On the difference of consecutive terms
of sequences defined by divisibility properties

by
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Let a, < a, < ... be an infinite sequence of integers satisfying

L
V'~ oc; denote by b, < b, < ... the sequence of integers not divis-

T" i

ible by any «. 1t is well known that the b's have positive density and

hence it follows that b;.,/[b; — 1. It is easy to see thaf this result is best

possible as it stands, in other words, that there is no funection f(x) tending

to infinity as ¢ —> oo, so that for = > x, there always is a b in (x, v+ [f (2)).

To see this let Z & << co and let 7, - oo sufficiently fast. Let the sequence
2

a; consist of the integers in the intervals (mg, ng(l-+eg)), b —1,2,...

Clearly
1
\ — < Z & < ©0
(g,

k k

and if ng — oo so fast that egng, > ng/f(n,), then the interval (ng, ng+
i—wk_fff(-n.k)) clearly contains no b’s. On the other hand if we assume that
the a’s are pairwise relatively prime, we can make very much stronger
statements abount b;,;, —b;. In fact, we shall prove the following theorems.
(Throughout this paper ¢, ¢, ... will denote positive absolute constants.)

THEOREM 1. Let
) £y
flJ 21—{: o0, ((l-".f‘l-';) =T

Then there is an absolute constant ¢ (independent of our sequence a, < ...)
so that for all sufficiently large x the interval (z, x+a'~°) contains b’s.
Theorem 1 can probably be improved a great deal and quite possibly
biiy—b; = o(b;) holds for every ¢ > 0 if ¢ > i,(¢). On the other hand I
shall show that there is a definite limit to the improvement of Theorem 1.



176 P. Erdos

TusoreM 2. There is a sequence a«y, < ... satisfying (1) so that for
infinitely many i (expz = &)

bi1—bi > exp(}(logh;loglogh;)'?).

Denote by B(u,v) the number of b’s in the interval (u, »), and let «
be the density of the sequence b, < ...
TuroreEM 3. Let f(x)[x'™" — oo for every & > 0. Then

(2) Bz, z-+f()) = (a+o(1))f(x)

Theorem 3 is best possible. Assume that there is a sequence x;, — oo
so that there is an ¢ > 0 for which f(x;) < @} ° Then there is a sequence
a, < ... satisfying (1) so that (2) does not hold.

Before we prove our theorems we discuss a special case. Let the a's
be the squares of primes; then the b's are the squarefree numbers ¢, <
The problem of estimating the maximum possible order of ¢;,,—¢; is
very difficult. On the one hand it is known [2] that for every > 0 and -
infinitely many i

(3) Qi1 —qi > (1 —s) logqalloglog&

and on the other hand [5]

(gi™) 1 109356 0.22158534
L= ﬂ, “her ¢ = — = (.5 Hh&H34 .
Giz1— ;i = o(gq;i™"), where 194419 H85

It seems certain that ¢;., —¢; = o(¢j) for every & > 0 but this must be
very deep.

Let a, < ... be any sequence satisfying (1). Let
(4) O oee B S8 < Wy oov WAipq»

Using the Chinese remainder theorem and an elementary sieve

process, it is easy to see that to every & > 0 there is an @, — xy(e) so that
for every « > wx,(¢) there is a b; < x for which

(b) bjr—b; > —'f)"'”(lm_)

where ¢ is defined by (4). The proof of (5) which is very similar to that
of (3) will not be given in this paper.
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In general, () is best possible. It is not difficult to construct an
infinite sequence @, < ... satisfying (1) so that for every &> 0 and
x = xy(¢) every interval

(6) (z, (1 —}—s)i’ﬁ(l— i_.)_l)’ t<a

contains a b; (¢ is given by (4)).

t

All the sequences a, << ... which I constructed to satisfy (6) increase
very fast. I do not know to what an extent this is necessary. I could not
prove that there is a sequence satisfying (1) and a; < k* say, so that
by, —b; = o(bj) for every & > 0.

Now we prove Theorem 1. We use an idea of Estermann-Roth [4].
We need the following

Leymma, Let m <d; < ... <dy<m-ty be a sequence of inlegers
satisfying (d;, dy) =1, 1 < i < j <{1. Put maxt = R(m, y). Then

R(m,y) < e,yflogy.

Clearly for each p << y there can be at most one ¢; which is a multiple
of p. Hence by a simple argument (z(y) denotes the number of primes
<y and A(m,y) denotes the number of integers m < u << m-+y all
whose prime factors are greater than y) we have

(M) B(m,y) < a(y)+A(m,y).
Now by a well-known result (easily deduced by Brun’s method),
(8) A(m, y) < ey [logy.

Lemma 1 immediately follows from (7) and (8).

Now we are ready to prove Theorem 1. Let ¢ << min 1/(2+2¢,) and
k = k(e) a sufficiently large integer. Denote by I,(2) the numbar of
integers # < t < x-+-2'"° for which

it =0(modea;) for some 1 <4 <Ek.
[,(x) denotes the number of integers @ < t < 2-}2'° for which
t = 0(moda;) for some a; < a; < a5,
and finally I;(x) denctes the number of integers x < ¢ < @' ¢ satisfying

t =0(moda;) for some 2" °<a;<ax+2'"°% bub

(9)
t % 0(moda,) for all a; < a'°
We evidently have
(10) Ble, 2+2'"°) = o' °—I,(0)—L,(z) —I4().
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: . : 1
A gimple sieve argument shows (using » — << oc) that for every
a;

1 = 0 if k is sufficiently large (k > k,(#)), then
(11) ILi(x) <& °(1—a+t+y).

1
Again using Z obtain that for k = k(%)
@,

¢

(12) Li@< D ([“E—]—[H)m Z-—+ Z 1<

akqaiéxl_"

Since, by 2:' - <. 00, )1 1=o(y). In the estimation of I,(x) and 1,(x)
[} ““f_{;y
we did not use (a;, ;) = 1. This condition will be needed in the estima-
tion of I,(x).
By assumption, we have ¢ < 4. The integers ¢ satisfying (9) must
then be of the form b;a; where

(13) x < biay < x+a'"¢  a;>a'TC

To see this observe that if ¢ satisfies (9) we must have # — 0 (moda;)
for some a; > 2'"° and by ¢ < }, t/a; < a°, whence by (9), t/a; must be
a b, say b;.

IFor fixed 7 the number of integers of the form (13) is by Lemma 1
clearly not greater than (now we use (a;, a;) = 1)

(14 \1 o r x' = ot o ze
= _— —— i ¢ — .
: o\ b "loga/b; ' (1—2¢)logz—1

z .1"+.r,l e
Wy

h"_--j- b

Hence by (14) the number of integers satisfying (13) is less than

.I'l e i l
(15) = z.«_:)l = _\..: b
—2¢e)logaw — 2 i

g UE{IC-IP}

Since the density of the »'s is a, we have

1
(16) : 4 = caloga+o(loga).
b,:<xc-|-1

From (13), (15), and (16) we finally obtain
(17) I () < {1—{—0{1))———f-lw2—~—ml_cﬂa < =gt
' —2¢ 2

since ¢ < 1/(2+42¢,).
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From (10), (11), (12), and (17) we finally obtain that, for sufficiently
small #

2 2

&

a a
B(z, 2+a'"% = 2 —a' (1 —a+n)—ga' *— —2'""° = (—- —27}):31_“ >0

which proves Theorem 1.

Now we pass to Theorem 3. The proof of Theorem 3 is very similar
to that of Theorem 1 and we leave it to the reader. On the other hand
we prove in some detail that Theorem 3 is best possible. Let f(z) be such
that there is a sequence a;, — oo for which f(a;) < x;~* for a fixed £ > 0.
We then show that there is a subsequence of the x;, (denoted for simplicity
also by ;) and a sequence 4, < ... satisfying (1) so that

(18) B(@x, @2~ < (a—n)a™

for a fixed » > 0. In other words, (2) cannot hold.

We construet our sequence a, < ... satisfying (1) as follows: Let
the sequence @y tend to infinity sufficiently fast. The sequence a, < ...
consists of the primes in the intervals

(.’.t-'k By,  Th

’—,T+—T—), 1':1,2,...;15;_1><:Ei..

A simple computation which we leave to the reader shows that our
sequence satisfies (1).
(learly,

(19) B(wy; mptay ) = ay ' — Uy — U,

where U, denotes the number of integers in (@, 2,3 °) which are divis-
ible by an a; < ;" and U, denotes the number of those integers in
(@, x-+a ) which are divisible by an a; in (2%, @3-+ °) but not divis-
ible by any a; < ;" Denote the density of the b’s by «. By a simple
sieve process we obtain

(20) U, = (a+o(1))a'".

As in the proof of Theorem 1 we obtain that the integers of U, are
of the form

byag, b; < @j+1, ay < ap < wptwy

and hence by the definition of the ;s these are the numbers of the form

1—=«
T +oy
P S

b:p. 1 <b < ;L’f i}
jp ) ? bj bi
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Now by the theorem of Hoheisel [3] for sufficiently small & the
number of primes in

bt b

7

( Ty oyt )
is greater than
2 bf].Og i 4

and hence the number of integers satisfying (21) (or U,) is greater than

—&

(22) U, >

&
a—-—o (1)) — g
dlog:ck b JQ
<1‘R

since the density of the b’s is «. (18) follows from (19), (20), and (22),
and hence we proved that Theorem 3 is best possible.

Now we prove Theorem 2. A theorem of de Bruijn [1] states that
if (2, y) denotes the number of integers < x whose all prime factors
are <y and y > (logx)?, then

x
(23) p(@y) < = where ¥ <<y

Put u;, = (logz,loglogz,)'®. From (23) we obtain by a simple com-
putation that for every k if a; is sufficiently large, then

(24) Wy (wk, k2exp ( ; )) < apexp(—ug).

| @ u
I 9= 1,8 [—‘)i exp(— Tk)]s

be disjoint intervals of length [exp(u;[4)] in (2/2, 2). 1t immediately

follows from (24) that for at least one of these intervals, say j” '“, all

the integers in I”‘[k) have their greatest prime factor grmter than

k2exp(u/4). For every k =1,2,... and each integer of I‘f}?,, consider
"o

Let

the greatest prime factor of this integer. The set of all these primes will
1
be our sequence @, < a, << ... Clearly 2 — < oo since for a fixed &k we

obtain [exp(u;/4)] primes all greater than k®exp(u,/4); hence

Siys
=— == <C DO,
il k=1k2
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By our construction, none of the intervals I, & =1,2,..., contain
]

any b’s and hence Theorem 2 is proved.

The proof of Theorem 2 leads to the following questions which seem
to be of independent interest.

Put

(25) Flu,v) = minZ -1_
T Di

where in (25) the summation is extended over a set p, < ... of primes for
which every u < m < v is divisible by at least one p;. Similarly, '

(26) flu, v) = min i
@

where in (26) the minimum is taken over all sets of integers a, < ...,
(aiy a;) = 1 for which every w < m << » is divisible by at least one a;.
g(u, v) is defined as f(u,v) but the condition (a;, a;) = 1 is omitted.
Clearly

g(u, v) < f(u, v) < F(u, )

and

9(2, v) = f(2,v) = F(2,0) = 2%

p=rv

It seems difficult to obtain good estimations for f(u, v) and F(u, v).
I proved that then

HEF(@;, u-+t) =% and lim f(u, w+t) = 0,

U=0g =00

g(u, v) is easier to handle. It is easy to see that for v < 2u

v—1
1

T:

T=1

g(u, v) =

but if » is large compared to u, then ¢(u, ¢) may also be hard to determine.
The proof of Theorem 1 gives that there is an ¢ >0 and a ¢> 0
so that for every

(27) flu, ut+u'"% > ¢

but (27) is probably very far from being best possible.
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