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1. When a system of sets covers a space, the star number of the
covering is the supremum over the sets of the system of the cardinals of
the numbers of sets of the system meeting a set of the system . The stand-
ard Lebesgue 'brick-laying' construction provides an example, for
each positive integer n, of a lattice covering of R" by closed rectangu-
lar parallelepipeds with star number 2"T'-1 . In view of the results of
dimension theory, it is natural to conjecture that any covering of R"
by closed sets of uniformly bounded diameter has star number at least
2"-1 ;-1 ; and this has been proved by V . Boltyanskii [1] in the special
case n = 2 .

In this paper we consider only coverings of R" by translates of a fixed
convex body. We first give a simple proof (the idea of which comes from
the work of Minkowski and Voronoi) of

THEOREM 1 . The star number of a lattice covering of R" by translates
of a closed symmetrical convex body is at least 2` 1 -1 .

Then we consider the problem of constructing coverings of R" by
translates of a given closed convex body K with as small a star number
as possible . By a minor modification of method we used in [2] we prove

THEOREM 2. Provided n is sufficiently large, if K is a closed convex
body in Rn with difference body DK, there is a covering of R" by translates
of K with star number less than

V(DK)
{nlogn+nloglogn+4n+ll .

V(K)

Here the ratio of the volumes V (DK)/V (K) is at most ( n ), in general, and
is equal to 2" if K is symmetric .

We can neither prove that general coverings by translates of a closed
convex body must have a large star number, nor show that lattice
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coverings (Mil be constructed wit Ii reasonably small star number . Indeed
we can do neither of these two things in the special case of coverings by
spheres .

2. Proof of Theorem 1. Suppose that the translates of the closed
convex body K symmetrical in o by the vectors of a lattice A cover
lie whole of 1?" . Thee points of the form ?a with aE .1 fall into 2" con-

gruence classes modulo the lattice A . Let 0, -12-a,, . . ., 2a v , with a ; E .1

and X - - 2 °'"-1 be representatives of these congruence classes. Then as
the translates of K by the vectors of A cover Rn, we can choose b,, . . . . b,v .
ill A so that

t a ll E K -i bi ,

.1- a, - b i EK .

	

i -_- 1 , 2	V .

As these points lie ill different cougruence classes modulo :I and are not
congruent to o 1114)(11110 A, they are all different and are all different
from o. Indeed, as

( ai

	

br)

	

)on_- b i (mod A) ,

the 2\ points

(-,jar--bi), i - 1, 2, . . ., N,

are all different and are in K, as K is symmetrical in o . But, as

~- (', (i i--bi)EA:,
we have

_L(- a i b i ) EK

	

~K J_(a i -2b i )},

Kfor i - 1 ,

	

, N . So /1 meets the

	

1 sets

K .K-~ ((t i- 2b,i),	i - - 1 , " ..	2" --

of the covering . This proves the resell .

3. Proof of Theorem 2 . Let K be a closed convex body in R" .
After application of a suitable linear transformation we may assume
that- the volume of K is

17(K) - s -" .

Then by a. result of Shephard and Rogers [3] the volume of the difference
body DK satisfies

V (DK) (2n ) V (K) < 2- .



So, by the Minkowski-Hlawka theorem, after application of a suitable
linear transformation of determinant 1, we may suppose that the trans-
lates

DK--F-y

	

(gF .,1),

of DK by the vectors g of the lattice A of points with integral coordinates
are disjoint .

Now take N to be the integer nearest to

8` {n log n +--I- a loglog n + 4o: .

and H to be the integer nearest to

l'„(1-F-r-:)K {ologaa-i-aloglogo-r Ia
where

V(DIi ),

	

F

As in [2] we consider points :r., , .r'„ . . . . :.r,.- in the cube (' of point
.r -__ (XI, . • , w,,) satisfying

Let GH be the set of points covered by H or more sets of the
system

N, g"') .

and let a(OH ) denote the Volume of G„ (. . Then, as ill [2], the mean
value of (S ((TH) over all choices of X, , 'P21 X,V in C is

w
~~( j(GH )) -_

	

--	
! -V,kk(l

	

I'~) v A ,
.J k!(l1'--k,)!

and

log .t(b(GH ))

	

(.N-H)log(t-{ N~1-H~--Hlog VHF.--+-(N-H)Iog(1---V0)
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1_

	

(

	

H

	

(.N+1)Vo--~ log 1--, --log(1.-J H+1

H

	

(1V --{-1) V0 )H --H log		i',, N

	

log
( 1
	 -

	

{- O(1) .

O(1)
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But, by our choice of N and H,

H = Vo(1+e)N+0(1), (H+1) = Vo(1-}-E)(N+1)-{-0(1),

so that

log.I(b(GH )) `NV„[1±6-(1+E)log(1±e)-~1]-logs/(1+e)]±O(i)

- E 2NV 0 -loge-x-0(1) .

Since
Vp = V (DK) > 2', V (K) = 4_ n

we have
112 N V0 > 2-2n138n4-n = 2 n ''3

and, certainly,

log.til(S(GH )) < -nlogn-nloglogn--nlogl6-log 2,

provided n is sufficiently large .
Also, as in [2], if n is sufficiently large and

n= 1/2nlogn,

the mean value of the density of the set E', of points belonging to no
set of the system

(1-2q)K+xi+g (1 < i < N, yEA)
satisfies

log .t(S(Eo)) < -nlogn----nloglogn-nlogl6-log2 .

So we can choose x„ x2f . . ., xv in C so that

1

	

'z
6(GH)+6(Eo) < 16nlogn) = q - V(K) < nnV,, .

Just as in [2] it follows that the system of sets

(1)

	

(1-?7)K+xi+g (1 < i < N, gEA)

covers the whole of space, and that no point of space belongs to H of
the sets

(1-,j)DK+xi+g (1 < i < N, gEA) .

It follows immediately that the star number of the covering (1) is
at most

H < ((DKK) {nlogn+nloglogn+4n+1} .
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We remark that it is easy to arrange, in addition, that the density
of the covering is at most

nlogn+nloglogn+4n,

and that no point of space is covered more than

e (nlogn+ nloglogn+ 4n)
times .

We also note that the covering of space that we have constructed
by using the sets (1) has the property that, if a is any vector, then the
set (1- 71)K+ a meets at most

H <V(D) ) {nlogn+nloglogn+4n+1}

of the sets of the system (1) . This is nearly best possible, since a simple
averaging argument shows, that if a system of convex sets

K+ a. ,

	

i -= 1, 2, . .

covers space and has density S, then there is a point a such that K+ a
meets at least

V(DK)
V(K)

sets of the system .
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