
On the difference of consecutive terms
of sequences defined by divisibility properties
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Let a, < a 2 < . . . be an infinite sequence of integers satisfying

- < cc ; denote by b, < b, < . . . the sequence of integers not divis-

ibleible by any a. It is well known that the b's have positive density and
hence it follows that b i+,/b i --~- 1 . It is easy to see that this result is best
possible as it stands, in other words, that there is no function ,f (x) tending
to infinity as x --~ oo, so that for x > x ,) there always is a b in (x, x+x/f(x)) .
To see this let

	

s k < (>o and let n.k oo sufficiently fast. Let the sequence
k

ai consist of the integers in the intervals (n-k , nlk (l --s k)), k

	

1, 2, . . .
Clearly

and if nk - oo so fast that 6knk > -llk/f(nk), then the interval (Ilk , Ilk -r
H k/f (nk)) clearly contains no b's . On the other hand if we assume that

the a's are pairwise relatively prime, we can make very much stronger
statements about b i I ,-bi . In fact, we shall prove the following theorems .
(Throughout this paper (1 , e, , . . . will denote positive absolute constants .)

TT-u oPF --Nr 1 . Let

by

Ek

k

(1)

	

-- < c'e .

	

(ai , o,;) --- 1 .
al

-Theu there is an absolute constant c (independent of our sequence a, < . . .)
so that for all sufficiently large x the interval (x, x+x' -c ) contains b's .

Theorein 1 can probably be improved a great deal and quite possibly
bz+ ,--b i = o(bi) holds for every e > 0 if i > io (e) . On the other hand I
shall show that there is a definite limit to the improvement of Theorem 1 .
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THEORE-n 2 . There is a, sequence a, < . . . satisfying (1) so that for
iafi-nicely many i ( expz = ez )

Denote by B(u, v) the number of b's in the interval (u, v), and let a
be the density of the sequence b, < . . .

TIIEOnI,M 3 . Let f(x)/xi-E - oo for every E > 0. Then

(2)

	

B(x, X+f(x)) = (a+0(1»f(x) .

Theorem 3 is best possible . Assume that there is a sequence xk 00

so that there is an e > 0 for which f (xk ) < xl-'. Then there is a sequence
el, < . . . satisfying (1) so that (2) does not hold .

Before we prove our theorems we discuss a special case. Let the a's
be the squares of primes ; then the b's are the squarefree numbers ql < . . .
The problem of estimating the maximum possible order of gi+ , -qi is
very difficult . On the one hand it is known [2] that for every e > 0 and
infinitely many i

(3)

	

gi-i --gi >

and on the other hand [,,')l

b i-, -b, > exp (1(logbiloglogbi ) 112 ) .

1-e) 12
loggi/logloggi

109556
gi,_,- q.j, = o(q~+E),

	

where

	

e = -

	

= 0.22158534 .
494419

It seems certain that qi_j ,--qi = o(qz) for every e > 0 but this mast be
very deep .

Let a,

	

be any sequence satisfying (1) . Let

(4)

	

a, . . . a i - x < a, . . . (ti ai+i

Using the Chinese remainder theorem and an elementary sieve
process, it is easy to see that to every e > 0 there is an x o = xq (e) so that
for every x > x, (e) there is a b j < x for which

00

	

1 -'
( ~)

	

bj'- -bj > (1 --e)i

	

(1--U

	

~ ,U a)

where i is defined by (4) . The proof of (5) which is very similar to that
of (3) will not be given in this paper .
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In general, (5) is best possible . It is not difficult to construct an
infinite sequence a l < . . . satisfying (1) so that for every s > 0 and
x > xo (a) every interval

(6)

contains a b; (i is given by (4)) .

All the sequences a 1 < . . . which I constructed to satisfy (6) increase
very fast. I do not know to what an extent this is necessary . I could not
prove that there is a sequence satisfying (1) and a k < k2 say, so that
bi+, -bi = o(b2) for every a > 0 .

Now we prove Theorem 1 . We use an idea of Estermann-Roth [4] .
We need the following

LEMMA. Let m < d, <, . . . < di < w ;-y be a sequence of integers
satisfying (di , d,) = 1, 1 < i < j t. Pitt maxi -- R(m, y). Then

R(m., y) < c' y/logy .

Clearly for each y < y there can be at most one d i which is a multiple
of p. Hence by a simple argument (:c(y) denotes the number of primes
G y and A(ni, y) denotes the number of integers m < u < m+y all
whose prime factors are greater than y) we have

(7)

	

R(mt, y) <,r(y)+A(m, y) •

Now by a wall-known result (easily deduced by Brun's method),
(8)

	

A(m, y) < c,y/logy .
Lemma 1 immediately follows from (7) and (8) .
Now we are ready to prove Theorem l . Let c < min 1/(2+2c,) and

k = k(c) a sufficiently large integer . Denote by I, (x) the numb,-r of
integers x < t < x á-x1-Q for which

t - 0(moda i ) for some 1 < i < k .
I2 (x) denotes the number of integers x < t < x+x l-c for which

t -_- 0 (mod a i) for some ak < ai G xl- c,

and finally I 3 (x) denotes the number of integers x < t < x+x l-' satisfying
t 0(mod a ;) for some xl_ c

< a; < x+xl-°, but
(9)

	

t

	

0(modat )

	

for all

	

1-c .

We evidently have
(10)

	

B(x, x+X ,- ') > x,-, -- I,(x)-I2(X,)-I3(x) .

Acta Arithmetica X11 .2

	

12

w
1

	

1
t, tT(1 -}-s)i ~ (1- ~ ,

n-1

	

a'r,
t<x
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A simple sieve argument shows (using

ri > 0 if k is sufficiently large (k > k o (,q)), then.

(11)

	

h(x) < X'-'(1-a+n) .

Again using Y	1 < ou we obtain that for k > k o (rt)
a .

(12) 1,(x)

( 1~~)

(17)

	

I.(x) < 4+o(l -- Gl xl-e ca < a xl ,
1-2e

	

2

since c < 1/(2+2c l ) .

\

	

Ui , c
J --

L
- 1) < x,

< ) that for every
ai

1 < Y/xl-
i,k

	

ai

	

-cak<ai<xl c

~1-

	

\,
Since, by Y

	

< oo, G 1-= o (,y ) . In the estimation of 1,(x) and 1,(x) -U ai

	

a2 <U
we did not use (a.;., a;) = 1 . This condition will be needed in the estima-
tion of I 3 (x) .

By assumption, we have c < -~ . The integers t satisfying (9) must
then be of the form b i a, where

(13)

	

x<b i a-,<x

	

e,

	

a,>xl

To see this observe that if t satisfies (9) we must have t - 0(mod a;)
for some a; > xl- ` and by c < 2, t/a; G x,', whence by (9), t/a; must be
a b, say bi .

For fixed i the number of integers of the form (13) is by Lemma 1
clearly not greater than (now we use (a i , a;) = 1)

i

	

x x1-C

	

XI-C

	

xl- C

(14)

	

ú

	

1

	

R
b.•' b'' )<

cl
logx/b i < cl

(I -2c)logx-1
X

	

x+xl-c
bi <~a •<

	

bi -

Renee by (14) the number of integers satisfying (13) is less than

c 'xl- ` _

	

N,
I

-2c)logx--1

	

b i
bi<xc+l

Since the density of the b's is a, we have

I
(16)

	

- = calogx+o(logx) .u bi
bi < xc+ 1

From (13), (l-5), and (16) we finally obtain
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From (10), (11), (12), and (17) we finally obtain that, for sufficiently
small rJ

B(x, x +x' -c ) >

	

i 1-a } n)-71x' -0- a x1 = (2 -227)xg-c > 0
u

which proves Theorem 1 .
Now we pass to Theorem 3. The proof of Theorem 3 is very similar

to that of Theorem I and we leave it to the reader . On the other hand
we prove in some detail that Theorem 3 is best possible. Let f (x) be such
that there is a sequence Xk --~' co for which f (xk ) < x" for a fixed s > 0 .
We then show that there is a subsequence of the Xk (denoted for simplicity
also by xk ) and a sequence a, < . . . satisfying (1) so that

(13)

	

B(xk, xk-}-xk'-E) < ( a-YI)xk

for a fixed q ,> c . In other words, (2) cannot hold .
We construct our sequence al < . . . satisfying (1) as follows : Let

the sequence xk tend to infinity sufficiently fast . The sequence a, < . . .
consists of the primes in the intervals

1
xk Xk

	

Xí,- f

b;p ,

t simple computation which we leave to the reader shows that our
sequence satisfies (1) .

Clearly .

( 19 )

	

B,(xks ~Ak+,xk e) - xk - UI- U2

where U, denotes the number of integers in (xk , xk+xk`) which are divis-
ible by an a;, < xk' and U denotes the number of those integers in
(xk, Xk t xk E ) which are divisible by an ai in (xk`, xk+xkl-') but not divis-
ible by any a,,, < xk` . Denote the density of the b's by a . By a simple
sieve process we obtain

(20)

	

U, _ (a+o(I))x'

As in the proof of Theorem I we obtain that the integers of U2 are
of the form

by az j b; < xk+1, x" < a;, < xk+xk- `

and hence by the definition of the ac's these are the numbers of the form

1

	

bi < xk,

k = 1, 2, . . ., 1 < t

	

-4-

xk <

	

Xk f xk
e

b .
9

b,
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Now by the theorem of Hoheisel [3] for sufficiently small s the
number of primes in

is greater than
1

	

x' - e
k

2 b;logxk

and hence the number of integers satisfying (21) (or U 2 ) is greater than

1-s
Ik xk+%k

b ; '

	

b;

	

)

1-e

(22)

	

U? > 21o

	

- (a+o(1)) 2 xk
e

g xk
bjcxk

since the density of the b's is a. (18) follows from (19), (20), and (22),
and hence we proved that Theorem 3 is best possible .

Now we prove Theorem 2 . A theorem of de 13ruijn [1] states that
if V(x, y) denotes the number of integers < x whose all prime factors
are < 9 and y > (logx) 2 , then

(23)
X

(x, Y) < s .

Put uk = (logxkloglogxk) 1/2 From (23) we obtain by a simple com-
putation that for every k if xk is sufficiently large, then

(24)

	

V / xk, k 2 exp 4
»
< xkexp ( -uk) .

Let

Irk) ,

where

x
r=1,2, . . ., C2 exp -

be disjoint intervals of length [exp(u k/4)] in (xk/2, xk ) . It immediately
follows from (24) that for at least one of these intervals, say Pk(1k) , all
the integers in h k ( k ) have their greatest prime factor greater than
k 2exp(uk/4). For every k = 1, 2, . . . and each integer of P(k)) , consider

0
the greatest prime factor of this integer . The set of all these primes will

1
be our sequence a l < a2 < . . . Clearly V  < oo since for a fixed kk we

u ai
obtain [exp(uk/4)] primes all greater than k2 eep(Uk/4) ; hence

ys < x < ys+` .

4 )~
f
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By our construction, none of the intervals I (k) k = 1, 2 . . .

	

contain
ro

any b's and hence Theorem 2 is proved .
The proof of Theorem 2 leads to the following questions which seem

to be of independent interest .
Put

(2~i)

	

I+'(ec, v) =
min: 1

i pi

where in (25) the summation is extended over a set p, < . . . of primes for
which every u < m, < v is divisible by at least one p i . Similarly,

(26)

	

f(u, v) _= min

where in (26) the minimum is taken over all sets of integers a l < . . .,
(a zJ a;) -= 1 for which every u < m < v is divisible by at least one az .
g(it, v) is defined as f (et, v) but the condition (ai, ai ) = 1 is omitted .
Clearly

and

g(u, v) < f(u, v) < F(u, v)

g(2 , v) = f(2, v) _= F(2, v) _ 11 .

It seems difficult to obtain good estimations for f(u, v) and F(it, v) .
I proved that then

lim F(u, U+t) = 2 and

	

lim f(it, U+t) = 0,
u=oo u=eo

g(u, v) is easier to handle . It is easy to see that for v < 2u

Z=u

but if v is large compared to u, then g(u, o) may also be hard to determine .
The proof of Theorem 1 gives that there is an c > 0 and a c > 0

so that for every it

( 27 )

	

f (u, U+u'-c) > --

but (27) is probably very far from being best possible .
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