ON AN EXTREMAL PROBLEM CONCERNING PRIMITIVE
SEQUENCES

P. ERDE)S, A. SARKOZI and E. SZEMEREDI

A sequence a, <... of integers is called primitive if no a divides any
other. (a;<... will always denote a primitive sequence.) 1t is easy to
see that if @, <... <a; <n then max/k=[(n+1)/2]. The following question
seems to be very much more difficult. Put

f(n)=max (2 -L) 5

4

where the maximum is taken over all primitive sequences all of whose
terms are not exceeding n. Determine, or obtain an asymptotic formula
for f(n). The explicit determination of f(n) is probably hopeless but we
will obtain an asymptotic formula for f(»). In fact we will prove the
following :

THEOREM, i
- en
=1 1)) ——. 1
f(m) ( o )) (27 log log n)? (1)
Behrend [2] proved that (e, ... will denote positive absolute constants)
logn
/) < (loglogn)t
and Pillai showed that
logn
T00> % oglogmy
P. Erdds [3] stated without giving a detailed proof that (1) holds,
He proves in [3] that
logn
= (1 e 2
f(ﬂ)}( +O(l}) (27 loglogn)? @)

but the preof of the upper bound is only indicated. TI. Anderson [1]
showed that the proof suggested in [3] only gives

log n

fn)< (H—a(l)) mﬁ

In the present paper we will prove (1), but our proof will be com-
pletely different than envisaged in [3]. In view of (2) it will suffice to
prove that

Jm) < (1+0(1) 28" (3)

(27 loglogn)#

Received 7 February, 1966.

[Jouvryan Loxpox Matn. Soc., 42 (1967), 484—488]



ON AN EXTREMAL PROBLEM CONCERNING PRIMITIVE SEQUENCES 485

and in the rest of our paper we will mainly be concerned with the proof
of (3).

Denote by o(m) the number of prime factors of m multiple factors
counted multiply. v(m) denotes the number of distinet prime factors
of m. Put

(n) . 1
% S— i< alf)=r.
Denote [loglogn]=x. In [3] it is proved that
(n)

= (1+0(1) (i;f;;.

Thus (3) and hence our theorem will be proved if we show that

()

f<(1+0M) T, (5)

Instead of (5) we could prove
f €y (n) )
f(n)<(1+—)§:. (6)
X /) x
We do not discuss the proof of (6) since perhaps very much more is true.
Possibly

Sf(n)— max ‘ﬁ}

is much smallor (we can show that it is not bounded). The value of r
(n)

for which 3 assumes its maximum is estimated very accurately in [3].
r

Now we prove (5). We need the following :

LEMMA. :
S 1 o (log n)

where in X, 1<t<n and o(t)—v(t) > 100 log x.

Let t be an integer for which w«(f) —v(f) > 100 logxz. Then ¢ is clearly
divisible by a square m for which «(m)—v(m)>25logx. Hence we obtain
by a simple argument (p runs through the primes)

| 1 \0logz ] 3\ 10logx ) 'logn
LIT{(%‘};&) ;%LT<(T) Zlogﬂ=o(—mi ),

which proves the Lemma.
Let ay < ... <a, <n be a primitive sequence for which

o () — v (er;) < 100 log .

Now we show
(n)

3 < (1+0) £ (

£

-1
—
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(7), and our Lemma implies (5). Thus to prove our theorem it will
suffice to prove (7).

Denote by a,” the set of those a's which have r prime factors
(i.e. m(a}ﬂ):r). Write

Z'——"EE +E +ZE >-'1+Ez+2‘3 (8)

=1 >z i ; ,- r<x § @

Some of the sums on the right-hand SJde of (8) may be empty, an
empty sum is 0.

Consider first the @, with »>2. Replace each such &/ by all its
divisors having exactly « prime factors. Thus we obtain the sequence
b; <.... In other words the b’s are those integers with «(b;)=2 which
are divisors of some ¢ with r>x. Similarly d, <... are those integers
not exceeding » with a(d;)== which are multiples of some @, with r <.
Since a;<...<a,<n is a primitive sequence the three sequences
bi<..; a®<...; dy<... are disjoint hence

1 (n)
2% +E w+ E < 2. (9)

&

In view of (8) and (9), ('7) [and hence (5) and (1)] will follow if we show

Elx(1+o(1)) (10)

b

and .
Eag(l+o(l))z€} C;é-i—o(logn)- an)

Thus to prove our Theorem we have to show (10) and (11). First we
prove (10) the proof of (11) will be similar but slightly more involved.

Put
max o(a;) =7r;, min a(a;)=r,.
i i

We can assume that 7, >, for it not then ;=0 and (10) is trivial. We
will transform the set of ¢’s satisfying «(e,) > « into the b’s by an induction
process. The first step is to consider all the integers u,M=Y [4® denotes
an integer with o(u®)=4~k] which divides some a, These integers
clearly all differ from the ¢, (since the a’s are primitive). Now con-
sider all the %,/ which divide either one of the 1 or one of the
a1, These u,/1=2 all differ from the o, 1=2. If we apply this process
r;—a times we clearly obtain the b’s (in other words the b’s are the
u s,  We have for every [

1 1
}_, _;)2, (?‘1—-!’+l~10010ga,)(2, (f4+n+2 (rl—r+1)) (12)

.u ffl
The proof of (12) follows easily from the definition of the «®’s. The

integers «,1 are defined as the set of all divisors, having r, —I prime
factors, of the integers w1~ and a1, Hence if we multiply each
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integer ;11 by all the primes p <% we obtain each integer m = u 1+
or m=a, "7 at least v(m) times and by Lemma 1

v(m)=r;—1+1—100log.

This completes the proof of (12).
From (12) and the theorem of Mertens,

1
— <X +Cy,
iﬂgn P %
we obtain
1 ry—1+1—100 log z 1 1
Fugo” -+ ( w3 o ”)' (13)
Clearly
—14+1-100lo,
L i P11 if ry—1>wx+200logx (14)
x+ey
and for every ri—Il>x (v =)
—l+1-1 2
r—I+ 00 logx} - 00 logw. (15)

x+¢4 x
From (13), (14) and (15) we obtain by a simple induction argument
with respect to [

200 loga; 200log x 1
(1 st (s o

hence (10) is proved.

We now prove (11). We can assume that r,<x. As in the proof of
(10) we start with the integers . Denote by w2tV the set of all
(distinct) integers of the form pa©?, p<n'™. The 2%, and a4
are distinct as in the proof of (10). By %, we denote the numbers
of the form pu, 2™ and pa,tD, p<nl® etc. We repeat this process
x—1, times. The u's are all less than n.nWeE-—T) < plHliz,

The numbers %, consist of some (perhaps all) the d’s and also some
(or all) the integers in the interval (n, n'*'*) having 2 prime factors.
We have

1 1 1 1
(et Sapm) 2,5 < 0 S (07

(17) is evident since each integer having r,+141 prime factors has at
most r,+1+1 divisors having r,+1 prime factors.
By the theorem of Mertens we obtain from (17)

1 x—3loga 1 1
o k= -~ .
Zi -u&,(f-_n.H-HJ 7 Ty -+ l +1 (z‘ ?f,tira-HJ + E a,i(?'g‘l‘n) {18)
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If ry4+ 14+ 1<2—3 loga then
x—-310gx;
rat+l+1

and since 7o+ 1+ 1 <x we always have

x—3log:r:>x-—3logar_1 3 logw
?‘2+3+1 B x - &£ ’
Thus as in the proof of (10) we have by induction with respect to [

1 3logax
— >11- o
~ u o ( &

)" So=(+oq) 5, (19)

On the other hand we have

1 1 't 1 logn
— g e —_— —_ 0 1. 2
%uf‘” = d; * £=Zn t ? d; * ( z ) (20)

(11) immediately follows from (19) and (20) and hence (3) and (1)
are proved.
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