitrary. Hence
for edge-decompositions the simplest relevant case is ¢ = 3.

There is an obvious connection between the decomposition problems and the
Ramsey problems treated in the partition symbol « —(f;); defined in [2] and rather
completely discussed in [3].

Using our present terminology we redefine the special cases r=1,2 of the
symbol. The rather trivial case r=1 is connected with vertex-decompositions, the
case r=2 is connected with edge-decompositions.

DerINITION 2. 4. The symbols o~ ()] (r=1,2) denote that the following
statements are true. '

The complete w-graph |z] has no vertex-decomposition or edge-decomposition
%, £ =7y of type y satisfying f(%:) =f; for £ <y for r=1 or r=2 respectively.

w-+(f), denotes the negation of the respective statements,
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ON DECOMPOSITION OF GRAPHS 361

If all the B, are equal to f we use the notation a—~(f);. If > y;=y and y;
B: equal to f3; we use the notation j<i

= ((Bo)yos -+ (Biz 1)y )
o ((BG)-,-os vors (Bi= 1)y, - .)r-

In case some 7, is | we omit it. As a corollary of the results of [2] (see Theorem
39) corresponding to every sequence (f:):., for every r (r=1,2) and for every
7 there is an o for which «—(f:); holds.

Let o(f;, 7, r) denote the least  of this kind. This function is said to be the
generalized Ramsey function. We will use for it the same obvious abbreviations
as for the corresponding symbols.

As an immediate consequence of the definitions we have

2.5. Assume x<=f}, y,d=2. Then

[, f1—=[7, 0] and (x, f)—~(3, 9)

hold iff « =a(d, p, r) for r=1 and r=2 respectively.

The if part holds for every f in both cases.

2. 5 shows that we get new problems only in case x=f.

As an easy consequence of theorems of [2] and [3] we have

2.6. A) a—(f)! holdsiff f<=oxand y =« or f=o and y = cf («) provided =1,
*= .

B) 2%4-(3)? for every .

As a corollary of 2.5 and 2. 6 we obtain

0 [or, B [ef (), ]
(2%, B)~(y, 3)

hold for every f and for every infinite «.

Hence in case of edge-decompositions we have a best possible positive result
if =27,

The following lemma establishes a connection between the two types of decom-
positions.

or

LemMa 1. Let & be a graph which has a vertex-decomposition G, E=7 of type
7 satisfying P(9:) =0 for every & =y. Assume further that y+-(3). holds for some y’.
Then % has an edge-decomposition G, n<y" +1 of type y'+ 1, such that (%) =6
Jor every n=vy"+1.

Proor. By the assumption the complete y-graph [y] with the set of vertices y
has an edge decomposition %, 5y <=y’ satisfying f(%,)=0. For an arbitrary xcg
let &(x) be the unique ordinal & for which x¢g..

We define the edge-decomposition %, <7’ +1 of ¥ as follows. Let {x, y}¢G
be arbitrary

if £(x) #E(y), {x, y}e G, iff {&(x). &(»)}€G, for some <7,

if &(x)=¢0), {x, ¥}€ G-

%/, n=7"+11s obviously an edge-decomposition of type 3" +1 of %. It is
obvious that f1(4,) =5 because of B(%) =0 for £=7y. On the other hand f(¥%,) =0
since f(%,)=4 for n=y".

CorOLLARY 1. Assume [o, ][y, 6], y =27, 0 =3. Then (o, f)— (7" +1, d).
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362 P. ERDOS AND A. HAINAL

Proor. By Lemma | and by 2. 6. B).

2. 8. Assume that [, f]4-[y, 6] holds for every y =, x=w. Then there is a
graph 4, with o.(%) =u, f(%) = f such that no vertex-decomposition %, & <y of type
y<uo of ¥ satisfies f(%:) =0 for every £ =7y.

ProOF. For every y<a let %, be a graph satisfying the requirements of [ux, f]-+-
[y, 0. We may assume that the sequence g,, y <« is disjointed. Put ¥={(g, G)
g=Ug,, G=JG,. ¥ obviously satisfies the requirements of 2. 8.

P<a P<a

§ 3. The vertex decomposition problem for graphscharacterized by complete subgraphs

As we have already mentioned [x, f]—+[y, 2] means that if z(%)=2z and
(%)= [ then ¥ has chromatic number = 7. It was proved by P. Erpds and R. RADO
that for every infinite o

[o, 3]4-[7. 2] holds for every 9=«

in other words by 2. 8 this means that for every infinite o there exists a graph of
power o not containing triangles and having chromatic number o (see [4]). Using
a well-known compactness argument this also implies that for every finite y there
exists an o, <o for which [a,, 3]-[y, 2] holds.

This result was obtained by several other people (for references see [1]) and
a very good estimation for a, is given by ERDOS [5].

We are going to prove the following generalizations of this theorem.

Tueorem 1. For every infinite cardinal o and for every integer 6 =2

[, 6+ 1]y, 8] holds for every y=u.
THEOREM 2. For every infinite cardinals o, & [28, 6% +[y, 8] holds for every y <u.
As a corollary we obtain

Tueorem 3. Assume G. C. H. (gencralized continuum hypothesis). Let o be
infinite, = [, x =y, f=0=2 then [x, f]+[y, d].

In view of the preliminaries collected in  §2 this is a best possible negative
result which settles all the problems concerning the vertex-decomposition symbol.
From Theorem 3 and 2. 8 we obtain

CoroLLARY 2. Assume G.C.H., x=w,a=f, f=0d=2. Then there exists
a graph % with (%) =—=ua, (%) =[ such that for every y <o and for every vertex-
decomposition ., &=y of type y of ¥ we have (%) =0 for some & =4.

In case « is a limit cardinal Corollary 2 is a slightly stronger statement than
Theorem 3.

We postpone the proofs of Theorems 1 and 2. First we prove Theorem 3 using
these theorems.

Proor or THeoreM 3. Considering that ff=0J by the monotonicity of our
symbol it is sufficient to prove that
[, 671+ [y, 9]
holds for &x=d*, u=1y.
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If o is regular, then ¢’ =« by G. C. H. and the statement follows from Theorems 1
and 2 for finite and infinite % respectively. If « is singular then 2 =4*, hence there is
a regular o satisfying max (y, 6*) =o' =u. [/, d+]-[y, ] holds for this «’, hence
by the monotonicity we have [x, *]+[y, ]. Note that the special case x=w of
Theorem 3 implies

CoroLLARY 3. For every finite y and 6, y =2, =2 there is an o, 5 = such that
[y, 6414 [7, 6.

This has been proved previously by P. ERDGs and A. ROGERS in [6], where a
good estimation for o, ;5 is given. We return to the discussion of this result in § 4,
where we consider further refinements of the vertex-decomposition problem.

For the proof of Theorems 1, 2 we need some definitions and lemmas,

DEFINI[ION 3.1. Let a,6=0. We define the usual Iexicogra.phical ordering
of the set %z as follows. Lctf#z':é"oc f=<4slt il fe<h for the least ¢ for which
Je#he.

We denote typ °az(<,) briefly by typ ®w.* In case §=0 we put typ°a=1.

LEMMA 2. Assume 6 is finite, 6 =1, a =w, o is regular. Then <, ; is a well
ordering of °a.

(A) Let <,; be briefly denoted by <. Assume g&°u, typ 2(=<) =typ %
Let further g= Ug¢ Jor some cardinal y—<o. Then there is a =7y such that

typ g:(<) = typ
(B) Let gC"rx typ g(<)=typ® o. For an arbitrary <o let a-={fcg’x:
Jo=¢&). Then the set
{€<u: typ ay(<) =typ *~'a}
has power o,

Lemma 2 is well-known and we omit the proof.
We need

LemMA 3. Let 1=d0=w, | =/, a =w, o regular. Assume g=%u, typ g(<, ) =
=typ °a. Let a, ={i(k), j(k)), k =18 be an enumeration of all the pairs (i, j), i=1,j =3
such that

(1) ay={i.j), ap={"j", Jj=Jj implies k=k’ for cvery i, i'<I.

Then there exists an increasing sequence &, k <1-8 of ordinals <o and a sequence
fhi=1 of elements of g such that

.)G;:‘Ek if (i, j)=a,.
Proor. For every k=1I1-6 consider the sequence (i(k),j)=ay; i, J=j(k).

Then k(j, k), j=j(k) is an increasing sequence of integers =k, A(J'( ), !\)—k
We define the sequence &, k=/-8 of ordinals less than « by induction on k

* Note that in case & is finite "o equals to the ordinary ordinal power «°, a notation we can
not use since we denoted by o the ordinal power and if e=w this equals to o and not to typ %a.
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364 P. ERDOS AND A, HAINAL

as follows. Assume that for some k</-6 & is defined for every k"=k in such a
way that for the set

A ={/e’aNg: fi="Cxyuy Tor j=jtk)}
) typ A(<,8) =typ >~ 1)~ 1a

holds. Put k(j(k)—1, k)=k" if j(k)=0. In case j(k)=0putjk’) = -1, A, =g
Then k(j, k)=k(j, k") for j=jlk)—1=j(k’).

The set 4, has a natural isomorphism on a subset B, &9-7#)-1g with respect
to the orderings <,,; and <, ;_j&)-1-

It follows from Lemma 2/B that there are « & for which

typ {fE By:fo= f} ("<.:,(5—j(k‘)—l) =typ 0—i&)-2q,
Put £ =¢, for the least ¢ of this type satisfying £=¢,_,. Then
A= {fE%f (g: Ji= fk(j.i) for j=jk)}=
={fe%aNg: fi=Cuun=Cguy for j=j()—1 and fijun=f=E&}

Hence typ Ai(<, ;) =typ?=/)=2g =typ -i®-1g  Thus the increasing sequence
&y k=1, 6 of ordinals is defined and satisfies (2) for every k =/-5. For every i=/
there is a k <=/-6 such that a,={i, d—1).

By (1) typ A(<,,5) =typ = 1.

Let /* be the unique element of 4,. Then by (1) ff =&, for j=j(k)=0d— 1.
This means that &, and /7 satisfy the requirements of Lemma 3.

ProoF OF THEOREM 1. By monotonicity we may assume that =73+ and so
o is regular. We are going to define a graph % =(g, G). g will be a subset of **'a

(1) Put g={fe’*"a: fo=...<f3}.

Let /. heg, f=h.

(2) Put {f, h}eG if there exists a j, 2=j=0 such that f;_, =hy<f;=h,.

We prove that the graph % defined by (1) and (2) satisfies the requirements.
1t is obvious that «(%)=uq.

First we prove

3) B+11E%.

Let /9, ..., /? be 6+ 1 different elements of %. We have to prove that there are
two fT not connected in %. We may choose the notation so that /9 =& for i=4
Assume that f° is adjacent to each f* for 1 =i=4. Then by (1) and (2) for every
i, 1 =i=¢ there is a j;, | =j;=0 such that

(4) .f}?—l <fs ":f}u ":fli-

It follows that there are i~i’, 1 =i, i’ =9 satisfying (4) with j; =jp. It i‘o]]ows
that /& =/ and fi </}, hence by (l) Jé<f} for 1=j=¢ and fi" <fi for 1=j
Hence by (2) {/% f"}4 G. This proves (3).

Now we prove

(5) Let %, £ =7y be a vertex-decomposition of type y of ¥. Then (%) =4+ 1
for some =7y ie. [0]S%; for some <.

Let <, 541 be briefly denoted by <.
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It is well known that for the set g defined in (1) we have typ g (<) =typ **'o.
It follows from Lemma 2/A that there is a £ =7 that

typ g(<)=typ **'a.
Hence by the definition of the vertex-decomposition it is sufficient to prove
6) Ifg'<eg typg(K)=typ® 'a then %(g)2[0].

To prove (6) we have to define a sequence f°, ..., /%~ ! of elements of g’ so that
every pair of them is connected in %. Considering (1) and (2) it is sufficient to define
the /s for i=¢ so that f'¢g’ and the ordinal numbers f}, i=d,j<0+1 satisfy
the following conditions
(7) fi=..<fF for i<d. _

(8) For every i<i’'<d fi_i<fo <fi-ir1=fi.

Let a,=(i(k), j(k)), k=d-(6+1) be the following enumeration of the pairs
(G j)i=0,j=0+1. If a=(i,j), a=("j) then k<k" ifl either i+j<i"+ )’
ori+j=i"-j and ;/=i". It is easy to see that

(9) any of the following conditions a)—d) imply k<=£k’

a) i=i" and j=j’

by i=i" and j=i"—1i,j =0

c) i=i" and j=i"—i+1,j'=1

d) i>i’ and j=0,j'=i—i"+ 1.

It follows from Lemma 3 that there is an increasing sequence &, k=0+(6+1)
of ordinals and a sequence f*, i =0 of elements of g’ satisfying f} = &, for a, =i, j),
k<d:6+1. Considering that the enumeration g, satisfies (9) the ordinal numbers
f} satisfy (7) and (8). This proves (6). By (3) and (5) % satisfies the requirements
of Theorem 1.*

For the proof of Theorem 2 we need further preliminaries.

LEMMA 4. Let 0 =wm. Let >, s denote the converse of the lexicografical ordering
<, defined in 3. 1. Let g " and assume that g is well-ordered by >, ;. Then |g|=0.

Proor in outline: If this is not true, then there exists a gZ?% such that
typ g(>q5) =0".
It is easy to see by induction on ¢ =4, that for every &£ <4 there is an f<cu
such that the set
Ae={feg: f1E#1%)

has power =4. Then /" =/%}n for every n =& <o. The set g — |J 4, has power o+,
<d

because |g| =0* but for cach clement fof it f1 & =/* for every & =4. This is a con-
tradiction.

DEerINITION 3. 2. Let A be a set ordered by the relation <. We say that < is a
d-well ordering of A4 if every subset BE A well-ordered by the converse ordering
> has power =d. w-well-ordered sets are the ordinary well-ordered sets. Our
previous lemma states that %« is é*-well-ordered by <, ; for every infinite 0.

The next lemma contains the essential idea of the proof of Theorem 2.

* The proof of Theorem 1 makes use of an idea of E. SpECKER [7] used for the proof of typ? w+
4 (typ* @, 3)2. The same idea is used in [4].
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LEMMA 5. Let o, 8 =w. Then % is not the union of less than o sets é-well-ordered
by <,5-

PrOOF. Let g;, £ =7 be a disjointed sequence of subsets of x, d-well-ordered
by <, 5. We have to prove that

First we prove

(1) Let g &% be o-well-ordered by <, ;. Then for every /¢ g there is any <o
such that for every hcg it y=gtn implies that h(n) =f(n).

In fact if such an 5 does not exist then for every n =40 there is an "¢ g such
that A"t n =4ty and A"(ny)=f(y). But then A">, ;4" for every n =y" <o and {"}, _;
is a subset of g of power & well-ordered by >, ;, a contradiction.

It follows immediately from (1) that the following assertion holds.

(2) Let g &% be d-well-ordered by <, ;5. For every f€g let #(f) be an ordinal
=0 satisfying (1). Let f, hcg be such that n (f)=n (h)=n and ft 5= It n. Then
J@) =h(n).

(3) Put g= U 8- For every feg put &(f)=¢ for the unique ¢ for which

J€g: and let :,z(j) bu an ordinal = ¢ satisfying (1) with g, instead of g.
(4) Put a,={fcg: n(f)=n} for n=05. We have

(3) = U ay-
y=d

We define a function f¢’x—g by defining f,, #=0 by transfinite induction
on 5 as follows. Suppose that for some 5 <0 f,. is defined for every n’-=#, hence
Sty is defined. It follows from (2) and (4) that for each &=y there is an ordinal
number ¢ (&, n) such that for every h€g.(a, It n=fty implies h(y) = o (, n). Con-
sidering that y =« there is an ordinal number f, <o such thatf,]1 #0(&, n) for every
¢ <=7, This defines the function f and it is obvious that f¢ %z Assume f€g. Then
by (3) feg: for E=E(f). Let n(f)=n. Considering that fin=ftn, f,=0(&n) a
contradiction, since f€g:(1a,. This proves Lemma 3.

ProoF OF THEOREM 2. We define a graph 4 =(g, G). Let g ="x. Then (%) =o’.
Let f be a one-to-one mapping of «® onto g. Let {f,.f,} 0 =0o-—=o" be arbitrary.
PLI[ {l{mt{a} {~ G ln‘ .f;z}a,é.f:f‘*

First we prove a lemma.

(1) Let a=%x and let fi=w be arbitrary. Then |} S %(a) iff a is not f-well-
ordered by <, ;-

The only if part is trivial from the definition of . Assume ¢ is not ff-well-ordered
by <,,s- Then by 3. 2 it contains a subset » = a such that [b|=f and typ b (>, 5) =P,
i.e. b is well-ordered by >, ;. It is well known that then 5 contains a subset ¢ h,
|¢|=p such that for each je, Jo€c f,>=,51, il 0=0.

For the convenience of the reader we mention that this can be easily proved
using a theorem of [3] which in terms of the partition symbol defined in 2. 4 states

* The idea of graph definitions of this type goes back to SierpiNski. We call it a Sierpinskisation
of the complete graph.
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that f—(f, ®)? holds for every ff =w. The proof is simply a Sierpinskisation of the
complete graph with set of vertices b, using the two different well-orderings.

It is obvious that the complete graph with vertices ¢ is a subgraph of %. This

roves (1).

; By lemma 4 and (1) we have [6%] %%, hence f(%) =0*. On the other hand if
y—o and %, =7y is a vertex-decomposition of type y of ¥ then by Lemma 5,
there is a &=y such that g, is not J-well-ordered. Then, by (1) [0] £%(g,), hence
f(%.)=0". This proves the thecorem.

We wish to discuss two possible strengthenings of the theorems of this section.
It is possible that under the conditions of Theorem 3 there always exists a graph %,
with o(%)=u, (%)= [ such that for every vertex-decomposition %, <y of type
y of @ we have [(¥:) =p for some { =7. As a corollary of Theorem 3 this is trivial
if f is not a limit cardinal, and it is easy to see that if f§ is a limit cardinal then a
further condition ff=a or y=cf («) is necessary. In case ff=w we can prove the
following

TuroreM 4. Let a=wm be regular. Then there exists a graph % with «(%)=ua,
B(#)=w such that, fo. every y<u and for every vertex-decomposition 9, &<y
of it, (%) =w for some &=y.

We postpone the proof.
We do not know whether this result can be generalized for limit cardinals
[i=wm. The simplest unsolved problem is

ProsrLem 1. Assume G.C.H. Does there exist a graph % with a(¥)=w,,,
B(%)=w,, such that for every vertex-decomposition ¥;, {=wm, of type v, of ¥,
f(%)=w, holds for some ¢=w,?

The second generalization of Theorem 3 would be that under the conditions
of Theorem 3 and the additional condition o = or cf () =7 the following assertion
is true. There exists a graph % with a(%)=uo, /(%)=f such that for every vertex-
decomposition %, £~y of type p, there is a ¢ —y for which %; contains a sub-
graph isomorphic to ¥.

We did not investigate this problem very closely, but we mention that e.g.
the graph constructed for the proof of Theorem 1 has this stronger property in
case o is regular.

Now we give the

PrOOF OF THEOREM 4. Let g =2u. Assume f, h€g and f(0)=h(0). Put {f. h)€G
iff f/(0) =g (0) and f(1)=g(1). Obviously a(%)=qa.

We prove
(1) B(¥%) =o.

It is obvious that i (%) =i for every i =w. If f(¥%) =w then [w] £ 4, i.e. K[g' 1 =%
for some g’ C g, |g’| =w. We may choose the notations so that g’= {f*},., where
fi#f7 and fi(0) =/%(0) for every i—j=w. Then by the definition of ¥ f(0)</7(0)
and fi(1) =f4(1) for every i =j—=w. This is a contradiction, hence (1) is proved.

Let now %, £ =y be an arbitrary vertex-decomposition of type y <o of %.
Then by Lemma 2/A there is a & =y such that

typ e (<,.2) =typ %ot
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It follows from Lemma 3 that for every i = there exists a sequence {f7)}
elements of g, satisfying the conditions

SO <...<fHO) </ () <...<f°).

Hence by the definition of ¥ [i] &%, for everyi=w, hence f(%;)=w. This proves
Theorem 4.

of

Ji<i

§ 4. Further refinements of the vertex-decomposition problem

As a corollary of a theorem of [6] which also follows from our Theorem 2 we
know that for every integer 5, y =2 there exists a finite graph 4 with (%) =/f 1
such that in every vertex-decomposition ., £ =y of type 7 of % there is a member
%. with f(%.) =+ 1. L. LovAsz pointed out to us that possibly this theorem can be
improved so that one can find such a graph % which satisfies even further conditions
expressing that % does not contain “greater” graphs, other than the complete f-
graph [f]. He gave in the special case f=3, y=2 a tricky construction of a graph
% which does not contain a quadrilateral with a diagonal (hence does not contain
a |4]-graph) but has no vertex-decomposition of type two where the members do
not contain triangles.

It turned out that using the methods of our paper [1] one can easily prove a
very general result in this direction. This will be given in Theorem 5. An inieresting
feature of this theorem is that unlike the previous results it does not generalize
for infinite graphs. In Theorem 6 we prove that if a graph 4 with (%)= +1.

; \ } 41
2=f<=w does not contain a subgraph of fi+ l-vertices and (f‘; }—I edges

(i.e. a complete f#+ l-graph minus one edge) then it has a vertex-decomposition
.. £ =w of type w such that (%) =p for every = w.

Before stating the theorems, for the convenience of the reader we recall some
definitions given in [1].

DEFINITION 4. 1. A pair # =(h, H) is said to be a set-system if U HEh.
H 1s said to be uniform if |A|=|B| for every pair A, B€ H. If # is uniform then
the cardinal of the elements of H will be denoted by x»(/H). A graph % is a uniform
set-system with »(H)=2. The chromatic number of a set-system . denoted by
Chr (2#) is the least cardinal y for which there is a decomposition /., £ =y of type
7 of /i such that no /; contains an element of H as a subset.

Let s be an integer, and let 5 be a uniform set-system with »(#) =k, 2=k = w.
A is said to be s-circuitless if forevery 1 =¢r=s, H'CH, |H’|=t we have |UH'|=
=1+ (k—1)t. A graph % as a set system is s-circuitless iff it does not contain cir-
cuits of length =s.

We need the following

DEerINITION 4. 2. Let % be a graph with f(9)=f+1, 2= =w. Let % denote
the set system (g, %5 where

Gin={¢'Sg: lg'|=p and F[1EG}

i.e. the system of complete fi-subgraphs of 4. Let s be an integer. The graph ¥ is
said to be fi, s circuitless if %, is s-circuitless.
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We need the following

Lemma 6. Let 2=f<=w. Let # ={(h, H) be a uniform s-circuitless set system
with x(H)=p, s=f. Let %y be the graph (gx, Gy, defined by the following stipu-

lations:
Ew :h, G_,y :AU”e%[A].

Then Guip=H. P(Ge)=0F+1 and Gy is P, s-circuitless.

ProoF. Let g'Sh, [g’|, 2=r=[f+1. We prove by induction on ¢ that #[g']<
C Gy implies that there is an A €. for which g’ 4. For r=2 this is trivial by
the assumption. Assume 2=7=f+1 and that the statement is true for 1 —1. Let
gEh g =1 %[ 1= Gu. Assume that g = A forany 4 € #. The by the induction
hypothesis there is an H'={A,....,4,_}EH, |[H’| =1 so that the A-s contain
the different subsets of 1 — 1 elements of the set g’. Then

|UH | =t+1(f—t+ )=t —t+2)=t-(f—1)
since [ =3.
Considering that # is s-circuitless for s=f+1 this is a contradiction, hence
g = A for some AcH. In case ff+ 1 =r this is impossible, hence [f+1]d Dy,
In case r =i the statement just proved implies that %, 5 = #. Hence by the assump-
tion and by definition 4.2 %, is fi, s-circuitless.

THEOREM 5. Let f3, y, 5 be integers, i, y=2. There is a finite graph % with
B&)=p+1 such that G is P, s-circuitless and every vertex-decomposition G, & <y
of type y of % contains a member 4. with (%) =f+1.

Proor. By Corollary 13. 4 of [1] there exists a uniform set-system # =(h, H)
with #(H)=f, Chr (#)=y+1 which is s circuitless for s"=max (s, f#+1). Then
by Lemma 6 the graph %, satisfies f(%,)=/p-+1 and is fi, s-circuitless,

Let %, {=17 be an arbitrary vertex-decomposition of type y of %,. Then
g:, €=y is a decomposition of /i . Considering Chr (# )=y + 1 there is an 4 H
and a ¢y such that 4 =g. but then by the definition of %y %, [A4] S % (g;), hence
1Bl€G:, [(%:)=p+1.

Note that the proof of Theorem 3. 4 of [1] makes use of the so called proba-
bilistic method.*

THEOREM 6. Let % be a graph with f(4)=p+1,2=F<=w. Assume that %
does not contain a subgraph 9’ =(g’, G") such that |g'|=f+1, G'=%[g]—{x}
for some x <S¢’} Then there is a vertex-decomposition %., &= of type w of G
such that

B(G)=[ Jorevery &=uw.

PrOOF. Let %5 =(g, Gp) be the uniform set-system defined in 4.2. Then it
satisfies the requirements of Theorem 12. 1 of [I] with f=w and therefore has

* After having prepared this manuscript the authors learned that L. LovAsz obtained a
constructive prool of Theorem 13. 4 of [1] and so a proof of Theorem 5. We will point out that
this gives a constructive proof of the theorem of P. Erpds [5] concerning the existence of graphs
containing no short circuits and having large chromatic number. His proof is to appear in the next
volume of Acta Math. Acad. Sci. Hung.
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chromatic number = . This means that there is a decomposition g., £ =w of type
o of g such that 4% g, for any 4 € Gy. Considering the definition 4. 2 of Gy this
means that ¥, =%(g,) satisfies the requirements of the theorem.

We mention that Theorem 6 is trivial for #=2 even with 2 instead of w. This
is no longer true for f=2. The reason for this is that a 8, 2-circuitless graph satis-
fies the conditions of Theorem 6 for =3 but not for =2 since each graph is
2, 2-circuitless.

It is known that there are 2, 3-circuitless graphs of arbitrarily high chromatic
numbers but by 5. 6 of [1] a 2, 4-circuitless graph has chromatic number = .

§ 5. The edge-decomposition symbol

In view of the preliminaries collected in § 2 a best possible negative result
similar to Theorem 3 would be that under the conditions

(1) a=2, a=w-f, f=0=3, =2, (z, f)+(y,0d)

hold. In fact the condition «=2" is necessary by 2.7, the case o= f} is covered
by 2. 5, by the discussion of the Ramsey function while the other conditions except
o = exclude trivial and irrelevant cases. The case « —m will be discussed separately.

We do not know any theorem which would disprove (1), but we have only
partial results. The only genuine result relevant to the problem we have is the following

THEOREM 7. Let 0=(220"')* y=w. Then (o, )-+(y, 8) holds for every 6 <.

CoroLLARY 4. Assume G.C.H. Then (w,;4, )4 (m,.d) holds for every ¢
and for every ¢ =wm.
The simplest unsolved problem is

ProsLem 2. Assume G.C.H. Is (w;, ®) ~(w, ) true for i=2 or /=3 and
for some 0 =w?

The only other information we have is a further corollary of the results con-
cerning the partition symbol 2. 4.

THEOREM 8. A) Let a=2")*, y=w. Then
(o, )4=(p, 7).
B) Assume G.C.H, o =w then (o*,a*)4-(y, o) for y—=cf (a).
CoROLLARY 5. Assume G.C.H. Then
(Wi, g )=y, ) Tor  y=cf(mg).

All other instances of (1) remain unsolved. We will point out only one special case
which seems intrigueing.

ProsrLEM 3. Does (o, w;) —~(y. ®) hold for any pair «=27, y =w?

Proor oF TaeoreM 7. The graph we construct will be a subgraph of the graph
constructed for the proof of Theorem 4. Put f=(2")* (then a=(2%)*) and g=
={fc2u: fy,—[). Assume [, heg, fo=g,.
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(1) Put {f; h}€G iff f =g, and f, =g,. Then as in the proof of Theorem 4
we have
(%) =u, M%) =w.

Let %., ¢ =7 be an arbitrary edge-decomposition of type y of ¥. We prove

(2) There is a &<y such that f(%)=w.

This is a slightly stronger statement than that of Theorem 7. (To prove the
theorem it would be sufficient to show that for every d <w there is a ¢ depending
on & such that f(%;)=4.) Let v<=p<a. We define an edge-decomposition %(v, p),
&=y of type y of the complete graph with set of vertices 8 as follows.

(3) Let y=£&—<p be arbitrary. Let £, h be the elements of g satisfying

fo=n, fi=p, ho={ hy=v.

Then by (1) {/, h}€G, hence {f, h}€G, for some &<y.

Put {n,{}€Gu(v, p) for this & By Theorem 4 of [2] we have (27)* ~(y*);
for every y=wm. This means that by 2.4 corresponding to every v<u-<u there
exists a &(v, p) =7y and a set B(v, u) = f such that

{4) ‘% [B(V, 1”')] g G{{\-,;.IJ(V, ,U)
and
(5) |B(v, )| =17.*

(6) Let 4 be the set of those functions @ with %(a) =2, for which a, €8, a, €Z[f].
Considering that ((2)*)"=(2")*, we have

(7 |4]=p.

We define an edge-decomposition 42, a€ 4 of type f of the complete graph
with set of vertices o as follows.

(8) Let v=p=o. Then by (4) and (6) a,= &(v, ), a; =B(v, i) for some
ac A. Put then {v, u}ec%?.

By (7) this edge-decomposition has type f. Considering again Theorem 4
of [2] it follows that there exists an a¢ 4 and a subset C S a, such that

(9) |C|=p+ and %[C]< GP.

Put ay=¢ a,=B, D={fcg: f,cB and f,€C). We have by (8) and (9)
v, W)=¢, B(v, 1)=B for every v—y, v, u€C. If f,heD, fo=h, and {f, h}€G
then by (1) fo =hy. fi=hy, fo. ho€ B, fi, hy € C. Hence B(h,, f1)=B, {(hy,f1)= &
hence by (4) { ;. ho} € Gu(hy, f;) and that means by (3)

{f. i€ G

It follows that
(10) G(D)C Y,

Using (5) and (9) it follows that for every i— there are sequences of ordinals
fﬂ? - .= C{_] - ﬂ, foEB for J=1i
wo=ff ==Y, fleB for j=i.

* The theorem gives a B(v, g) with |B(v, u)| = »* but we choose B(y, p) as a set of power
7 for the sake of argument given for the proof of (7).
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Let /7, j=i be the corresponding sequence of elements of g and let g"= {7}, _,.
Then |g’| =i, by (1) %[g’] =G, by the deﬁnition of D we have g"< D, hence by (10)
S 1e’] < G;. That means [i] £ %; for every i = and thus f}(%.) =w. This proves (2).

REMARKS. The set D obtained in the proof is such that |B|=1y. |C|=f*+.
Using the G.C.H. we obtain e.g. in the simplest case y=w that |[B|=w, |C|=w,.
IT the hypothesis is assumed this can be improved so that |B|=wm, since in the proof
of (7) we can use that ((29)t)" =, =(29)*.

We mention that even assuming the G.C.H. we cannot decide the following

ProsrLEM 4. Let % be the subgraph of % defined in the proof of Theorem 7
spanned by the set g'={fe2u: f,=(29)*, [ =(27)*).

Does then 4" have an edge-decomposition %., & =w of type w with members
B(%)<w for & <=w? '

To prove Theorem § we need

Lemma 7. Let o, fi. i, ., 0 be cardinals such that

a) a-=(B, B)?

b) a—=(f, (9),)5+1
hold. Then (o, f)-+(7, ).

ane

Proor. By a) the complete graph with set of vertices o has an edge decomposi-
tion %%, %' of type 2 such that B(%%)=f, i ’9‘)‘ f’. The graph %° satisfies the
rcqunremcms of our theorem. In fact if 4., ¢ =7y is an arbitrary edge-decomposition
of type y of 4%, then ¥', 4., £ =7 is an edge-decomposition of type y+1 of the
complete graph with the set of vertices z. Then by b) considering that (%) =f’
there is a £y such that f(%:.)=0. .

Proor or THEOREM 8. By Theorem 7 of [2] and by Theorem 1 of [3] we have
29 =(@)*, (3*),)2. for 3z w, at(xt/at)? for a= o

and ot —(2); if the G.C.H. holds and p—=cf (x), x =w. Hence the theorem follows
from Lemma 7 in both cases.

Note. If we assume G.C.H., then by the results of [3] a«t 4-(w,, f')* holds
iff f#=a* and cf () =w. On the other hand, «* —~(a*, (3),)* holds if cf (2)=w.
Hence no information concerning Problem 3 can be obtained using the above
method.

§ 6. The edge-decomposition symbol for finite graphs

Let now «, fi, y, 6 be finite, and assume x=f=05=3. It is obvious from the
definition 2.4 of the Ramsey function that if fi=2((0),, 7, 2) then (zx, fi)-+(7, 9)
holds.

It is not known whether (x, ) ~(y, 6) holds for anyﬁ-x({b) 7. 2). Probably
for every integer =2 and 6 =23 there is an o, 5 such that {uc G2 0 1) = (y,0)
holds.
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The special case y=2, =3 was suggested by the authors as a problem to
several people. It is known that «((3),, 2. 2)=6 and in fact it was prowed by several
people* that there is an « such that (x, 6)-+(3, 2) holds.

L. Posa proved the existence of an « for which

(11 5]*-{33 2}

holds, but the problem whether (x. 4) —(3, 2) holds for every =, is still unsolved.

We outline POsA’s proof.

By Corollary 3 there exists a graph % ={g’, G’) such that (%')=4 and ¢’
has no vertex-decomposition %, %; such that (% )=3 for i=2. Let g consist
of g” and of one new vertex x, and let G=G" |J {x, y}. i.e. the new vertex is con-
nected to each of the old ones. reg'

Then f(%)=5 and % has no edge-decomposition %,. %, of type two with
P(%)=3 for i <=2 for if not, then put gi ={y<g’: {x, y}€G,} for i=2.

Then 4'(g))=%,, ¥'(g,) = %,. hence ¥'(g;), ¥'(g;) is a vertex-decomposition
of 9" with f(%'(g))) =3 for i =2. a contradiction.

§ 7. A special edge decomposition problem

We say that a graph % is a tree if it does not contain circuits. The problem
arises what graphs have an edge-decomposition of type y where all the members
are trees. In Theorem 9 we give a necessary and sufficient condition for y=w.
NAsH WILLIAMS gave in [8] a necessary and sufficient condition in case y =w. The
condition is that every finite subgraph of i elements has at most (i—1)-y edges.
The necessity of this condition is obvious. Our Theorem 11 gives a more difficult
necessary condition. It states that the union of y trees and even more general graphs
have colouring number =2y.

In Theorem 10 we state a corollary of our previous results, that a graph not
containing a quadrilateral has an edge-decomposition into w trees.

To state our theorems we need some concepts defined in [1].

DeFINITION 6. 1. Let G be a graph, and let < be an ordering of g. For any
arbitrary ¢’ Cg, V(x. g)={y: {x. y}EG and yeg'} t(x.g)=V(x. g')|. For xcg
gl=<xis the set {yeg:y<x}.

The colouring number of % is the least cardinal  for which g has a well-ordering
< such that t(x, g/ <x) =7 for every x¢g. The colouring number of % is denoted
by Col (%).

We prove

THEOREM 9. Let y =w. The graph % has an edge-decomposition onto the union
af v trees if and only if Col (%)=7".

As a corollary of this and a result of | we prove

THEOREM 10. A graph % not containing quadrilaterals has an edge-decomposition
of type w where all the members are trees.

* G. L. CuerLin, R, L. Granam, Yan LinNT.

Avta Matbesatice Academure Scientiarwm. Hungaricaz g8, 196y



374 P. ERDOS AND A, HAJNAL

We need the following

LemmA 8. Let % be a graph and let %., &<y be an edge-decomposition of type
v of % such that Col (%;)=y* for every E=y. Then Col (9)=y™*.

Proor. By the assumption for every &<y there is a well-ordering <. of g
such that |V(x, g|<:x)|=y. Put

Jx) = U V(x, gl<ex).
Then f(x) is a set mapping of order =y*. It is obvious that {x, y}€G, iff y ¢ f(x)
or x€f(y). Hence the statement follows from Theorems 6. 3 of [1].

Proor oF THeOREM 9. Let % be a graph and assume that Col (4)=y*. Let
< be a well-ordering of g such that

(x, g|<x)=y forevery x€g.

It is obvious that one can define the graphs %., £ <y on such a way that if y=z,
and y, z€ V(x, g|<x) then {y, x}, {z, x} belong to different %.-s. Hence ¥ is the
union of 7y trees.

On the other hand, assume now that @., =y is an edge-decomposition of
type y of % where all the %.-s are trees. Then Col (%.) =2 for every ¢ -—7. Hence
the statement follows from Lemma 8. '

Proor or THEOREM 10. Let % be a graph not containing quadrilaterals (or more
generally [i, w,]-complete even graphs) for some i <=w. Then by Corollary 5.6
of [1] Col (%) = w, hence the statement follows from Theorem 9.

Assume now y-—=ow. Using an argument similar to the one used in the proof
of Lemma 8 and using Theorem 6.5 of [1] it would be easy to obtain that if @ has
an edge-decomposition to y trees then it has colouring number =2y - 1. However
this is not a best possible result. We will prove the following stronger

TurorReM 1. Let y<=w. Assume that 9. has an edge-decomposition Gy, &~y
where the Ge-s are trees. Then
Col (%) =2y.

This is best possible since by a well-known result (seee.g. [9], p. 185) the complete
2y-graph [2y] has an edge-decomposition to y trees.

Theorem 11 can be proved with a similar argument to the one used for the
proof of Theorem 9. 1 of [1] saying that for every 2= i = a graph all whose finite
subgraphs have colouring number f§ has colouring number =2f —2. We mentioned
in [1] that the same argument should be used to the proof of Theorem 6.5 of [1].

For the convenience of the reader we outline here the proof of a more general
theorem, which implies theorems 9.1 and 6.5 of [1] and Theorem 11 as well.

THEOREM 12. Let 4 be a graph and ¢ €%, o(x)=0 for x¢€g. For an arbitrary
AcH () put
WA, G)=2IG(A)| and p(A, %)= > o(x).
XA
We briefly write v(A, ¥)=v(A), o(A, ¥)=p(A).
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Assume that v(A)=o(A) for ecvery A€, (g), A =0. Then g has a well ordering
=< such that
T(x, g|<x)=p(x) forevery xcg.

COROLLARY 6. Let % be a graph, 1 =y =®. Assume that every finite subgraph
of i=0 vertices has less than i-y edges. Then 4 has colouring number =2jy.

Corollary 6 follows from the case g(x)=2y of Theorem 12 and obviously
implies Theorem 11.

PrOOF OF THEOREM 12 (in outline). 1f % is finite, the assumption implies that

there is an x€g such that 7(x, g)< o(x) since v(g)= > (x, g)< > o(x)=o(g).
XEqg xXEg
Hence the result follows by induction on o(%).

Assume o(%) =w. Let A Sg. We shall briefly say that A4 is closed if for every
Be,, (g~ A)
(1) > t(x, AUB) < o(B).
xe B
The following assertions are evident:
(2) If 4 is not closed then there are A'c%,(A4), Bc¥, (g~ A) such that

> t(x, AUB) = o(B).
xR
(3) If for every A" c % (A) there is an A”< A such that A" A" and 4" is
closed then A4 is closed.
(4) If {A.}.., is an increasing sequence of closed sets then [J 4, is closed.
£<n

We prove

(5) If A g then there is an A" Cg, A< A" such that 4" is closed

a) |A'|=w it [Al=w

by |A'|=|A| i |A|=w.

First we prove (5) a).¥ Assume that the assertion fails for some finite 4. We
define by induction on 7 an increasing sequence A; of finite subsets of g as follows.
Put A, =A. Assume i=0 and that A; is defined for every j =i such that A; is finite.
Then A< |J A; is finite, hence it is not closed by the indirect assumption. Let then

j<i
A; be a finite subset of g~ |J 4; such that

F=i
(6) 2 t(x, U 4;) = ¢(4).
XE A Jj=<i

Thus the sequence A, is defined and (6) holds for every i—w. By the assumption
T(A;) = 0(A)), t(x, UJ 4;) #0 holds for at least one x¢ 4,. It follows by induction
j<i

on i that
v(U4) = De)+i for i=1.
J=i i=1

This is a contradiction since the right hand side is at least o(|J A4)) if i=o(4,).
=i

* The proof is similar to the proof of Lemma 9. 4 of [1].
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Thus (5) a) is proved. Let 4" denote a set satisfying (5) a) for every 4 €%, (g).

To prove (5) b) let A=g, (A)=w. Put Ay=4, 4,,,= |J B, A=) 4;. Then
Bé Y ol Ap) i<w

obviously [4’|= 4| and by (3) 4" is closed. This proves (5) b).

Put 2(%)=o=w and assume that the theorem is true for every graph %" with
(%) =a.

Using (5) it is easy to define by transfinite induction an increasing sequence
Az, E=u of type o of subsets of g such that

(7) g= U A:, A:is closed and |[A;| =« for every &—=o.

Put B;z U4, for ¢ =u, By=0, Cs=A.— B.. By the assumption the empty

n<g

set is closed, hen::e by (4) B. is closed for every ¢ <.

Put 7,(x)=1(x, By) for every xeC,, {=u.

Put %, =%(C,) for { =u. Then «(%,) =« by (7) and 7,(x) < ¢(x) for every x € C;
since B; is closed. Hence

o(x, ¢)=o0(x) —1,(x)=0 for every C,.
We will apply the induction hypothesis for the graphs %, and the functions
o(x, £). Let BEY (C;). Put briefly

vo(B) = v(B, %), 0:(B)=0(B,%)= > o(x,

!
xe B

i
—

Then v(B) = %;t{}\', B). Hence
ve(B)+ 31,(x) = X t(x. BUBY) = 0(B) = 3 o(x)
) xC B xc B a xcB
since B is closed and BE C.. Hence

ve(B) = 2 0(x)—1,(x) = 0¢(B).

xc B

It follows that %; satisfies the conditions of the theorem. It follows from the induction
hypothesis that there is a well-ordering < of C; such that 7(x, C:|<.x) = o(x) —7,(x)
for every x € C;. We define a well-ordering < of g by the stipulation x<y if x€ C;,
y€C, and either £ =y or {=pn and x<;y.

By (7) < is obviously a well-ordering of g and

Ty, g[<X) =1,(x) +1(x, C|<x)

for every x€C;, & =a. Hence 7(x, g|<x) < g(x) for every x€g.

( Received 14 September 1966)
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