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1 . Introduction . In this paper we study several concepts concerning
families of Toeplitz transformations, with special reference to the
Hausdorff methods .

In Sections 2 to 7 we refine Knopp's concept of the core of a
sequence of complex numbers, describe the method of essential cores
(which extends the idea of CesAro, Hölder, and Euler methods of infinite
order`, and compare the method of essential Hausdorff cores with Agnew's
c llective Hausdorff method .

Section 8 is devoted to the idea of families of matrices that are
strong in the sense that the corresponding method of essential cores is
stronger than the collective method . In Section 9 we study the norms of
l mnded convergence fields, and in Section 10 we identify the bounded
sequences that are invariant (modulo the addition of a nullsequence)
under all regular Hausdorff transformations .

2 . The disk-shaped plane. The concept of the core (Kern) of a
sequence x={x„} of complex numbers is due to Knopp [15, pp . 113-
114], whose definition is equivalent to the following : the core of {x„} is
the intersection of all closed convex sets in the extended plane that con-
tain all except finitely many of the points x,, .

To refine the concept, we compactifv the plane E 2 by adjoining to
it not a single point at infinity, but a circle P of points (oo, 0) (0<0<27c) .
In order to topologize our extended plane, we map E 2 onto the tangent
hemisphere

x2+y2 -+ (z-1)2 =1

	

(0<z<l)

by the central projection P l with centre (0, 0, 1), and we extend the map-
ping to E 2 U P by adjoining the definition

Pl(oo, 0) =(cos 0, sin 0, 1) .

*This paper was written with partial support from National Science Foundation
Grant G-23830 . The autbors thank Professor D . Gaier for many helpful suggestions .
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We then map the closure of the hemisphere onto the closure of the unit
disk by the vertical projection P2(x, y, z)=(x, y), and declare the topo
logy of the disk-shaped plane E2 U P to be that which the ordinary topo-
logy on the closure of D induces under the inverse mapping Pi1P._1.
For a description of the manner in which P,P, carries each family of
parallel lines in E2 U P onto a family of semi-ellipses with a common
diameter, we refer the reader to Gans [9] .

By a half-plane in EZ U P we mean one of the two open sets into
which the closure of a straight line separates E 2 U P ; a closed half-plane
is tha closure of a half-plane . It is natural to define convexity in terms of
the idea of betweenness . We shall say that a point r in E 2 U Plies be-
tween two points p and q provided it lies in every closed half-plane con-
taining both p and q. (If in our definition we had used open instead of
closed half-planes, then every point would lie between the points (oo, 0)
and (oo, 7r), since no open half-plane contains both of these points) . We
shall further say that a point set E is convex provided, whenever (p, q) is
a pair of its points, E contains all points lying between p and q.

The set consisting of the two points (oo, 0) and (oo, n) is convex,
but not connected. Clearly, it becomes convex and connected if we ad-
join to it a horizontal straight line or the upper or lower semicircle at
infinity . Therefore, if the core of a sequence {x"} of finite complex numbers
is to be connected in every case, we cannot define it as the intersection
of all connected convex sets containing all except finitely many of the
points x", let alone as the intersection of all convex sets with this proper-
ty . This difficulty motivates the following approach .

DEFINITION . If x = { X"} is a sequence of points in the disk-shaped
plane, a point p lies in the core K(x) provided each half-plane containing
p contains x„ for infinitely many n .

If the sequence x is bounded, then K (x) coincides with Knopp's
core . To see that the situation is not the same in the general case, let

x„ - (- 1)" n,

y" = (-1)" n2 -}- in,

z =
n2 + in

	

(n even),
"

	

- n2

	

(n odd),
w" _ (-1)" (n2 -}- in) .

We note that for each of the four sequences, the set of limit points con-
sists of the two points (oo, 0) and (oo, 7r) . The cores are as follows
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K(x) is the closure of the real axis,
K(y) is the closure of the upper half of r,
K(z) is the closure of the upper half-plane,
K(w) is El U P .

The four cores in the sense of Knopp are

(i) the closure of the real axis,
(ü) the point at infinity,
(iii) the closure of the upper half-plane,
(iv) the extended plane .

In (i) and (iii), the operation of forming the closure is of course carried
out under the topology of the extended plane .

An extension of Ez with a topology finer than that of the disk-
shaped plane was described by Rogers [23, Part I, Section 3] .
3 . Core-shrinking transformations . We shall use the symbols A, B, . . .
to denote either Toeplitz metrics (ank), (b„ k), . . . or the corresponding
sequence-to-sequence transformations

t = As (t„ -

	

a„k sk ) .
k=0

A matrix is row-finite if each of its rows contains only finitely many
nonzero elements ; otherwise it is row-infinite . Also, a matrix (or trans-
formation) A is regular (in some terminologies : permanent) if convergence
of a sequence s to a finite value a implies the existence of the transform
As together with its convergence to a . For convenience, we state the
classical necessary and sufficient conditions for regularity that were
established (with varying degrees of generality) by Toeplitz [27, pp .
114-117], Silverman [26, pp . 48-50], Schur [25, pp . 82-88], and others : a
matrix A is regular if and only if

00
(3 .1) sup 2 1 ank I < co,

n éc=0
00

(3 .2) lim ank = 1,
n-->w

k=0

(3.3) lim ank = o (k = 0, 1, . . . ) .
n-#. o0
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We do not list the many combinations of somewhat weaker or stronger
forms of conditions (i3 .1) to (3 .3) that during the last half-century have
served as subjects of research papers. Suffice it so say, here, that a row-
finite matrix A represents a core-shrinking transformation in the space of
all complex sequences, in other words, that K(As) C K(s) (inclusion in
the wide sense) for each sequence s, if and only if A is regular and
a n k > 0 for k > k,, (ko independent of n) . For future reference, we state
this in a slightly different form

THEOREM 1 . A row-finite matrix A is core-shrinking if and only if it
is regular and can be written as a matrix sum A = B + C, where all
elements of B are real and nonnegatire, and where only finitely many
columns of C contain nonzero elements .

For the case where the core is understood to be Knepp's Kern, the
proof of the sufficiency of the condition was given essentially by Knopp
(15, pp . 115-117], the proof of the necessity by Hurwitz [14] and Agnew
[1, p. 185] . We omit the proof of our extension .

If we drop the restriction that A be row-finite, the situation remains
simple irovided we limit the discussion to bounded sequences . A matrix
A satisfies the condition K(As) C K(s) for each bounded sequence s if and
only if it is regular and

lim

	

, i ank
n-ioo k

4 . Hypercores . If the matrix A is not row-finite, there exist
sequences s for which one or more of the series 1k ank s k fail to converge,
so that the transform As is not defined. This difficulty can be overcome
by defining the point set K(As) directly, that is, without reference to the
transformed sequence. For each pair of nonnegative integers n and k, let

k

tnk =2 an1 sj
j=0

for each n, construct the core K„ of the sequence
f

t nk jk=0 ; and define

the set k (A, s) as follows : a point in the disk-shaped plane belongs to
k (A, s) provided each half-plane containing the point meets infinitely
many of the cores Kn .

For the Euclidean plane, Rogers [24, p. 332j defined the set
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K (A, s) and called it the core of the A-transform of s. Since k (A, s) is
defined even when As is not defined as a sequk-nee of points, we prefer to
call it a hypercore .

We shall say that a Toeplitz transformation is completely regular
in a space S of sequences provided the inclusion relation K (A, s) C K(s)
holds for each sequence s belop.ging to S. Clearly, a row-finite matrix
is completely regular if and only if it is core-shrinking .

The theorem of Agne w, Hur ivitz, and Knopp that we quoted in
Section 3 cannot be transferred to hypereores in the obvious manner
(for a simple counterexample, see ftogers [24, p . 333]). The following
theorem simplifies the problem, but does not solve it . (In form, our
theorem re embles ':.'h -orem 1 of Kuttner [16] ; but since Kuttner's
cores are sets in the finite plane, his theorems do not apply here .)

THEOREM 2 . A Teeplitz matrix A is completely regular in the space
of complex sequences if and only if

(i) it has no sequence of nonreal elements a(n s„ k9 ) such that both
n9-~oo and k,-+oo as p --*oo ;

(ü) it is completely regular in the space of positive sequences .

We omit the proof of the sufficiency because it is fairly obvious,
the proof of the necessity because it is tedious . However, we call attention
to a special clajs of matrices : suppose A satisfies condition (i) in
Theorem 2 but has infinitely many rows each of which contains infinitely
many negative elements ; then A is not completely regular ; for if s„ T 00

rapidly enough, then the hypercore k (A, s) contains the point (oo, 7s) .

5 . Essential cores . Let iZ be a family of completely regular,
row-finite transformations that commute with each other under
matrix multiplication. Then, for each pair of matrices A and B in ~g,
and each sequence s of complex numbers, it follows from the two
relations

K (As) Z) K (BAs) and K (Bs) D K (ABs)

that the intersection K (As) fl K (Bs) is not empty. Since the cores are
closed sets and the disk-shaped plane is compact, it follows further that
for each sequence s the set

(5.1)

	

K(Uh- , s) -_ (1 K (As)
AeíW

contains at least one point .



9a

The requirement that the family C; be a commutative semigroup
under multiplication can be replaced with the weaker condition that to
each pair A and B of transformations in 9 and each sequence t there
correspond a tranformation C = QA, B, t) in such that

K (At) D K (Ct) and K (Bt)

	

K (Ct) .

If U is a family of completely regular, row-finite matrices satisfying this
condition, we call the set (5.1) the essential X-core of s . By the method
of Knopp [15, pp. 115-117], it can be proved that the essential t-core of
a sequence is connected and convex in the disk-shaped plane .

THEOREm 3 . Let A and B be two row-finite, completely regular
transformations such that AB = BA, and let

„S-" _ {I, A, Az, . . .}, 9 = {I, B, B2 , . . .},

	

_ {I, AB, (AB) 2 . . .} .
Then, for each sequences,

K(,*, s) n K (T, s) D K (d, s) .
The inclusion symbol cannot in general be reversed .

PROOF . If p is a point in K (d, s), then p lies in K{(AB)n s}, for
each n. Since A and B are completely regular and (AB)" = A"B" _
B"A", it follows that p lies in K(A" s) and in K(B" s), for each n . This
proves the inclusion relation .

To complete the proof, let

where a

PAUL ERDÖS AND GEORGE YIRANIAN

a

Íi

a

R
a

l 0
/ and (i =(

	

) . Then0 1
AB = BA= /(i

	

~.
R

\

	

./
Now let

	

s k = ( - 1 )k ( k = 0, 1, . . .) . Then for n

A"s={1,-1,0,0, 1,-1,0,0, . . .},
B" s = {0, 0, 1, - 1, 0, 0, 1, - 1, . . .},

(AB)" 3 = {0, 0, 0, . . .} .
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Therefore the inclusion relation cannot be reversed, and the theorem is
proved .

6. Completely regular Hausdorff transformations . 4 Toeplitz matrix A is
a Hausdorff matrix provided it has the form

(6.1)

	

A=Stt3,
where µ is a diagonal matrix and ó denotes the self-reciprocal triangular
matrix

(see Hausdorff' [ 13 ] or Hardy [ 11, Chapter I 1 ] ) . From the defini-
tion it follows immediately that the Hausdorff matrices form an abelian
semigroup and that the Hausdorff matrices without 0's on the diagonal
form a group .

If A = ( a nk ) is a Hausdorff matrix, then (3.1) holds if ar:d only if
there exists a function a( u ) , of bounded variation on [ 0, 1 ], such that

1
(6 .2)

	

ann =
J
un da(u)

	

(n = 0, 1 . . .) .
0

In cases where the function a exists, we shall always assume that
40) = 0 and that

2a(u)=a(u+0)-f-a(u-0)

	

(0<u<1).

With this restriction, a becomes unique, and we shall call it the generating
function of A (notation : A = H f a } ) .

It follows from ( 6 .1 ) and ( 6.2 ) that if A is a Hausdorff matrix
with a generating function a, then

1
(6.3)

	

ank = ( k > uk ( 1 - u )
n-k

da(u)
0

for n = 0, 1, . . . and k = 0, 1,-, n . Formula (6.3) in turn implies that
if 0 < u < v < 1, then

(64)

	

f im
co 2

	

ank = 0CO) - a(u) .
n-7 un <k <vn

1
1 -1
1 -2 1
1 -3 3 -1
1 -4 6 -4 1
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Moreover, if M is a closed set on[(), l ] on which oc is continuous,
then (6.4) holds uniformly as long as u and v are restricted to M.

If a and (i generate two Hausdorff transformations A and B, then
the matrix product AB is generated by the function

1
(6 .b)

	

Y (u) _ W) a(u) -I- fp(ulv) da(v)
M

(certain conventions concerning the definition of the Stieltjes integral
must be invoiced, in case !3(uly) and a(v) have common points of dis-
continuity) .

The right member of (6.5) is not generally suitable for computations ;
therefore early work on Hausdorff transformations, which was concerned
1a.rgely with the comparison of individual transformations, depended
mainly on the analysis of the sequence {a,,„}, that is, of the diagonal
matrix Er in (6 .1) . For ourr purposes, careful computations will not be
important ; on the other hand, we shall require intuitive insight into the
relation between the generating function a, and the matrix H{a}, and
therefore we shall rely mainly on r6 .4) .

From (6.3) we see immediately that

lim a. . = lim
I1~oO

	

n-%-oo

1

(1 - u)" dx(u) = hm a. (u) .
0

	

U--o0

Together with (6.4), this implies that H {a} is regular if and only if
a (1) = i and a is continujus at u = 0. Moreover : a regular Hausdorff
matrix is completely regular if and only if its generating function is real and
monotonic.

7 . Collective methods and essential Hausdorff cores . We write T1 for
the family of regular Hausdorff transformations, and 'fj+ for the
family of completely regular Hausdorif transformations . A sequences
of complex numbers is said to be summable to the (finite) complex
value 6 by the collective Hausdorff method {3f} provided there
exists a matrix H in J) such that Hs -> c ; if -r is a point of the disk-
shaped plane., we say that s is summable to r by the method Kwj+ of
essential Hausdorff cores provided the essential core K(7+, s) consists of
the point r . 'The distinction : for each sequence s the collective method
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{9f} polls all regular Hausdorff transformations, but in each case records
the reply only if the transform of s converges to a finite point ; the
essential method KT1+ consults only the completely regular Hausdorff
transformations, but ignores none of the opinions that it obtains .
Theorems 4 to 6 deal with the question of consistency and relative
strength of the two methods,

Zeller [29, p . 11] calls collective methods and essential-core methods
Vereinigungsverfahren and Einschachtelungsverfahren, respectively . The
collective Cesáro method was first discussed by Hardy and Littlewood
[12, p. 67]. Agnew called attention to the collective Euler method
[3, p. 321] ; earlier [2, Section 6], he had already investigated the
collective Hausdorff method, the first collective method not obviously
equivalent to some collective method based on a sequence of progressively
stronger matrix methods . Fuchs showed [8] that no matrix method
contains Agnew's collective Hausdorff method, and raised the question
whether some matrix method contains the collective method of
"reasonable" Hausdorff matrices .

Meyer-KÜnig and Zeller [19] proved that no countable collective
method is equivalent to a matrix method A unless one of its contributing
methods is equivalent to A . This result can not in general be extended
to an uncountable collection . For example, let A denote the method
that transforms {s,,} into {(sn._,+sJ12} . Corresponding to each sequence
s summed to 0 by A, we construct a matrix A, such that A, sums s and
is weaker than A but consistent with A. This can be done (in the spirit
of the proof of Theorem 2 of [7]) by adjoining to A infinitely many rows
that contain exactly two nonzero elements lying in widely separated
columns. The collective method determined by the family {A,} is
clearly equivalent to the method A .

Eberlein [6] extended the concept of the collective Hausdorff
method to the concept of the Banach-Hausdorff limit . References to
other early papers on essential-core methods will be made in Section 8,

THEOREM 4. There exists a sequences that is summed to 0 by the
collective Hausdorff method {3E}, and, to the point (co, 0) of the disk-shaped
plane by the method K {(q+ of essential Hausdorff cores .

Let s„ = n (n=0,1 . . .), and let A=2C-I, where C is the
method of arithmetic means (that is, the Hausdorff matrix generated by
the function a(u) = u), and where I is the identity matrix . If As = t,
then

t„-_2(1+2+ . . .+n)/(n+ 1)-n=0
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for all n, and therefore, the method {Jt} sums s to 0 . Since the core
K(s) consists of the point (oo, 0), the method K - + sums s to (oo, 0) .

PROBLEM 1 . Does there exist a sequence s that is summable by
Agnew's collective Hausdorff method {3f} and whose essential Hausdorff
core K(''*+, s) contains more than one point ?

DEFINITION . Let a(u) be a real-valued function of bounded variation
on [0, 1], with a (0) = 0 < a (1), and let A denote the Hausdorff matrix
H {a} . Let a+ and a- denote the least nondecreasing functions, with
a+ (0) = a_ (0) = 0, for which a(u) = a + (u) - a_ (u) , and let

á (u) = a+ (u)la+ (1) .

We shall call the Hausdorff matrix A+ = H jaj the normalized positive
part of A, and we shall use the symbol A+ for the family {I, A +, A+ 2 , . . .} .

THEOREM 5 . IJ' A is a real, regular Hausdorff matrix and s is a bounded
sequence such that As ->0, then K(,A+, s) _ {0} .

Our proof was suggested by Eberlein in a private communication .
Suppose that the essential core K(,1+ , s) contains a point re ie (r > 0) .
It is to be shown that As does not tend to 0 .

Let a = a+ - a_ be the decomposition mentioned above, and let
B = H{a +}, C = H{a_} . For convenience, we write lim sup 1 s„ 1=11 s 11
( 1111 is then not actually a norm on the space of bounded sequences ; but
if we define two sequences to be equivalent if their difference is a null-
sequence, then Jill is a norm on the space of equivalence classes of
bounded sequences ) .

The hypothesis on K(k+, s) implies that 11 A+ Ps 11 > r for p
in other words, that

11 BP s
11 _ [a+ (1)] P 11 A+P s

11 >, r [a+ (1)]P .

Together with the relation (6 .4), the fact that C is real and non-
negative implies that

11CP s11<11sli[a-(1)]" .

Since «+ (1) = a - (1) + 1 > a_ (1), since 11 (BP - CP) s 1 > 0 for all p
for which

r [a+ (1)]P > 11 s 11 [oc- (1)]P,

and since the left factor in the right-hand member of the matrix identity
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Bp - Cr= (B1i-1 + Bq-2 C + . . . + C-1) (B - C)

transforms every nullsequence into a nullsequence, it follows that
11 (B - C) s 11 > 0, as was to be proved .

THEOREM 6. In the space of sequences whose essential Hausdorff
core is bounded, the method of essential Hausdroff cores is stronger than the
collective Hausdorff method {5£}, and it is consistent with it .

PROOF . Let s be a sequence for which the set K (#+, s) is bounded,
and let Udenote a bounded open set that contains K('*+, s). To each
point q in the complement of U there corresponds a matrix Tin '*+ such
that q lies in the complement of the core K (Ts) . By the theorem of
Borel and Lebesgue, there exists a finite set of matrices B, B2 , . . . ' Bi in
+ such that the union of the complement of the cores K (Bt s) (i = 1, 2,
j) contains the complement of U . Define B to be the matrix product

Bl B2 . . . B, ; then K (Bs) is contained in U and is therefore bounded .

Now suppose that C is a matrix in TJ such that Cs converges to a
finite value p ; let C denote the complex conjugate of C ; let A+ denote
the normalized positive part of the real matrix A = CC ; and let l +
be the family of powers of A+ . Since ABs converges to p, it follows from
Theorem 5 that K (,A + , Bs) _ { p } , and since B is completely regular,
we conclude that the method K*+ is at least as strong as {9£ } and is
consistent with { 3f }, in the space under consideration .

It remains to exhibit a sequence s that is not summable by any
regular Hausdorff method and whose essential Hausdorff core consists of
precisely one finite point . For this purpose we choose any auxiliary
sequence {x.} (m = 1, 2, . . .) that is dense on the interval (0, 1), and any
sequence of positive integers •- ,,, with the property

(7 .1)

	

1 < x,,, Pm/PrA-t --> 00

We define our sequence s by the rule that s„ = xif xp,,, <n <p,„ and
that s„

	

0 whenever n lies in none of the intervals [xm Pm , p,n ] .

Corresponding to each number t ( 0 < t < 1 ) we define the
function

0

	

(u = 0),
at(u)

	

~ max ( 0, 1 + t log u )

	

(0 < u < 1),

and we write At = H {a t} . We observe that a t (0) = 0 in the interval
0 < u < e - ' I', that a t (u) increases in e-1 It < u < 1, and that
(7 .2)

	

at (u) - at (xu) < t log 1 /x

	

(0 < x < 1),

the equality sign being in force whenever xu > e-111 ,
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Consider now the transform Ats, for a fixed value of the parameter
t. By (7.1), there exist at most finitely many indices n such that more
than one of the blocks of consecutive positive elements s k have indices
falling into the range no- It < k < n. Therefore (6.4) and (7 .2) imply
that

(~ Ats (~ = lim sup { sup

	

x,,, [a t (u)-a t (x,,, u) ] }
M--) 00 0<u<1

< lim sup Ix. log 1/x. < tle.
M-->. 00

It follows that lim ~ j Ass I~ = 0, and the method K*+ sums s to 0 .
t-+0

Suppose, on the other hand, that H {(i} is a Hausdorff matrix
that satisfies (3 .1) and sums the sequence s. Because sx = 0 for
pá,_1 < k < xpm , it follows from (7 .1) that the transform of s can
converge only to 0 . Because by (6 .4) and (7.1) the pmth element of the
transform is

á[a(1)-P(x,.)I+0(1),

it follows that (i(xm) _ (3(1) . Since the sequence {x,„} is dense in (0, 1),
it follows further that p(u) _ (i(1) for 0 < u < 1 . Consequently, if (i
is continuous at 0, then P(u) = 0, and therefore H {(i} is not regular .
Hence s is not summable by the method {3f}, and the proof is complete .

We return briefly to Theorem 5, which can be paraphrased as
follows : If A is a real, regular Hausdorff matrix, then, in terms of the
method of essential cores, the sequence of powers of the normalized positive
part of A is at least as effective as A itself, in the space of bounded
s-,quences . The following theorem shows that the statement becomes
false when it is interpreted in terms of the collective method.

THEOREM 7 . There exist a real regular Hausdorff matrix A and a
D

bounded sequence s such that As -> 0 but A+s does not tend to 0

( p = 1, 2, . . .) .

PROOF . Let a be constant excapt for salti 1, 1/2, 1/2, and -1 at
u = 1/4, 1/3, 2/3 , and 1, respectively ; let so = 0 and

s„ = sin (7r log, n)

	

(n = 1, 2, . . .),

and write As = t . Let e be any positive number less than 1/48, and for
each n greater than 48, let k, = k, (n), . . ., k s = ke (n) denote the integral
parts of the numbers

(114 - e) n, (1/4 + e)n, (1/3 - e)n, . . ., (2/3 + e)n,



Then, by (6 .4),
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k 2

	

k 4

	

ks

w = (2 + 2 + L) ank sk - Sn + o (1)
kl

	

k3

= sin (7s 1092 4) + 2 sin (7L 1092
3

) }-
2

sin ( n 1092
3

)

- sin (7c log, n) + O(e) + 0(1)

= 0(e) .

Since a is arbitrary, As -> 0 .

Now write As = r. Then

k 2

	

k4

	

k4

Tn 2 (2 + 2 + .»awksk+o(1)
kl

	

k3

	

kb

= 2 sin ( 7r logy n ) + o (e),

and therefore Tn = s„/2 + o (1) . It follows that A+s = 2-r s + c0l ) ,

where c( 9) is a nullsequence . This concludes the proof.

PROSLEm 2. Does there exist a countable set A={A k) of completely
regular Hausdorff transformations such that every sequence summable
by some regular Hausdorff method is summable by the method of
essential l-cores ?

8 . Strong and weak families . Again, let 9 be a family of completely
regular, row-finite matrices satisfying the conditions inthe second para-
graph of Section 5, and let S be a space of sequences . We say that
9 is a strong family (in S) if S contains a sequence s with the property
that the essential X-core K(X, s) consists of a single point in the disk .
shaped plane while for each T in i the core K(Ts) contains more than
one point ; if X is not strong, it is weak . In other words, the family T is
strong provided the method of essential T-cores is stronger than the
collective X-method . The families of transformations A t and AD used
in the proofs of Theorems 6 and 7 are both strong, even in the space of
bounded sequences . We shall now consider certain other families,
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Among the best-known Hausdorff matrices are the Hölder and the
Cesiro matrices . The Hölder matrix Hk of order k is the Hausdorff
matrix with the diagonal elements

ann = (n -}- i)-k

	

(n - 0, 1, . . . )

(if k is complex, the determination is made unambiguous by the con-
vention that lk = 1 and by the requirement of continuity in the right
half of the n-plane) . The matrix Hk is regular if and only if k = 0 or
Uk > 0. In the latter case, Hk is generated (see [13, p. 88]) by the
function

u
ak (u) - r(k) J I log v k-1 dv .

o

The Cesáro matrix Ck of order k is the Hausdorff matrix with the
diagonal elements

bnn=1/(n+k) .k

It is regular provided k = 0 or Ilk > 0, and in the latter case, it has
the generating function

Pk(U) = 1 - (1 - U) k .

We shall restrict the discussion to the cases where Hk and Ck are
completely regular, that is, to the cases where k > 0 .

The methods Hk and Ck are equivalent with respect to summability
to finite values : for each sequence s and each index k, either both or
neither of the two transforms Hk s and Cks converges to a finite value
[13, p . 88] . However, Garten and Knopp have shown [10, Section 5]
that in the space of real sequences the method of essential Hölder cores
is more effective than the method of essential Cesáro cores . The basic
difference between the two methods becomes apparent if we examine the
corresponding families of generating functions and consider equation
(6 .4) : For each fixed number r (0 < r < 1) and for k > 1, it is obvious
that

U
x-1

	

_

a k(u) - ak(ru) _

	

~k)

	

I log v ~

	

dv < (lr(k))u
I log ru

ru
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For each k > 1, the maximum value of the last member is

rF(k)r [(k- 1)/e]k- ' '

and by Stirling's formula, this tends to 0 as k-*oo .

On the other hand,

Rk(u) - Pk(ru)

	

ru)k - (1 - u)k ,

and for the special choice u = 1/k this tends to e-r - e-1, as k->oo .
Clearly, the sequence s used in the proof of Theorem 6 is summable by
the method of essential Hölder cores, but not by the method of essential
Cesáro cores, and therefo-e not by any individual Hölder transformation .
This proves the following proposition .

THEOREM 8. The family of Hölder transformations is strong in the
space of bounded sequences .

If we examine again the generating functions of the matrices A t
used in the proof of Theorem 6, we note that the family of Hölder matrices
has a high digestive capacity in the space of bounded sequences not be-
cause. the graphs of its generating functions have a vertical half-tangent
at u = 0, for k > 1, but because, for each r, a k (u) - ak(ru)-*0 uniformly
with respect to u, as k -a oo, We observe further that the effectiveness
of the method of essential Hölder cores does not depend on the fact that
the method of arithmetic means is fairly powerful . Indeed, let), denote
a constant (0 < ), < 1), let M be the Hausdorff method generated by
the function a with

a(u) _ ), u

	

(0 < u < 1),

	

a(1) = 1,

and let Al be the family of powers of M. The sequence Ms diverges
whenever s diverges, by a theorem of Mercer [18, Theorem I], [11, pp . 104,
106-107] . On the other hand, it is easy to verify that if s is a bounded
sequence, then the essential At-core of s coincides with the essential
Hölder-core of s. In particular, the method of essential fit-cores sums
the sequence used in the proof of Theorem 6, and therefore the family
At is strong .

It has long been known that the family of completely regular
Cesiro transformations is weak in the space of sequences whose essential
Cesáro core is bounded ; but the proof is deep : it depends on the
comparison of the essential Cesáro cone with the Abel core . [If
lim sup s„ 1'n < 1, the Abel transf.,rm of s is the function

f(X) =(1-X)2s„X
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The Abel core of s is the core of f(x), defined (with respect
to the behaviour of f (x) as x-+1 by au obvious generalisation
of the definition of cores .) The following striking proposition was
first proved by Ramaswami [22] (Ramaswami dealt only with real
sequences ; but the restriction is unimportant, and we omit the proof of
the generalization) .

THEOREM 9 (Ramaswami) . If a sequence s has a bounded Abel core,
then its essential Cesáro core consists of

(i) the Abel core, or

(ü) an infinite strip that contains the Abel core and is bounded by
two parallel lines of support of the Abel core, or

(iii) the disk-shaped plane .

A sequence s cannot have a b )unded essential Cesáro core unless
one of its Cesáro transforms is bounded . But as Littlewood pointed
out [ 17 ], if K(Ck s) is bounded and the Abel core of s consists of one
point, then Chs converges for h > k, and therefore the method of
essential Cesáro cores is weak in the space of sequences whose essential
Cesáro core is bounded .

That the family of Cesáro transformations is strong in the space
of all sequences can be seen from the following example : Let n l > 2,
n,+ , .>, n;+i, and choose

__ fn,+, if n = n, (r = 1, 2, . . .),
s°

	

0

	

otherwise .

Here the core of C ks consists of the segment [ k, oo ] on the real
axis ; we omit the computations .

The regular Euler matrices are the Hansdorff matrices Ez generated
by the functions

ax(u) = f0 (0 < u < x),
l1 (x<u<1),

with 0 < x < 1 . They satisfy the relation EE,, = E,z,,. Meyer-
König and Zeller [ 19 ] have shown that the family of Euler methods is
weak in the space of sequences whose essential Euler core is bounded .

PROBLEM 3 . To find conditions on a completely regular Haus-
dorff matrix A{y} that are necessary and sufficient for the family
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{A"} (n=1, 2, . . .) to be strong (strong in the space of bounded sequences),
and to express these conditions as conditions on the generating function a .

A natural analogue to Problem 3 arises in the theory of 1\Törlund
transformations . To each completely regular Nörlund transformation
N corresponds a function f (z) = Epmzll (p„ > 0) holomorphic in some
neighbourhood of the origin. In particular, the Cesáro matrices (the only
matrices that are both Hausdorff and Nörlund matrices ; see Ullrich
[ 28 ] or Agnew [ 4 ] ) correspond to the functions f (z) _ (I-z)-k. We
are indebted to the referee for the following theorem .

THEOREM 10 . Let -q be a family of polynomials f with f(1) = 1
and with positive coefficients, and let 9 contain polynomials whose largest
coefficient is arbitrarily small. Then the family of Nörlund transformations
corresponding to ST is strong in the space of bounded sequences .

PROOF . Let the sequence s consist of blocks of k elements 1/k
(k = 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, . . .) with a gap of j zeros between the jth
and (j + 1) st blocks

{s„} = {I, o, 2, 2, 0, 0, 1, o, o, o, z, 2, 0, 0, 0, 0, ~, ~, 3, 0, . . .}

If Nj denotes the Nörlund method corresponding to f E 9, and if f has
degree k, then the sequence Nf s contains infinitely many elements
1/(k + 1) and infinitely many elements 0 . Therefore the collective
method corresponding to does not sum s . However, II Nfs II is not
greater than the largest coefficient of .1, and therefore the method of
essential cores corresponding to -9 sums s to 0. This proves the theorem .

9. The norms of bounded convergence fields . Corresponding to a regular
Toeplitz matrix A we denote by (A) the bounded convergence field of A,
that is, the set of all bounded sequences s for which As converges. If A
and B are regular Toeplitz matrices and (A) 7) (B), then A and B are
consistent in the space of bounded sequences . Brudno [ 5 ] observed
that therefore a sequence in the bounded convergence field (A) of a
regular Toeplitz matrix A can be regarded as being summable not only
by the matrix, but by the bounded convergence field itself, in other
words, that a bounded convergence field is significant not merely as a
collection of sequences associated with a matrix, but as a set that
associates with each of its elements s a complex number a(s) determined
directly by the set .

Brudno defined the norm 11 A 11 of a Toeplitz matrix A as the left
member in the relation (3.1), and the norm 11 ( A ) 11 of a bounded
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convergence field as the infinlum of the norms of all regular Toeplitz
matrices B such that (B) _ (A) .

DEFINITION . If (A) is a bounded convergence field, we say that
(A) has accessible norm provided there exists a regular Toeplitz matrix
B such that (B) _ (A) and B 1 ; _ !J A 11 . If (A) does not have accessible
norm, it has inaccessible norm .

PROBLEM 4 . To characterize the bounded convergence fields of
accessible norm, without reference to Toeplitz matrices .

THEOREM 11 . There exist bounded convergence fields of inaccessible
norm.

EKAMPLE . Let c denote any constant (C ::,4- 0), and let

A= ; 1
~ 1 c

	

-c

. . . . . . . . . . . . . . . . . . . . . . . . . . .

where all unmarked elements in the first four rows are understood to be
0's. Clearly, As converges if and only if s differs by a convergent sequence
from a sequence of the form

(9 .1)

	

{0, xh xlr O, x29 x2, 0, x3i .x3 , . . .} .

T,:crefore the convergence field of A is independent of c, and since
11 A JI = 1 + 2 1 c 1, it follows that 11 (A) JI, = 1 .

It remains to prove that if B is regular and (B) _ (A), then
JAB Ij > 1 . Without loss of generality we may assume that

hm I »nk

	

0

ns00 k

for otherwise 1 ; B 1) > 1 by (3.2) . Since only bounded sequences concern
us, we can therefore disregard the imaginary part of B and assume that
B is real .

If (B) _ (A), then

(9 .2)

	

fim inf (max I bnk 1) > 0 ;
k-4 oo

	

n

indeed, if (9,2) fails, then there exists a sequence of 0's and 1's, with the
1's rirhitr,arily far apart, such that Bs -* 0, and therefore (B)

	

(A) .
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Suppose then that (9.2) holds, and that (B) _ (A) . Then Bt --* 0,
where t = {0, 1, 1, 0, 1, 1, . . .) . This implies that

lim inf (min b„k) < 0 .
k->v-

	

tt

Together with condition (3.2), this implies that 11 B 11 > 1, and the proof
is complete . (A different example was described by Petersen [21,
Theorem 3] ) .

PROBLEM 5 . Let B be a bounded convergence field containing a
divergent sequence s . Do there exist bounded convergence fields (A) and
(C), of accessible norms, such that s E (A) C (B) C (C)?

We point out that some bounded convergence fields of inaccessible
norm are contained in bounded convergence fields of accessible norm .
For example, let S consist of the bounded sequences that have the form
(9 .1) and meet the further restriction that x„ = 0 except when n is a
square ; and let Q be the set of sequences that differ by a convergent
sequence from one of the elements of S. Then Q is a bounded conver-
gence field of inaccessible norm, and since Q is contained in the bounded
convergence field of the matrix Cl , our assertion is proved .

THEOREM 12 . II' A is a regular Hausdorff matrix, then !I( A

PROOF . Let B and C represent the matrices used in the proof of
Theorem 5, and for p = 1, 2, . . ., let

D
-

	

	
Bp _ C'>

[«+(1 ;]p - [a-(1)]p

Then JI, Dp 11 --~- 1 as p- co . Clearly, the convergence field of D, contains
that of the matrix A = D l .

Now let z > 0, and let Ep denote a matrix consisting of all rows
of Dp and all rows of (1 - e) D„ + EA . Then (E.,) = A. Since
~ED 11 -* 1 + ('I A ~~ - 1)e as p -> oo, the theorem follows .

(The second part of our proof is based on a method of Brudno [5,
Theorem 2] ; for an English version, see Petersen [20, Theorem 2]) .

10. Invariant sequences . If A is a Toeplitz transformation, we
shall say that a sequence s is invariant under A provided As - s is a
nullsequence ; we shall say that s is invariant tinder a family of Toeplitz
transformations if it is invariant under each transformation of the family .

THEOREM 13 . A bounded sequence s is invariant under C, if and only
if, for each a > 0,
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(10.1)

	

lim

	

max

	

I •Sn+D - sn
I
= 0.

n->oo 0<p<nT

PROOF. The sufficiency of the condition is obvious . In proving the
necessity, we assume without loss of generality that s is real .

If (10.1) fails for some A, then there exist a positive number h an
sequences {ni} and {p i}, with n t-->oo and 0 < pi < ni a, such that

Í s(ni + pi) - s(ni) I > h

	

(i = 1, 2, . . .) .

We may suppose that for each i the integer p i is the least natural
number p such that I s(n i + p) - s(n i) I > h, and that for 0 < p ---pi
the sign of s(n i + p) - s(ni) is always the same, say positive . Let
a = Cls, and write (ai = pi/(ni + pi + 1) . Then

ni -F-pi

a (ni + pi) = ni + pi +1 { (ni + 1) a (ni) +
k=ni+l

Sk
i

(1 - gi) a(ni) + gi [s(ni) + h] + s(ni+pi)- [s(ni)+h]
ni -i-pi +I

	

'

and since the numerator in the last term is a bounded function of the
index i, it follows that

síni + pi) - a(ni + pi) › s(ni) + h - (1 - gi)a(ni) - gi [s(ni) +h] +o)1)
_ (1 -gi) [h -i- s(n i) - a(ni)] + o ( l) .

Consequently, s(n i + p i) - a(ni + pi) and S(ni) - a(ni) cannot both be
0,1) . This implies that s is not invariant under Cl, and the proof is
complete .

THEOREM 14 . If a bounded sequence is invariant under the transfor .
mation Cl , it is invariant under the family of regular Hausdor„f transfor-
mations.

PROOF. Let A{a} denote any regular Hausdorff matrix, let s be a
sequence invariant under Cl , and write t = As. Then

to - Sn =

	

+

	

I
a .,k(Sk - Sn)-

k<un

	

k>un

Let e > 0. By (6.4) and the regularity of A, we can choose u small
enough so that the fist sum on the right has absolute value less than
t when n is large .
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As

	

the second sum tends to 0, by Theorem 13 ; this con-
cludes the proof.

We point out that invariance under a specific regular Hausdorff

transformation stronger than the identity need not imply invariance
under all regular Hausdorff transformations. For example, let
a„ = sin (7L loa 2 11) for n = 1, 2, . . ., and let A be the regular Hausdorff
matrix generated by the function a that is constant except for salti of
height 1/2, at u = 1/4 and at u = 1 . Then s is invariant under A. Since
s violates condition (10 .1), it is not invariant under Cl ; hence it is not
invariant under all regular Hausdorff transformations .
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