
ACTA ARITMETICA
v (1958)

Denote by a (n) the sum of divisors of v . It is well known that or (n) /n
has a continuous distribution function, i . e. for every c the density of
integers satisfying; o(n:)/n < c exists and is a continuous function of c
whose value --> 1 as c -> x . This result was first proved by Davenport
[1], Behrend and Chowla. Thus in particular the density of abundant
numbers exists (a number is abundant if 6(zz.}/~a > 2) . I [2] have proved
the existence of this density by proving that the sum of the reciprocals
of the primitive abundant numbers converges (a number m is called pri-
mitive abundant if o(sn) 7~z > 2 but for every proper divisor d of m, ar(d)/d
< 2) . More generally we shall say that m is primitive a-abundant if a(m)/m

a but, for every proper divisor d of ni, 6(d)/d < a . I observed some time
ago that it is not true that the sum of the reciprocals of the primitive
a-abundant numbers converges for every a. It will be clear from our proof
that if a can be approximated very well by numbers of the form v(n)/n
then the sum of the reciprocals of the primitive a-abundants will diverge .

Let p„ p,, . . . be an infinite sequence of primes satisfying pk+l > 60k

Put

A simple computation shows that for every k the integers

are primitive a-abundant. From

Remarks on number theory I
On primitive a-abundant numbers

bv

P . ERDÖS (Toronto)

00
a =

	

l1

1 = lim 6(plp2 . . . pk) .

k-i

	

pk

	

C10 pipa . . .pk

p1 p2 . . . pkp f

	

pk < p < pk+i

1
Y- _ (1 -~- 0(1))loglogx
P<x p



8

we have

pk<P<Pk+1

further by the definition of the p's Pk > Pl P2 • • • pk-1 • Thus

P. Erdős

1

	

1 ,

P > 2 Pk,

v	1

	

1
	 > ~

Pk<Pk+1 P1P2 • • • pkP

	

2 7

which clearly implies that the sum of the reciprocals of the primitive
a-abundants diverges. A simple argument shows that the a's for which
the sum of the reciprocals of the primitive a-abundants diverges form
an everywhere dense G,, in (l, v), i . e.. they are the countable intersection
of dense open sets . But it is not difficult to show that they have measure
0, in fact they must be Liouville numbers (a number y is called a Liou-
ville number if y is irrational and l y-a /b i < I /V is solvable in integers
a and b for every n) . We shall not give a proof of this result .

Denote by N,, (x) the number of the primitive a-abund, nts not exceed-
ing x. I [3] have proved that (expz = ez )

(1)
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<N2(x) < --- -
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exp (25 (logxloglogx) 1 1 2)

	

exp .8 (logxloglogx) 1 12)

I can show that for every a (cl , c 27 . . . denote suitable positive constants)

x
(2)

	

Na(x) >
exp(c 1 (logxloglogx) 1,,2)'

and that for every a and an infinite sequence x,,

(3)

	

N.(x.) < exp(c 2 (logxloglogx) 1 l2 )

Also if a is not a Liouville, number then for a certain e s = c3 (a)

x
(4)

	

N.(x) < eXp(e3 (logxloglogx) 112 )

for all x > 0 . 1 am not going to give the details of the proof of (2), (3)
and (4) since the results do not seem to me to be very interesting and
the proof is similar to that of (1) .

I shall prove in full detail the following

THEOREM .

(5) NQ (x) = o
x

(logx
-- -

-) .
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The proof of our Theorem will be in many ways similar to that of (1) .
It is easy to see that (5) is best possible in the following sense : if g(x) -> oc
as slowly as we like, there always exists an a so that for infinitely many x

The proof of (6) can be left to the reader since it is almost identical
with the proof that for a suitable a the sum of the reciprocals of the pri-
mitive a-abundants diverges .

Now we prove (5) . Denote the primitive a-abundant numbers by
m, < m2 < . . . First of all we shall show that it will suffice to consider
the mi's not exceeding x which satisfy the following properties

XL (logx)2 <
m;,,

II . v (mi ) < 101oglogx, where v (m) denotes the number of distinct
prime factors of m,

III. if palm; and a > 1 then p°` < (logx) 10 ,

IV. the greatest prime factor of vii is greater than xl l(1og 1o )2
To see this we shall show that the number of integers which does

not satisfy any of these conditions is o (x/logx) . This is trivial for I . To
show it for II we observe that

x

n=1

X,
a(x) > g(x)logx .

v(n)
X

k=1

Thus the number of integers not exceeding x which do not satisfy II is
less than

2xlogx,l21o1°alosx = o(xhogx) .

If p'l n, a > 1, then pa or pa-1 is a square and thus n is divisible by
a square greater than (logx) 2 al3. Hence every integer which does not
satisfy III is divisible by a square not less than (logx) 2013. Thus the number
of integers which do not satisfy III is less than

Let

kJ

	

lo~x
k>(Iogc)10 /3

x
k < 2xlogx .
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Assume that n does not satisfy IV. We can assume that n satisfies II
and III, whence

n < (xll(loglogx)2)jOlogtogx _ o	
x

(Iogx) '

which proves that the number of integers not satisfying IV is o(x/logx) .
Henceforth we shall assume that our primitive a-abundant numbers

mi satisfy the conditions I, II, III and IV . Put

(7) m i = Ai Bi

where all prime factors of Ai are < (logx) 10 and all prime factors of B i

are > (logx) 10 . By II and III we have

(8)

	

Ai < (logx) I 010glogx

and by (8) and I we have B i > 1.
Now we split the rni into two classes . In the first class are the íni

for which Bi is not a prime . Write (by II, (pfi))'*Bj)

Bi = p() p0) . . . Pi ) I

where by IV

(9)

	

(logx)" < pig) < . . . < p 12) á

(10)

p~i) > x11(loglogx) 2 ,

Now we split the mi of the first class into two subclasses . In the first
subclass are the mi with

pii) < x114(loglogx)2 .

We shall show that if (10) is satisfied then the integers

m

p1i)

are all different, and if this is accomplished then it will follow from (9)
that the number of integers of the first subclass is less than x/(logx)lo
= o (xhogx) .

If the integers (11) were not all different we should have

Thus

	rni m,
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whence
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a(mi) (a(m3) ) 1 .
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Now since the m's are primitive a-abundant we have

(15)

> r1
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or by (9)

(13)

	

a \ a(mi) < all+X_11(l0glogx)2
) fmi

and the same holds with my replacing mi . Further from (9), (10) and (12)

(14)

	

nj > 1+ p (l) (pi )+ ) > 1 + - x
112(loglogx) 2

i 1

On the other hand from (12) and (13)

~i,j < 1+ X-11(1oBlogz)2 .

(15) clearly contradicts (14) ; this shows that the integers (11) are all diffe-
rent and this disposes of the first subclass .

Now we deal with the numbers of the second subclass. For these
numbers we have

(16) mi = AjBi, B i not a prime, all prime factors of Bi are. > x 1/4(loglogx) 2

I now show that for all mi of the second subclass

(17)

	

a(Aj)IAj = C < a .

Assume that (17) does not hold . a(Aj)1A i < a is clear since m is prim-
itive a-abundant. Assume thus that for some 1n1 and ma of the second
subclass we have in, = A,B17 nt, = A2B2f a(A,)IAl < a(AXA2 . But
then by (8)

(18)

	

(1
(A2) _ a(A1) > 1 > (logx)_ 20jogiogx

A2

	

A, / A,-A2

or
a(	 ,) < a- (log x) -""9"9' .

1

Now by (16) (the number of prime factors of Bi is less than 4 (loglogx) 2 )

(19)

	

a
B
	 ,) < (1 + x114(loglogx) 2 )4Qoglogx)2 < 1 + (log x) 301oglogx .

1
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But by (1s) and (19)

(20)

(22)

First we show that for every Bi
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a(ml )

	

a(41) a(BI)a<
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,11
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an evident contradiction thus ; (17) is proved.
Now let p l be the smallest prime factor of all the B's which belong

to the m's of the second subclass . '"7e have to split these m's again into
two classes (sub-subclasses) . In the first class are those m's for which the
least prime factor p (j') of Bi satisfies

xl/4(lo6 logx)2 G pl G pii) < pi (1+

The number of the vi's of the first class is clearly (by (20) and the prime
number theorem, or a more elementary inequality) less than

(21)
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1 < ex (log Iogx)2
- o	
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(logx)2

	

~ .log x
»i-<2)<Plfl+lllogx)

For the mi of the second class we have

1
ph ) > pl

(1+
logx .

(23)

	

a(Bz)
> 1

	

1
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To see this we only have to remark that p l is a prime factor of some
m; = t1;B; . Thus since B; is not a prime

a(A7pI)
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which proves (23) . From (23) and (16) we have

(~+ 1 ,a(l )8]ogx)2 > -(];i) > 1+ 1 .

pi~ )
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< PO < 10(loglogx) 2p1 .
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Next we estimate P Zi) (p ü) < pzi) <

	

are the prime factors of Bi ) . We
have by (23) and (24)

1

	

or (Bi)

	

1
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(1 {-

	

< --- < (1 }
Bi
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Thus by (24)
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p i (1 ~- (logx)-i) I
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< 11
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or by a simple computation (for sn fficiently large X)

N2E)

	

10logx(loglogx)2P, < (logx)2 p 1 .

Thus Bi has at least two prime factors in the interval (pi , (logx) 2p,) .
Hence the number of -m i 's of the second class is less than (q, r, s are primes)

1
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< (.5 r (log

logx~ 2
qr

	

s

	

logpi
p,<4<r<p,(,(,gx)2

	

2)iG3Gp 1(10g'x) 2

(loglogx) 4

	

x
< cbx-	 = o	

(logx) 2

	

logx,

(21) and (25) shows that the number of integers of the second subclass
is also o (xllogx) . In fact, the number of primitive a-abundants we have
considered so far is easily seen to be o(xj(logx)` ) .

Finally we consider the m's of the second class . Here

(20)

	

tai, = Az p i .

From (8) and I it follows that it suffices to consider the mi satisfying
pi > x"2, but then we can again assume that (17) holds, i . e. that
a(Ai ) fA i = C < a (the proof is the same as previously) . But then the
number of integers of the second class equals (by (8))

n	
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where the dash indicates that the summation is extended over the Aj
satisfying a (A .i ) fA i = C. Thus to prove our Theorem it will suffice to
show that

(27)
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vow denote by it, < ,i22 < . . . the sequence of all integers which
satisfy a(ni ) /n i = C. Clearly

(28)

Put a(n,)ln, = alb = C. First we show that as x > co, b > oo
(C and therefore the n's depend on .x,) . If for infinitely many values of x
b assumed the same value, then since there are only a finite number of
choices of a (alb < a), we should have from (24)

(29)

	

a (n,)
_

	

< a,

	

b 1 1

	

i
) >

	

pi > (logx) 10 ,

(if no such p, existed there would be no integers of the form (26), i . e. there
would be no integers of the second class and the proof of our Theorem
would be complete). But since p, > oo, (29) is clearly impossible, thus,
b > oo as x > oo as stated .

Thus to complete our proof it will suffice to show th,it

where in I' all the prime factors of the ni are not greater than b and in ~"
are the other -ti i . Clearly for all i, n i - 0 (modb) ; thus

1

	

1

	

1

	

/

	

1

	

logb
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where in 1,, all prime factors of t are not exceeding b . Now let n i be in Z"
and let pi be the greatest prime factor of 1ti . Clearly p i > b . But since
a(ni)/ni -- alb, we must have or (n i ) -0 (mod pi ). Therefore

1

	

e,
ni < b112

p_<b

ni - 0 (modgj), a(qi) - 0 (modpi), a > 1

or

« > 2pi .

(a > 1 follows from the fact that p i was the greatest prime factor of ni ) .
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.1 2 LJ p2 .~.1 2 q4 gJ 3 t
vi > b

where in J 2 , q° > dp i and a > 1 and in Y., 3 all prime factors of t are not

greater than p . Thus finally

1

	

1

	

1

	

c alog p ti ~1 1
ǹ J pi / 2qa~

	

1+ p-1)
<
~ pí ú2qá

(33)

V lob pi

	

f'10
C9 -~ 1J 3,2

	

1) 1 112

(31), (32) and (33) prove (30) and hence the proof of our Theorem is
complete.
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