A THEOREM ON UNIFORM DISTRIBUTION

by
H. DAVENPORT and P. ERDOS

1. It is well known that if ¢ is anv positive irrational number, the
sequence

(1) @. 2, 3u,. ..

is uniformly distributed modulo 1. A more general concept of uniform distri-
hution was introduced by LEVEQUEL Let

7 <8<

be a sequence of positive real numbers, such that =, — 2= as n — oo, For
given A, with 0 < 2 < 1, let F(N) denote the number of positive integers
I = N for which ke falls in one of the intervals

(2) (2p 2 Az —2p))

If F(N)/N — /as N — o=, for each 4, we say that the sequence (1) is uniformly
distributed relative to the sequence . If 2, = j we get the usual definition of
uniform distribution medule 1. The definition applies, of course, to sequences
other than (1), but in the present paper we limit ourselves to this case. We shall
suppose that

(3) Bpilay—l

as j— oo, since otherwise (as is easily seen) the sequence (1) eannot he uni-
formly distributed relative to {z;} for any .

It follows from the work of LEVEQUE. supplemented by that of DavEs-
pPORT and LEVEQUE® that provided z;.,—=, is monotonic (in the wide sense), the
sequence (1) is uniformly desfnbufedjm’m‘u'p to {z,} for almost all &> 0, i.e. for
almost all @ in any interval (o,. o,), where o, > a, = 0.

We conjecture that this remains true without the requirement that
Zj+1—=; should be monotonic. We are unable to prove this. but we shall prove
that the requirement can be omitted provided that the numbers z; are not
very dense.

1 LE\"E.QFE. W.J., =On unitorm distribution modulo a subdivizsion”, Pacific /. of
Math., 3 (19533), 757—771.

* Davexeort, H—LuVeque., W, J., “Uniform distribution relative to a fixed
sequence’”, Michigan Math. J. 10 Iflf}h’,) 315—319.
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It is convenient to consider a somewhat more general situation. Let

(4) (T2 1) (T Yo)s- -

be a sequence of non-overlapping intervals, arranged in increasing order, such
that z;— oo as j — oo, and let I(Z) denote the measure of the part of the in-
terval (0, Z) which is contained in these intervals. Thus

II(Z} =(y, — &)+ ... + (4 — x;) if Y SE=S T
IZ)=(h—2)+ ...+ —2)+Z—x) if ;< ZZy;

Let F (N) denote the number of positive integers & < N for which ka falls
in one of the intervals (4). Then we may expect that, under suitable conditions,

F (N) will be approximated by o~ 17(Nea) for almost all . We prove the fol-
lowing

(5)

Theorem. Suppose that?

(6) NZ)=Z.

Let X(N') denote the number of j for which x; £ N, and suppose that
(7) X (N) <N

Jor some fixed 6 = 0. Then

(8) o F(N)YI(Na)—1 as N — oo

for almost all a = 0.
If we take

(9) =z, Y=z 4+ ;‘(3_;*; o :j),

where 0 < 2 < 1, then it follows from (3) that 1(Z)/Z — 2. and we deduce that
the sequence (1) is uniformly distributed relative to {z} for almost all o, provided
that the number of =z, < N is <= N*°. )

We conjecture that the theorem stated above holds without the condi-
tion (7). How far the condition (6) can be relaxed is doubtful®; we have not
heen able to disprove the possibility that the result may hold merely if [(Z) —oo
as Z —» oo,

We take the opportunity of drawing attention to a problem connected
with uniform distribution which was proposed by Khintchine® and seems to
be still unsolved. Let & be a set in (0.1) which is measurable in the sense of
Lebesgue, with measure m(S). Let £ (N, S) denote the number of positive
integers & < N for which the fractional part of ko falls in S. Is it true that

(10) F(N. 8))N-—>m(S) as N — oo

for almost all ¢ in (0, 1)7

*We use VinocrapOV's symbols = and = to indicate an inequality containing
an unspecified positive constant factor.

11In the theorem as it stands, the condition (6) can be relaxed to some extent if
(7} is correspondingly strengthened.

5 KaintoHinge, A, *Ein Satz iiber Kettenbriiche. mit arithmetischen Anwendun-
wen”, Math. Zeitschrift, 18 (1923), 289-—306 (303—306).
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A more general conjecture would be the following. Let f(z) be a bounded,
measurable, and non-negative function, and put

Z
I(Z)= | [(x)da.
0
Suppose that /(Z) — oo as Z — oo, Is it true that, for almost all @ > 0,

N
{_:'[{ka)]ff(ﬁ’ a)—o "1
k=1

as N — eo? This would include (10) on taking f(x) to be the characteristic
function of S in (0, 1) and periodic with period 1. It would also include the
conjecture stated above that the conclusion of our theorem may hold merely if
I{Z) — o=. We can make no contribution to the proof or disproof of these
conjectures: it seems® that the condition of boundedness of f(z) in the above
cannot be much relaxed even if f(x) is assumed to be periodic.

2. We first prove that the conclusion of the theorem will follow if we
establish the inequality
(11) [ (F(N)—oa2I(Na)pda < N>
The argument is on well known lines.

We can choose an increasing sequence N, N,. ... of positive integers
so that

(12) N[Nl
and
> i’\","gfx(ﬂ{l\’,} — o (N, a))* da converges;

for instance, we can take N, = [#"] with any fixed y = 6L It follows from
a well known general theorem? that

S NAF(N,) —atI(N, a))

converges for almost all @ in (¢,, a,). and in particular that
(13) N7V F(N,) —a 1 I(N,a)! -0
as r— oo, for almost all @ in («,. a,).

It ¥.<N< N, we have

FJN)< F(N)< F(N,) + (N — V),

I(N,a) < I(Na) < I{N,a) + a(N — N,),

¢ Compare Erpés, P., ©“On the strong law of large numbers”, Trans. American
Math. Soc., 67 (1949), 51—56.

"S8ee WEvL, H., “Uber die Gleichverteilung von Zahlen mod. Eins', Math.
Annalen, 77 (1916), 313—352, § 7.
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whence
|FN)— o1 I(Na)' £ F(N)—a I (Na)| + (¥ — N).
In view of (12), it follows from (13) that

N F(N)—alIl(Na) -0 as N—>oco

for almost all @, and in view of (6), this in turn implies (8). Thus (8) holds for
almost all a.
3. Define the function y(f) of a real variable ¢ by

1
t—[t] — = if ¢ is not an integer,

(14) p(l) = 2
0o . if ¢ is an integer.

For given N and a. define .J = .J(a) by

(15) By X Nl By,
and write
J(@) .- .
(16) G (N) = > (plxjfa) — yly,ia)).
=1

We shall prove that (11) will follow from the inequality
(17) I(h(G,:(N))! da < N2,

For any particular j, the number of values of I for which

Yj
oL
provided neither x;/o nor yjja is an integer. A similar expression holds, with

y;lo replaced by N, for the number of values of I satisfying x; < ke < Ne.
It follows, on recalling the definition of I(Na) in (5), that

v, <ka <y,

€ Y

o'
o

2= ¥ — % + ‘i —
e oL

o

F(N)=o0"1YI(Na)+ G(N)+ 0Q1) 4+ O(ue, N)).
where p(a, N) denotes the number of 1 < N for which ko coincides with one
of the numbers r; or y;. Since »(a, N) = 0 for all but a finite number of values
of «, it follows from the above relation that (17) implies (11).

4. To simplify writing, we shall now take ¢, = 1 and o, = 2. We recall
that p(t), defined in (14). has the expansion

I
(18) P(l) = — % 21 - Sin 2ami.
v

Henee
2 G (N) = GUN) + GUN),
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where
J(a) M \
(19) G =2 > __[ain 2w my fo. — sin :anxj.]al ;
j=1 m=1 Mt ]
J(a) 1
(20) GUN)=3 > —|sin 2am o — sin 2ama /a]
J=1m= M m ! #
Thus
2
(21) \( (N))? da<( (GAN)) do + \ iW(V)) do

1

We now estimate, in a very simple manner, the second of the two integrals
on the right. By partial summation, we have

‘ —sm":rm!‘émm 'II||!| ]

where ||t|| denotes the distance of f from the nearest integer. Hence

. - Ji ) 1 [ Jle} i 1
|Gc.(.-:)|43=2l mm{ Mz -1—2 mml 1”5?”0"
It will suffice to treat the first of these sums. By Cauchy's mequallt_v,
K ( | : Q ( 1
{}3 min .l m” )2 min W“m
By (15), we have J(a) < X(Na) < X(2N). For each j,
: 1 L I d,;
l min STE —/ do =x; | min [ NE 'p" =
1 X2
on putting o = x,/g; and since
r+1
]1 mi 1 (ﬂi !
" IEEE S I
for any positive integer », it follows that
2 i’
l min|l, —5r— iy e XL W 1.1
ESUEIFNALE M? =

Hence
2

(22) [ (GaN))2do < M~1(X(2N)).
1
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5. It remains to estimate the analogous integral with G(N). By (19), this

Jo Mo 2
[ 2 > —(sin 2:-tmyj/or.——sin'_’:rmxj/a)} do. .
=1 m=1 m

We write the square of the sum as a double sum, over §, k going from 1 to
J(e) and over m, n going from 1 to M, and interchange summation and in-
tegration. The maximum value of J(a) is X(2N). and for given §, k the condi-
tions § < J(a), k £ J(o) are equivalent to
o = max (z;/N. x,/N).
Hence the integral in question is

2
X@N) XeN) M M
>

e 2 . . —'1— ‘ S(j,m) S(k, n)do.

where
oy, = max (1, 2N, x,/ N)
and
8(j, m) = sin 2xmy fo. — sin 2amz ;| o,

S(k,n) = sin 2any, jo. — sin 2anz,f o .
Putting & = 1/8, the expression becomes
i
X@N) XeNy M Mo
(23) S 3 3 3 | SG.m) Sk n) prdp.
j=1 k=1 m=1 n=1 MR
3
where
B = min (1, Nfz;, Nz,
and 8(4, m), S(k, n) are defined as above with 1o replaced by 3. We have
28(f, m) S(k, n) = cos 2x(my; — ny,) f — cos 2a(my; + ny;) f
— cos 2a(maz; — ny,) B+ cos 2a(me; -+ nyy) f
— cos 2m(my; — nay) f + cos 2a(my; + nay) B
+ cos 2a(ma; — nxy) f — cos 2n(ma; + nay) B.
We arrange this as a sum of pairs, such as
cos 2m(my; — nyy) f — cos 2m(mr; — ny,) f .

It will suffice to consider this pair, the treatment of the other pairs being

similar. Thus we have to estimate the expression

A

X@N) X(@EN) M M s

(24) S 33 3| feos 2apimy, — ny) —
e T s e e T 1

— cos 2af(ma; — ny, )} 2 dp
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We use two inequalities. The first is the obvious one:
; ,-3‘;".
(25) | (cos2mpA)f2da < min(l,|A]7).

< ﬁ . < 1. The second is

where 4 is any real number and

LD |

” .
(26) | [(cos 284 — cos 223 B) B2 dB |

<|d — B|min(1, 4 4+ B|™),

valid provided |4—B]| < 1. This follows from the fact that the integral on the
left is

2 ["sin mB(B — A)sinmf(B + A) f-2dp —
> > (=1

= Er 41t

B
A (B Ay J prr—1sinap(A + B)dp.

i
)

together with the fact that
! | prtsinap(d + B) dri‘ < Cmin(1,}4 + B[™1).
|

1
3

where C is independent of r.
We divide the sum (24) into two pd,l’t‘\ Fm the terms with m(y,—z;) = 1
the absolute value of the integral, by (25), i

< min (1, [my; — ny,/~*) + min (1, mx; — nyy| ") -
For the terms with m(y,—=x;) < 1. the absolute value of the integral, by (26), is
<m(y; — ;) min (1, | ma; — ny, 1),

where ] :—(.{j + y;). But here we can replace } by x;, since the term

|maj—ny, | ~!is significant only if | maj—ny, | > 1. and we have m | xj—uz; |<

o)

Thus we can put the two parts of the sum together again as
X@N) X@N) M M

(27) g g mé,: HZ ﬁ_ P(m, j) Q(m, n. j, k),
where

P(m, j) = min(1, m(y; — ;).
Q(m. n, j, k) = min(1, |my, — ny,~1) + min(1, | mz; — ny, |7).

It will be sufficient to deal with the first of the two terms in @, the second being
treated similarly.
For given k, m, n, consider first those values of j (if any) for which

1 1
AYp— — S MY; < Y + — -

- =
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Denote these by j, < } j»- We have

s s
2 Pim,j) <1+ ‘2 m(y; — ;).
i=h J=i+1
i = j,. the intervals (. y)) are disjoint and satisfy

1
Ty =T > Y 2 |m/A—"‘2_] [m .,

Forj 1<

Y=y, < | %Yk +

1
E /m‘

Hence

' Pim, §) <1,

l i
| WE

i=j
whence

Js
2> P(m.j) Q(m.n.j. k) <1.
J=h

C'onsider next those values of j for which
7

o B o | 1
BY vV S Y < MYy TV

where v is a non-zero integer. Denoting these by j,(v) < j < 4,
as before. we obtain

(v} and arguing
fu(1)

D Pm.j) =1,
j"'j;“’)
whence

I (1
> P(m.j)Q(m,n, j, k) ) <€ |y~

= I(‘
It follows that the multiple sum (2

Xi2N)y M M
< 2 22 -1+
k=1 m=1 n=1 mn

The greatest value of »is < MN. Hence we obtain
(28]

7) has absolute value

1

V (GL(N))?da < (log M)? (log MN) X(2 N).
6. We now take W = [X(2

V)]. The hypothesis (7), together with (22),
gives

\ (Ga(N)) do << N>—9,
1
and (28) gives .

‘ll (GUN)) do < N2,
i
As was shown in §§2 and 3, this suffices for the proof of the Theorem

(Received June 21, 1963.)



A THEOREM ON UNIFORM DISTRIBUTION 11

TEOPEMA 0 PABHOMEPHOM PACNPEJAEJEHUU
H. DAVENPORT u P. ERDOS
Pesome

ABTOpbI I0Ka3bIBAIOT CJEAYHIWYI0 Teopemy: OGosHaumm uepes 1(Z) mepy
001e#t vacTy unTepBaa (0, Z) u cymMapHOT0 MHOYKECTBA MHTEPBAJIOB (X1, ¥1). - «,
(%, ¥n) HE UMEUNX MOMapHo o0uWX YacTelt (0 <o < ¥ < X < Yo < ... ).
Ipeanososxum, yto BenuuuHa I(z)/z orpatuyena cHM3y, ecu z = 1. OBo3HauuM
uepes X () uHMCI0 TeX WHIAEKCOB j juist KOTopeiX @; = N. Ipeanonoum, 4to
Besmunba X (N)/N*—° orpanuueHa ceepxy, rae 6 >0, N=1,2,.... Ilycts
osHavaer F (V) uucno Tex umcen Buaa o, 2¢,..., No, KoTopble NonagaioT B
O/MH M3 MHTEePBaJOB (74, ¥,). Toraa 1i1a nouTu Bcex 3HAYEHUM ¢ HMEET MECTO
COOTHOIICHHE:

a F (N)

lim —&—°~

N~ [(e V)
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