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A THEOREM ON UNIFORM DISTRIBUTION

by
H . DAVENPORT and P. ERDÖS

1 . It is well known that if a is any positive irrational number, the
sequence

u . 3u., 3u, . . .

is uniformly distributed modulo 1 . .1 more general concept of uniform distri-
bution was introduced by LEVEQUE1 . Let

Z, < Z., < .

be a, sequence of positive real numbers . such that „-~ as n ~. For
given i., with 0 < i. < 1, let F) V) denote the number of positive integers
1,' < l' for which Lsa falls in one of the intervals

(2)

	

_ ± /.(_/+] - :~J ))_

If F(N)/-V ). as N x, for each 1., we say that the sequence (1) is uniformly
distributed relative to the sequence If ~ j = j we get the usual definition of
uniform distribution modulo 1 . The definition applies, of course, to sequences
other than (1), but in the present paper we limit ourselves to this ease . We shall
suppose_ that

(3)

	

1

as j

	

~, since otherwise (as is easily seen) the sequence_ (1) cannot he uni-
formly distributed relative to ) i} for any a .

It follows from the work of LEVEQUE, supplemented by that of
DAVEN-RTandLEVEQUE2thatprovidedZ,.-Z~ is monotonic (in thewidesense),the

sequence (1) is uniformly distributed relative to f_-j} for almost all a > 0, i .e . for
almost all a in any interval (a,, a .,), where a, > ca r > 0 .

We conjecture that this remains true without the requirement that
-z, should he monotonic . We are unable to prove this, but we shall prove

that the requirement can be omitted provided that the numbers --i are not
very dense .

' LEVEQUE, W. J., "On uniform distribution modulo a subdivision", Pacific J . 01'
Math., 3 (1953), 757-771 .

DAVENPORT. H-LEVEQUE, W . J., -Uniform distribution relative to a fetal
sequence', Michigan Math . J . 10 (19G3), 315-319 .
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(4)
be a sequence of non-overlapping intervals, arranged in increasing order, such
that .x, --~ - as j -> -, and let I(Z) denote the measure of the part of the in-
terval (0 . Z) which is contained in these intervals . Thus

(5)

	

1(Z) _ (y1 - ;r1) + . . . + (y1 - x1) if y1 S Z < x1+,,
I(Z) _ (yi - xJ + . . . + (yJ_1 - xi_l) + (Z - x1) if' :zj < Z < y1 .

Let F,(-A,) denote the number of positive integers k < N for which ka falls
in one of the intervals (4) . Then we may expect that, under suitable conditions,
Fa(N) will be approximated by a-ll(Na) for almost all a . We prove the fol-
lowing

Theorem . Suppose that3

(6)

	

1(Z) > Z .

Let X(N) denote the number of j for which x ; < N, and suppose that

(7)

for some fixed h > ({ . Then

(8)

for almost all a > 0 .
If we take

(9)

It is convenient to consider a somewhat more general situation . Let

(a1 . Y,), (a., . y2) .

X (l%) << _A-2-6

a FO.(14)'I(Na)-*I as N->oo

z = y

where u < i. < 1, then it follows from (3) that J(Z)/Z --->- % . and we deduce that
the, sequence (1) is uniformly distributed relative to {z1} for almost all a, provided
that the number of :1 < N is << N2-'
We conjecture that the theorem stated above holds without the condi-
tion (7) . How far the condition (6) can be relaxed is doubtful4 ; we have not
been able to disprove the possibility that the result may hold merely if I(Z) ->~
as Z-* - .
We take the opportunity of drawing attention to aa problem connected
with uniform distribution which was proposed by Khintchine5 and seems to
be still unsolved . Let S be a set in (o .1) which is measurable in the sense of
Lebesgue, with measure m(S) . Let F«(N, S) denote the number of positive
integers k < N for which the fractional part of ka falls in S . Is it true that

(to)

	

F, (N . S) N -± m(S) as N-± o.

for almost all a in (1), 1 .)i

We use VINOGRADOV's symbols > and << to indicate an inequality containing
an unspecified positive constant factor .I In the theorem as it stands, the condition {6) can be relaxed to some extent if
(7) is correspondingly strengthened .

s KHINTCHINE, A., ''Ein Satz über Kettenbrüche . mit arithmetischen Anwendun-gen" , Math
. Zeitsehrift. 18 (1923) . 289-306 (303-306) .
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A more general conjecture would be the following . Let)f(x) be a bounded,
measurable, and non-negative function, and put,

z
1(Z) = ' /(x) dx .

0

Suppose that I(Z) -~ 00 as Z

	

Is it true that, for almost all a > 0,
N

(k a) /I(Na) -* a-i
k=1

as ~N -k 00 ? This would include (10) on taking f (x) to be the characteristic
function of S in (0, 1) and periodic with period 1 . It would also include the
conjecture stated above that the conclusion of our theorem may hold merely if
I(Z) - 0 . We can make no contribution to the proof or disproof of these
conjectures: it seems 6 that the condition of boundedness of f(x) in the above
cannot be much relaxed even if f(x) is assumed. to be periodic .

2. We first prove that the conclusion of the theorem will follow if we
establish the inequality

(11)

	

S (FjN) - a--I(N (/))'-(I a << 1V° - ° .
U,

The argument is on well known lines .
We can choose an increasing sequence N 1V.- . . . of positive integers

so that

(12)

	

Nrr--->. 1
and

u,
N r- S

	

a- I I (N, a) )° d a converges ;
r

	

~,

for instance, we can take Nr = [r-'] with any fixed ~' > S -1 . It follows from
a well known general theorem' that

'Nr2 (Fa ( ' r ) - a-1 I(Nr a))2
r

converges for almost all a in (a 1, a.,), and in particular that

(13)

	

Nr 1 j F a(Nr) - a-II(N r a) -~ 0
as r - 00, for almost all a in (a 1, a.) .

If N,< N < Nr+I, we have

Fa(Nr) < F,(N) < Fa(Nr) ± (N - Nr)'

RN, a) < I(N a) < I(1Vr a) + a(N - Nr),

Compare ERDÖS, P., "On the strong law Of large numbers", Trans. American.
Math. Soc ., 67 (1949), 51-56 .

See WEYL, H., "Über die Gleichverteilung von Zahlen mod . Eros-, Math .
Annalen, 77 (1916), 313-352, § 7 .
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whence
Fa(N) - a-1 I(Na) < Fa(N) -- a-'I (?V 1a.)

	

(N - i~' r) .

In view of (12), it follows from (13) that

N-1 ; Fa(N) - a-r I(N a-- 0 as N- oc

for almost all a, and in view of (6), this in turn implies (8) . Thus (8) holds for
almost all a .

3. Define the function V(t) of a real variable t by

t - [t] -	 1 if t is not an integer,
( 14 )

	

00 _

	

2
0

	

if t is an integer .
For given N and a . define J = J(a) by
(15)

	

xJ < Na < xJ+i
and write

J(a)
(16)

	

G a(N) =' ('(x1/u-) - Y(y1/a)) .
1='

We shall prove that (11) will follow from the inequality

(17)

is

provided neither x1la nor ylla is an integer . A similar expression holds, with
yj , /a replaced by ', for the number of values of k satisfying .rl < k'a < Na .
It follows, on recalling the definition of I(Na) in (5), that

Fa(N) = a-11(- a) + G.(-NT) + 0(1) + 0(v(a , X)),

where r(a, N) denotes the number of k < N for which ka coincides with one
of the numbers 1r1 or y1 . Since v(a, N) = O-for all but a finite number of values
of a, it follows from the above relation that (17) implies (11) .

4. To simplify writing, we shall now take a., = 1 and a ; _ 2. We recall
that V(t), defined in (14), has the expansion

1

	

1(1$)

	

(t) _ - - S - sin 2 r mt.r m =, 'In

Hence
r Ga(N) = G~(N) + G„(.N) ,

1 (Ga(N))2 da << N2-1 .

For any particular j . the number of values of k for which
<ka<yi

Hi G =?'1

	

1 +Cf,

	

~ a I



where

Thus

Hence

(22)
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J(a) M 1
Ga(N) = Z "	 sin 2 7 myj/a - sin 2,-r mxj

1= , m=1 m.

J(a)

GQ(N) = N

	

(sin 2 n m' a - sin 2 z mx1la .
i= , m>M ~n 1

	

f 1

2

	

2

	

2

(Ga(N))2 da < f (Gu(N))2 do. + J (Ga(N))z da .
,

We now estimate, in a very simple manner, the second of the two integrals
on the right . By partial summation, we have

1 i sin 2,T ml
m>M 7Ib

<, min 1 . .	
111

1
t ~

where IIt I I denotes the distance of t from the nearest integer . Hence

J(< )

	

/

	

l

	

J(")

	

1
Ga(N) G ~ min I l ,	 + L min 1 ,	

i=~

	

llll~''Jfali

	

1=1

	

,llil?~i a li

It will suffice to treat the first of these sums . By Cauchy's inequality,

J(1 )

	

J(-)
min 1,	

1

	

< J(a)Z min I I .-1	
P/U 1 1 '

By (15 we have J(a) < X(Na) <_ X(2N) . For each .j,

2

	

x

min l,	 I 	da =
j

	

lI
.	

l

	

x

	

d[J'xllail"

	

I min

	

12 113

	

/32'
x,

7

on putting a. = .r)/j1 ; and since

(

	

1

	

df3

	

1
min I l ,	

l

	

1112 1/31 12 /3 2

	

ItIv2

for any positive, integer v, it follows that

1

	

1

	

1
x

	 , ~ da

	

'T

l .

	

2 ,
	 <<

!1T

(G"(-N7N)) 2 du <<141-1(X(2 N))2 .

i
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is

(23)

5. It remains to estimate the analogous integral with GQ(N) . By (19), this

2

f
](a) M i

	

'

~

	

~	(sin 2 r ny1/a - sin 2 r7rzrl j a) y du. .
I

1

We write the square of the sum as a double sum, over j, k going from 1 to
J(a) and over m, n going from 1 to M, and interchange summation and in-
tegration. The maximum value of J(a) is X(2N), and for given j, k the condi-
tions j < J(a), k < J(a) are equivalent to

a > max (x1/N, xkj-L~') .

Hence the integral in question is
2

X(2N) X(2N) M M 1S

	

l "- 1 M
' S(j, m) S } (k, n) da

aik

where
a1k. = max (1, x1fN, rk.j N)

and
S(j, m) = sin 2 :rmy1/a_ -sin 2nmx1/ u. .

S(k, n) = sin 2 .-r12y kja. - sin 2mcnx k f a .

Putting a = 1j/3, the expression becomes
Rlk

M) S(k, n) f-2 dfi ,
X(2N) X(2N) M M 1
j=1

	

k=1 m=1 n=1 17LfZ

where
T1k = min (1, Njx1 . _Vjxk )

and S(j, m), S(k, m) are defined as above with 1/a replaced by ~ . We have
2S(j, m) S(k, n) = cos 27r(my, - ny k) - cos 2n(myl + nyk) N

- cos 2 r(m.x1 - nyk) fi + cos 2sr(mx1 + nyk) P

- cos 2 :r(my1 - nxk) F3 + cos 2-r(my1 + nXk )

± cos 2,t(mx1 -- n.a..k ) fl - cos 2z(mx1 + nxk) r3 .

We arrange this as a sum of pairs, such as
cos 2 ,-r(-my1 - nyk) # - cos 2 7r(mx1 - nyk) (3 .

It will suffice to consider this pair, the treatment of the other pairs being
similar. Thus we have to estimate the expression

~~k
X(2N) X(2N) M M 1

(24)

	

S IV S ~	~ { cos 2 zfl(my1 - nyk) -
J=1 k=1 m=1 n =1 mn

DAVENPORT-ERDÖS

- cos 2'r#(mx1 -ny k )) fl-2 dii .



We use two inequalities. The first is the obvious one :

(25)

	

(cos 2 :rf3At)l4- zda' << min (1,
IA

- ') .

where A is any real number and 1 < 1~1k < 1 . The second is2
131 k
f (cos2nf3A-cos2rrj3B)f3 - '2 df

i
(26)

valid provided
left is

together with the fact that
dik
S t2r--I sin rzf(A + B) df3

where
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<< jA - BI min (1, A -7- BI-') ,

A-BI << 1 . This follows from the fact that the integral on the

(jk
2 sin .,rf3(B - A) sin .,T3(B + A) j3-2 dj3 =

Oyk

	 (-1 ) r

	

t 2r+1 (B - A)2r=1
J

R2r-1
G (2 r + 1)(

071 n3(A + B)d3

< C min (1, 'A + BH- ')

where C is independent of r .
We divide the sum (24) into two parts. For the terms with in(yj-,x1 ) > 1,

the absolute value of the integral, by (25), is

<< min (1, Imy1 - "Al -1) + min (1, 'mx1 - nYki-1 )

For the terms with m(y1-x1 ) < 1, the absolute value of the integral, by (26), is

<< rn(y1 - x) min (1, inxj - nyk ! -1 ),
where xj = (x1 + y1 ) . But here we can replace xj by x1 , since the term

jntxx-ny k '1- I is significant only if j inxj-nyk I > 1, and we have m 'xj-X1 I <2.
Thus we can put. the two parts of the sum together again as

X(2N) X(2N) M W 1
(27)

	

2 5' d'-V	 P(in, j) Q(m, n,
j=1

	

k=l m=1 n=I mrt

P(m, j) = min(l, in(y1 - x1)),

Q(m., n, j, k) = min(1, I my - nyk [-') + min( l, I mxj - nyk -1)

4

It will be sufficient to deal with the first of the two terms in Q, the second being
treated similarly .

For given k, m, n . . consider first those values of j (if any) for which
1

	

1nyk - - < my1 < nyk + - .



1 0

Denote these by j l < j < j, . We have
j2

	

J~
~~ P(rrr, 7)

	

1

	

m(yJ - xi ) .j -j,

	

J =J,+ 1

For jl + 1 < j < j,. the intervals (xi , y1 ) are disjoint and satisfy
1

xi > xJ , +i > YJ, >_ f 12,yk. -
2

/m,

1
yJ < yJ 2 < 4 -rzy j,

Hence
1=

P(m,
1= Jrwhence

P(nz, j) Q(m, n, j, k) < 1 .
J=Ji

Consider next those values of j for which
1

	

1
~yk i, - - S myj < jzyk ± 'i ±

2

	

2

where r is a non-zero integer. Denoting these by i ) < j < j,,(v) and arguing
as before . we obtain

J :( )
4 P(m, j) << 1.,

7=1 ('•)

DAVENPORT-ERDÖS

whence

The greatest value of

J-0)
P(m. j) Q(m, n . j, lr) <

J=P')
It follows that the multiple sum (27) has absolute value

X(2N) M M 1
<

	

S' Z,

	

( 1 +Z
k=1 m=1 n=I -71

	

v

r is < MN. Hence we obtain

(G,,(1V))2(la < (log 11) 2 (log 11N) X(2 N) .
1

6 . 1-V(1 now take ill = [X(2N)I . The hypothesis (7), together with (22) .
gives

(Ga(l')) 2 da < N2-d,
i

and (28) gives
{ (G1(N)) 2 (la <

t

As was shown in §§2 and 3, this suffices for the proof of the Theorem .

(Received June 21, 1963 .)
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TEOPEMA 0 PABHOMEPHOM PACfPEAEJIEHHI4

H. DAVENPORT u P. ERDÖS

Pe3JoMe

ABTOpbI AOKa3bIBaIOT C,Ie;Jy1OLI RJ TeOpeMy: O603HavvuMM uepe3 1(Z) Mepy
o6wei MaCTH HHTepBa za (0, Z) H CyMMapHOFO MHO>KeCTBa HHTepBaJIOB (x 1 , y1 ), . . .
(x,,, y„) IIe HMeJOIuIx HonapHo o6u ix qacTeH (0 :5: x1 < y 1 < x2 < y2 < . . . ) .

flpe,ZHOnox<HM, '-ITO Beni4HHa I(z)/z orpaHHVena cHH3y, ecJIH z > 1 . O6o3HagHM2
,Iepe3 X(N) '-inCno TeX 14H,!eKCOB J JJIH KOTOpbIx xj < N. npejFI0JI0i3<HM, IITO
BeJIHMHHa X(N)/N2-1

orpaHn eHa CBepxy, rje 6 > 0, N = 1, 2	lIyCTb
o3Ha4aeT F„(N) uHCfO Tex '-IHCe?I BHRa a, 2a, . . ., Na, KOTOpbIe HOnaja1OT B
O,IHH H3 FIHTepBanOB (xk , yk ) . Torja 1.153 HO'ITH Bcex 3HaqeHHH a HMeeT McCTO
COOTHOIIIeHHe :

C/ FQ(N)
lim	= I .
N-- I(aN)

11


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9

