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1. The chromatic number of a combinat.orial graph l? is the least 
cardinal number a which has the following property. The set of nodes 

of F can be divided into a subsets in such a way that no edge of I? joins 

two nodes belonging to the same subset. The simplest example of a 

graph of chromatic number a is the complete graph of order a, which has 

exactly a nodes each two of which are joined by an edge. A tree, i.e. a 
graph without circuits, has a chromatic number which is at most 

equal to two. More generally, this holds for every even graph, i.e. a 

graph all of whose circuits have an even number of edges. It is known$ 
[l] that there are finite graphs without triangles whose chromatic number 

has any prescribed finite value a (Theorem 1). The construction used 

in [l] fails when a is infinite. The first part of this paper is concerned 

with a construction, modelled on that of [l] but differing from it in some 

essential respects, which yields a graph Pa, without triangles, of any given 

chromatic number a >X, (Theorem 2). Under the assumption of a 
form of the general continuum hypothesis the set of nodes of such a graph 

can be made as small as it can be, i.e. of cardinal u (Theorem 3). 

In the second part a new type of set-theoretical partition relation 
will be introduced, formed in analogy to partition relations studied in [2], 

which refers to a generalization of the notion of the Baire categories in 

analysis. For this relation we prove a result (Theorem 4) which might 
be considered as a wide generalization of a special case of a theorem of 

Dushnik and Millers. It is worth noting that the last named theorem 

holds for any infinite value of the cardinal number a entering in its state- 

ment whereas Theorem 4 will only be proved for every regular infinite a. 

By means of Theorem 2 we shall in fact prove (Theorem 5) that the 
conclusion of Theorem 4 is false for every singular infinite cardinal, under 

the assumption of a form of the general continuum hypothesis. 

2. Set union, difference, intersection and inclusion in the wide sense, 

are denoted by A+ B, A-B, A B, A c B respectively, and A-B is used 

irrespective whether Bc A is true or false. The set of all mappings of 
B into A is AB, The cardinal (number) of A is 1 A 1, and the cardinal of 
an ordinal (number) n is j n]. Occasionally we shall use the obliteration 

operator h whose effect is to remove from a well-ordered series the term 

t Received 23 July, 1957; read 21 November, 1957. 
$ In fact, the graph constructed in [l ‘1 has no triangle, no quadrilateral and no 

pentagon. In the present, not’e quadrilat,erals and pentagons will not be excluded. 
f [3], also [2], Theorem 44. 

[Jomm~ LONDON MATE. Boc. 34 (1959), 63-721 
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above which it is placed. Thus (x0, x1, . . . . G&} (n finite) means just 

1 5, 21, -a*, x,-r>, whether or not the X’S are distinct. This operator 
may even be placed above a symbol which has not yet been defined. If 
m and n are ordinals and m < n then [m, n) denotes the set of all ordinals v 
such that 712 < v < n. Brackets ( } are used exclusively in order to specify 
a set by giving a list of its elements, and (x, yv> denotes an ordered pair. 
Thus [pn, n) = {V : pn < v < $. The next larger cardinal to u is denoted 
by a+. For any cardinal a > 2 we denote by cd the least cardinal b such 
that, for some index set N satisfying 1 N ( = 6 and suitable cardinals a, < a, 
we have a=X(vsN)a,,; the cardinal a is regular if a’ = a, and singdar 
if a’ < d. 

For any set A the symbol [Al2 denotes the set whose elements 
are all subsets (x, gj+ of d of cardinal 2. A graph is a pair I’ = (8, T) 
of sets such that T c [S]". The order (b(P) of I’ is defined by #(I’) = 1 XI, 
and t(he chromatic number x(I) is the least cardinal a such that, for some 
index set N of cardinal a, there is a partition 8 = E(Y EN) 8, such that 
[SJ2T= 0 for all v&N. 

Clearly, x(P) < $(I’). If I’ is complete, i.e. T = [8J2, then x(P) = $(I’). 
The result of [l], as far as triangles are concerned, states that, given any 
finite cardinal a, there is a i%Gte graph l?& such that x(I’J = a and, at the 
same time, [{x, y, ~$1~ + T whenever (x, y, z}+ c 6’. In order to make it 
easier to follow our extension of this result to a > 8, we give a slightly 
modifled version of the original proof of Kelly and Kelly for finite a. 

THEOREM 1. cbfwqxmd~ng to every a < N, there exists a graph I?,, 

without triangles, such that +(I?,) < N, and X(l?,J = a. 

Proof. It suffices to define an operator M which turns every graph l? 
into a graph XI’ such that 

(9 4Ph = dmxu3+9w)x~~. 

(ii) If x(P) < N,, then x(.&fP) = x(P)+l. 

(iii) If I’ does not contain any triangle then HI’ does not contain 
any triangle. 

l?or if such an operator has been found then the assertion of the theorem 
holds for the graph lYa = Ha rO obtained by a-fold iteration of H applied 
to the graph PO = (0,0). Let P = (8, 27) be a graph, and let m be the 
initial ordinal belonging to the cardinal x(I). We put MI’ = I” = (S’, T') 
where 

is’= ((v, 2): v<n; x&X}+{(n, x0, Xl, . . . . 2,): x0, . ..) z?,ES}; 

T’= {{(v, 4, h ~1): v<n; {x, ,>cT) 

+{u V, x,), (n, x0, . . . . en)> : v < 12 ; x0, . . . . Q”). 



Then T’ c [S’lz, and (i) and (iii) hold. By definition of n there is 
f s [0, n)S such that {CC, y> E T implies f(x) #f(y). Define f’ E [0, nf 1)s’ 
by putting 

f’((6 4)==f(N (v<n; x&X), 

f’(h x0, . . . . 2,)) =n (X0, . . . . gnE8). 

Then (5, ~)GT’ implies f’(f) #f’(q), so that x(F) <Jn+ll. If we now 
suppose that x(r’) = 1 n j < X0, then there is g’ E [0, n)s’ such that 
{f, r)) E T’ implies g’( [) # g’(q). Defines g,E [0, n)S by putting 

g&4=gr((b 4) Iv<n; XEO 

Let ~<n; (x, yj&T. Then {(v, 4, (v, Y)>E T’ ; 

CA44 =g’((v, 4) fs’(h Y,> =s,(Y)- 

By definition of PZ, and since n is l?nite, there is X, E X such that g,(z,) = V. 

Put v,=g’((n, x0, . . . . 2,)). Then 

v,<n; {(vo, xvo), (n, x0, . . . . %,))ET; 

$2’ ((vo, xv*)) = gvo(x”o) = vo = g’ (h x01 * * ‘> a,) 

which contradicts the definition of g’. Hence x(F) = 1 n+l(, and (ii) 
follows. This proves Theorem 1. 

Clearly, this argument fails for a > No since in this case the existence 
of x, can no longer be inferred. All we know is that / {g,(z) : XE S>l = InI 
which does not imply that g,(z) takes every value in [0, n). 

4. THEOREM 2. CorrespO?di?&g to every Cardinal a > K, there exists a 
graph Fa which has the following properties: 

(i) ra doe.8 not contain any triangle. 

(ii) X(ra) = d ; +(r,) 2 a. 
(iii) If a0 < a implies 2a~ < a, then $(I?,) = a. 

THEOREM 3. Let a >Ro. Then there exists a graph ra’, without 
triangbs, such that X(lYa’) = a. If 

a=sup{bsB)b’, (1) 

f~ sOme non-empty set B of infinite car&nab such that b, -C b E B implies 
2bo <b, then pa’ can be made to satisfy, in addition, $(I?,‘) = a. Such 
a set B mists, for instance, when either (i) a is regular, and a, < a implies 
2a0 <a, or (ii) a is singular, and K, < a, < a implies 2”o = aoof, 

5. Proof of Theorem 2. Let a >, X0, and denote by m and n the initial 
ordinals belonging to a’ and a respectively. We define sets S,,, l’,, for 
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v < n as follows. Let vO -K n, and suppose that S,, and T,, have been 
defined for v < v,,. Then we let SaVO be the set of all pairs (vO, A) such that 

A = IX (v < vo) S,, ; 1 A I< a’ ; [Al2 E (v < vo) T,, = 0. 

In particular, (vO, #) E S,,, so that J’,,,, # 0. 

Let Tayo be the set of all sets {z, (vO, A)>, such that (vO, A) E Save ; x EA. 

This completes the definition of S,,, T,, for v < n and it follows that 

s,,s,,=0 (p<v<n). 

Put S,= E(v < n) &,,; T, = E(v < n) T,,; I’& = (Sa, T,). 

Then IS,/=~(v<n)/S,,l~~(v<12)l=a. (2) 

Also T,=Z(v<n){{x, (v, A)},: (v, A)ES,,; XEA) c[SJ2 

so that ra is a graph. In the remainder of the proof of Theorem 2 we shall 
suppress the suffix a. 

Proof of (i). Let [(x0, xi, x,),]“c T, We have to deduce a con- 
tradiction. We may a,ssume that 

x, = (v,, -4) -2 S,, (a < 3) ; v. < v1 -=C v2 < n. 

Let ~(</3<3. Then 

@a, (q> A&) = (Q, (v,, 4x)) = {xw X&E T 

and therefore either X~ E A, or x~EA,, Now 

{xg)Acr = S,,, 2 (v < v,) S, = 0 

and hence 

Therefore {xo, x1> E [412 TV1 = [A212W < ~2) T, = 0, 

by definition of A,. This is the desired contradiction, and (i) follows. 

Proof of (ii). Define f& [O, ,)S as follows. Well-order S in such a 
way that whenever p<v<‘n; XES,; YES,, then x<y. Let x,,ES, 

and suppose that f(x) has been defined for x < x0. Then x, = (vo, A,,) E AS’,,~, 
for some v. < n and some AO~E(v < vO) S,, and f(x) has already been 
defined for x E A,,. Also, 1 A, j < a’ = ] m 1, so that there exists an ordinal 
f(xJ < m such that j(zO) #f(z) (X E A,). This defines f(z) for XE S. 
Now let {y, X) E T. We want to prove f(y) #f(z). We may assume that 
x= (v, A)rS,; YEA. Then by definition of f(x), we have f(x) #f(y). 
This shows that f(x) is an admissible “ colouring ” of I’ with j m / colours, 
so that x(I) <jm[ = a’. 
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We shall now assume that 

x03 <cd (3) 

and derive a contradiction. Let E be the initial ordinal belonging to 
x(P). Then there is g E [O, k)S such that g(z) # g(y) whenever (x, y] E T. 
We d&ne, for p < m, sets L, and ordinals pP as follows. Let ,uO -X m, 

and suppose that Lp and pP have been defined for p < pO and that 

Lg=S; pp<n (P-+~). 

Then, by Zorn’s Lemma, there is a maximal set LGO such that 

LpocX; [-Lpo12 T = 0; g@) fg(y) whenever (x, y}+ .Lpo; 

Llo CC (p, < Y < n) S,, for each p < pLo. 

Then, by definition of a’, Lpo # 0. Also, 

I’T;poI=I{Yw Xqto)I<l~lI~‘, 

and it follows that there is an ordinal pro < n such that LPo c C (p < pPo) BP. 
This defines L, a,nd pe for p < m. Put 5, = (p,, L,J (p ==c m). Then 
tru.s Sp, (p < m). Let pl < p. < m. Then 

0 z L/La= p (P/Q < v < n) qw < PpJ q. 

Hence there is v such that p#, < v < pao, so that pp, < pp, (pl < ,uo < m). 
Since g([,) < L (p < m), and j k j < 1 m 1, there are ordinals CC, /3 such that 
cc < /3 < m; g(&) = g(&). Put La’ = -L-t- {$}. Then 

tp= (pg, ~~)~~Ps=~(~ll<v<n~f% CpLLd, 

and hence, by definit~ion of L,, 

L,‘cX(pp<v<n)S, @LX). (4) 

If we assume that there is ZE L, such that 

(x, &d E T, (5) 

then x~L,cX(v<p~)S,; x = (vl, A), for some v1 < pd ; 

(x, (P!> -$I}= (&:al (vu -NJ= ix, &JET, 

and we have either x E I;s or &E A. Now 

(x~LBCS,l~(p,<v<n)S,=O, 

so that, in view of pp > pa > vl, 

(4;8&SPaAcSpAI:(v<vl)Sv=0. 

This contradiction proves that (6) is false. We infer from the definition 

of La that 
[L/J2 T = 0. (6) 
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If XEJ%, then {G 6.J = (x, h -USE T,,,c T; gW #q&) = g&d. 
This implies, by definition of L&, that 

g(x) +gkd> if {% ?I]+ CL,‘. (7) 

Finally, if eb E L,, then the contradiction 

~~EsSPaLCLCSPBC(v<Pa)Sv=(il 

follows. Hence .$I$ L,, so that 

L, c * L,‘. (8) 

The set of relations (4), (tj), (7), (8) constitutes a contradiction to the 
maximum property of L,. Hence the assumption (3) was false and (ii) 
is established. 

Proof of (iii). w e suppose that a is such that a0 < a implies 2% <a. 
We begin by deducing that, whenever b < a, then ab <a. If, first of all 
n is a limit number then, by [4], 

ab=~:(cc,<a)a,b~~(u,<a)2aob~~((Ug<a)a=a. 

If, on the other hand, a: = c+ then 

CLZ’ < (2C)b = 2c” < a. 

We can now prove that / S, 1 <a (v < n). Let vO < n, and suppose that 
j S, 1 < a for v < vO. Then it follows from the definit.ion of S,O that 

IS,oI ~r,(b<~‘)(C(v<v,)IS,l)b~~(b<a’)(aIv,j)b 

<X(b<a’)abQxd=a. 

This proves that I S, 1 < a (v < 12) and hence, by (2), that 

a~~s~=C(v<n)/s,j~~~n]=a, 

and (iii) follows. This completes the proof of Theorem 2. 

6. Proof of Theorem 3. If u’ = a then we may put ra’ = Pa. Now 
let EG’ <a, and let m be the initial ordinal of cardinal a’. Then 
a =i 2 (p < m) aP, for some suitable cardinals CI~ < a. Let I’*’ = (S,‘, T,‘), 

where 8,’ = ((p, x) : p < m ; x E SC,), 

Ta’=[ (P, 4, h ?I,>: tL<m; {x, Y)Eq}; cp=a,+, 

and SC,. and T, are the sets of nodes and edges respectively of the graph 
PC, defined above. By Theorem 2 

x(r,) = C,,I = c,~ 

and therefore, by definition of ITa’, 

x( r,‘) = sup (p < m) cp = a. 
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Let us now suppose that a satisfies (1) for some set B possessing the 
property given in Theorem 3. Then we modify our definition of Pa’ by 
putting ra) = (S,‘, SF’,‘), where X,‘= {(b, x): b&B; xsX,), 

Ta’= { (lb, 4 (h Y>> : be B ; {T Y}& Tb}. 

We have ,-q(ra’) = sup (b E B) x( I’,) = sup (b E B) b’ = a and, by Theorem 2 
(iii), 

Finally, if tl satisfies (i) of Theorem 3 then the set (rz} can be used as B, 

and if ct satisfies (ii) of Theorem 3 then the set jb ; X, < b < a} can be 
used as B. This proves Theorem 3. 

7. Our next theorems are most conveniently expressed in terms of a 
partition relation of the form 

A + (b, R)2. (9) 

Here A is a set, 6 a cardinal number and A a set of sets. The relation (9) 
expresses, by definition, the proposition that, whenever [Al2 = K,+K,, 
there is X CA such that 

either [X12cK,; 1X1= b 

or [X]2cX1; XEA. 

The negation of (9) is denoted by 

A j--s (6, ny. 

Let !2 be a set of sets. A set A is said to be of jirst Q-category if there is 
s1’clR such that IsZ’1<jQ2j and AC C (XE W’) X, and otherwise of 
second Q-category. 

THEOREM 4, Let I2 be a set of sets and suppose that 1 St] is cc regular 

&n$nite cardinal, Let A be a set which is of second Q-category, and denote 

by A2 the set of all subsets of A which are of second &x&.gory, Then 

A -+ P,, A2J2- 

Remark 1, Let St be the set of all closed, nowhere dense sets of real 
numbers. Assume that 2No = x1. Then a set A of real numbers is of 
econd Q-category if, and only if, A is of second Baire category. For 

the complement of every closed set is the union of open intervals with 
rational endpoints, so that I Sz I = 2% = X,. Now Theorem 4 shows that 
if&z nodes of a graph I?, which does not contain any injinite complete subgraph, 

form a set A of real numbers of second Buire category then there is a subset 
X of A, of second Baire category, which is independent, i.e. which is such that 
no two elements of X are joined by an edge of I? (assuming 2% = X,). 
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In the case of graphs of a more special type similar results have been 
obtained by F. Bagemihl [5] which are, however, not implied by our result. 

Remark 2. If n is an infinite ordinal such that 1 nl is regular then we 
may put, in Theorem 4, 

sz= {(u}: u<n} ; A = [O, n). 

A subset X of A is of second a-category if, and only if, 1 X 1 = 1 n 1. Hence 
Theorem 4 states in this case that, in the notation of [2], CL+ (N,, a)” when- 
ever a = a’ 2 K,. This is the theorem of Dusknik and Miller [3] in the 
special case of regular cardinals. 

Proof of Theorem 4. We may assume that Q = (A,: v < n>, and 
that n is an initial ordinal of cardinal 1 Q I (2 8,). Let [Al2 = X,+X,. 
We have to find a subset X of A such that either 

[X]2cKo; 1x1 =x0 (10) 

Or [X]2cK1; X&A,. (11) 

If A QE (v < n) A, then (11) holds for X = (t}, where 4 is any element 
of A---T, (v < n)A,. Now let A ~2 (v<n)A,. For CC&A we put 

u&9= {Y: cc Ywq. 

cme 1. There are elements x0, . . ., S& of A such that 

X,&Arl(X <k) U&JEhz (k < cog). 

Then (10) holds for 1X = {x0, . .., gwD}. 

Case 2. Therearek, x0, . . . . &such thatk<w,; x,,, . . . . &&A and,if 

D=ArI(X<k)U,(Z*), 

then Den,; DUO(x) $A, (x&D). 

Then we define yO, . . . , 9, as follows. 

Let q,<n and gOo, . . . . %@. If DcC (~<v~)({YY)+UO(Y~,+A,) 
then there are CL,,, ,. ., ,G,,, <n such that D~~((v<v~)~ (p<pv)AB. 

Now,sincejv,j<Inj=(nl’, we have ji = sup (v < v,J pV < n and therefore 

which is a contradiction. Hence we can choose 

This defines yO, . . . . Qfi. We now show that (11) holds for X = (y,,, . . ., Qn}. 
First of all, [Xl2 cK, by definition of y,,. Also, if X $A,, then there is 
vi < n such that Xc E (v < vl) A,, and then yy, EX c I; (v < vr) A,, which 
contradicts the definition of yV,. This proves Theorem 4, 
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8. Our last theorem will imply that the assertion of Theorem P is 
false if ( IRj is any singular infinite cardinal, provided we assume a version 

of the general continuum hypothesis. 

THEOREX 5. Let a be a singul~ttr in$nite cardinal number and let B 

be a non-empty set of cardids less than a such that b E B implies 2b = bf, 

and let a = sup (b E B) bt. Then there is a set i2 of sets such that, if 

A=I;(XEn)x, and A2 denotes the set of all subsets of A which are of .wcmi 
!&category then (i) 1 Q I= a ; (ii) A &AS; (iii) A t, (3, A2)2. 

Proof of Theorem 5. Let b&B. Then 2b+ < a. For since a’ <a, 
it follows that a is a limit cardinal, and hence b < a ; b+ < a, and there is 
CEB such that b+<c Then 2b+<2c=c+<a. Let m and n b the 

initial ordinals of cardinal a’ and a respectively. Then there are cardinals 
a, < a such that a = C (CL < m) aP. There are b, E B such that 

a, <b, CP cm). 

By Theorem 2 there are graphs IP* = (S,*, Tfi*), without triangles, 
such that 

$(I’,*) = x(rp*) = b,+ (p < m) ; Sp* AS,* = 0 (p < v cm). 

Let iI = X(p < m)(X : X c S,* ; [Xl2 yP* = 01, 

A=r,(X&Q)X. 

Then IR/,<~((p<m)2br+~alml=a. 

On the other hand, there is fe LP such that x&f(x), for x&A. Then 

p < m; (3, y} 8 T,* imply f(x) #f(y). Hence x(rp*) < 1 Q j ; 

a=;C1(~<mm)a,~~((tL<m)b,+=~;~cmm)x(r,*)~~~IIml; a,<lQ;Zl. 

Therefore (i) holds. 
If O’ c O; ACE (Xc: Q’)X, then there is g& (Of)-4 such that xsg(z), 

for x&A. Again, the relations p <m; {x, y)~ T,* imply g(z) + g(y), 
and hence we have X(l?,*) < 1 Q’ ) ; 

a~~(~<m)X(rr*)~l(“‘IlmI; a<lQ’l. 

This proves (ii). 
We now consider the partition 

[A]2 = Ko+Kl, where X0 = I: (p < m) rPs ; K, = [A]2-Ko. 

If Y c.4 and [ Y12 c.&, then [Y]” c TF*, for some TV < m, and therefore, 
since Yr* does not contain any triangle, 1 Y I< 3. 

t Such & set B exists, for instance, if a is such that N* < b < a implies 2’ = bf, in 
whiohc&bsewemaytakeB= {b: Ng6: b< a). 



72 PARTITION RELATIONS. 

On the other hand, if 2 CA and [212 cK1, then ZSP* E !A; 

Z=I;(~<<)zs,*=~(xE~“)X, 

where !A” = {ZS,* : p<m}cfl; IQ”I<~I]<~A. Hence .Z#A,, and 
(iii) follows. This compkks the proof of Theorem 5. 

References. 

1. J. B. Kelly and L. M. Kelly, “ Paths and circuits in critical graphs “, A+nw&an J. of 

Muth., 76 (1954), 792. 
2. P. Erdijs and R. Rado, I‘ A partition calculus in set theory “, Bull. American Math. SOL, 

62 (1956), 427-489. 
3. B. Dusknik and E. W. Miller, “Partially ordered sets”, American J. of Math., 63 

(1941), 605. 

4. N. Bachmann, “ Tram&&e Zahlen “, Ergebnisse der Mathematik (1955), 144, Satz 3. 

5. F. Bagemihl. “ The Baire cakegory of independent sets “, Compositio Math., 13 (1957), 
71-75. 

Hebrew University of Jerusalem. 
University of Reading. 

Printed by C. F. Hodgson & Son, Ltd. Pakenham Street, London, WC 1 


