PARTITION RELATIONS CONNECTED WITH THE
CHROMATIC NUMBER OF GRAPHS

P. Ernos and R. Rapof.

1. The chromatic number of a combinatorial graph I' is the least
cardinal number ¢ which has the following property. The set of nodes
of T' can be divided into @ subsets in such a way that no edge of I' joins
two nodes belonging to the same subset. The simplest example of a
graph of chromatic number a is the complete graph of order @, which has
exactly @ nodes each two of which are joined by an edge. A tree, i.c. a
graph without circuits, has a chromatic number which is at most
equal to two. More generally, this holds for every even graph, i.e. a
graph all of whose circuits have an even number of edges. It is knownf
[1] that there are finite graphs without triangles whose chromatic number
has any prescribed finite value a (Theorem 1). The construction used
in [1] fails when ¢ is infinite. The first part of this paper is concerned
with a construction, modelled on that of [1] but differing from it in some
essential respects, which yields a graph T',, without triangles, of any given
chromatic number @ >¥; (Theorem 2). Under the assumption of a
form of the general continuum hypothesis the set of nodes of such a graph
can be made as small as it can be, 7.e. of cardinal a (Theorem 3).

In the second part a new type of set-theoretical partition relation
will be introduced, formed in analogy to partition relations studied in [2],
which refers to a generalization of the notion of the Baire categories in
analysis. For this relation we prove a result (Theorem 4) which might
be considered as a wide generalization of a special case of a theorem of
Dushnik and Miller§. It is worth noting that the last named theorem
holds for any infinite value of the cardinal number @ entering in its state-
ment whereas Theorem 4 will only be proved for every regular infinite a.
By means of Theorem 2 we shall in fact prove (Theorem 5) that the
conclusion of Theorem 4 is false for every singular infinite cardinal, under
the assumption of a form of the general continuum hypothesis.

2. Set union, difference, intersection and inclusion in the wide sense,
are denoted by 4+ B, A—B, AB, A< B respectively, and 4 —B is used
irrespective whether B< A is true or false. The set of all mappings of
B into 4 is AB. The cardinal (number) of A4 is | 4], and the cardinal of
an ordinal (number) n is [n|. Occasionally we shall use the obliteration
operator ~ whose effect is to remove from a well-ordered series the term

t Received 23 July, 1957; read 21 November, 1957,
i In fact, the graph constructed in [1] has no triangle, no quadrilateral and no
pentagon. In the present note quadrilaterals and pentagons will not be excluded.
§ [3], also [2], Theorem 44.
[Jouvrwar Lowpox MatH. Soc. 34 (1959), 63-72]
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above which it is placed. Thus {x,, 2,, ..., #,} (» finite) means just
{#p, %1, ..., ®,_1}, whether or not the z’s are distinet. This operator
may even be placed above a symbol which has not yet been defined. If
m and » are ordinals and m < then [m, n) denotes the set of all ordinals »
such that m <v <n. Brackets {} are used exclusively in order to specify
a set by giving a list of its elements, and (2, ) denotes an ordered pair.
Thus [m, n) = {»: m <v<n}. The next larger cardinal to « is denoted
by at. For any cardinal @ > 2 we denote by a’ the least cardinal & such
that, for some index set NV satisfying | N| = b and suitable cardinals a, < a,
we have @ = 2(veN)a,; the cardinal e is regular if o’ = @, and singular
if ¢’ <a.

For any set A the symbol [A4]? denotes the set whose elements
are all subsets {z, y},. of A of cardinal 2. A graph is a pair I'= (8, T')
of sets such that 7 <[S]2.. The order ¢(I") of T" is defined by ¢(I') =| 8/,
and the chromatic number y(I') is the least cardinal @ such that, for some
index set N of cardinal a, there is a partition 8 =X (veN) 8, such that
[S,2T =0 for all veN.

Clearly, x(I') < ¢(I'). IfI'is complete, t.e. T'= [ST?, then x(I") = (I").
The result of [1], as far as triangles are concerned, states that, given any
finite cardinal a, there is a finite graph I', such that x(I',) = a and, at the
same time, [{z, ¥, 2}]°¢ T whenever {z, y, 2} <8. In order to make it
easier to follow our extension of this result to a >N, we give a slightly
modified version of the original proof of Kelly and Kelly for finite a.

TaEOREM 1. Corresponding to every a <X, there exists a graph T,
without iriangles, such that ¢(T',) <R, and ¥(T,) =a.

Proof. It suffices to define an operator M which turns every graph I
into & graph MT such that
() (UT) = (I) x(I')+-(I)x®.
(i) If x(I") <N, then x(MI') = x(I')+1.

(iii) If I" does not contain any triangle then MT' does not contain
any triangle.

For if such an operator has been found then the assertion of the theorem
holds for the graph I', = M2, obtained by a-fold iteration of M applied
to the graph I'y= (@, ©). Let I'= (8, ') be a graph, and let n be the
initial ordinal belonging to the cardinal x(I'). We put MI'=1I"= (§’, 7")
where

B =y, #): v<n;, ee81-H{n 25 By o B2 Ty v Ba8 B}
T = {{(v, z), (v, y)}: v<<m; {2, y}sT}
+{{n 2,), (0, @gs -0, Bu)}: v <05 Ty, .o, BoE 8}
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Then 7'<[81?, and (i) and (iii) hold. By definition of » there is
fe[0, »)S such that {z, y}eT implies f(x) #~f(y). Define f'e[0, n41)%

by putting
(@) =f@) (v<n;zed),

f’((ﬂ, Wy yoay ﬁ?u)) =n (% ..., &,e8).

Then {¢, n}eT” implies f'(€) £ f' (), so that x(I'") <|n+1|. If we now

suppose that x(I')=|n|<¥, then there is g¢'e[0, )5 such that

{€, n}e " implies g'(§) #¢'(n). Define g,e[0, n)S by putting
g,@) =g ((»2) (<n;zel)

Let v<n; {x,y}eT. Then {(v,x), (v, y)}eT’;

g,@)=¢'((% 2) ¢ ((» ) =1,0)
By definition of », and since = is finite, there is x,& § such that g,(z,) = ».
Put vy =g’ ((n, @4 ---s 2,)). Then
vo<<t; {(ve &,)s (0, Bgy s 2,36 T;
7' (00 2,,)) = 0,y@0) = v =9 ((m, T, .., )

which contradicts the definition of ¢’. Hence yx(I")=|n+1|, and (ii)
follows. This proves Theorem 1.

Clearly, this argument fails for & > R, since in this case the existence
of z, can no longer be inferred. All we know is that | {g,(z): xe S} = |n|
which does not imply that g, (%) takes every value in [0, %).

4. TaEoREM 2. Corresponding to every cardinal a >R, there exists a
graph 1, which has the following properties:
(i) I', does not contain any triangle.
(i) x(Tg) =a"; (1) = a.
(iii) If ay << a implies 2% < a, then $(I'y) = a.

TeEOREM 3. Let a =N, Then there exists a graph T, without
triangles, such that x(I')')=a. If

a=sup (be B)¥b’, (1)

for some non-empty set B of infinite cardinals such that by < be B implies
20 < b, then T, can be made to salisfy, in addition, $(I';))=a. Such
a set B exists, for instance, when either (i) a is regular, and a, < a implies
200 L a1, or (ii) @ is singular, and Ry < ag < a implies 2% = a,*.

5. Proof of Theorem 2. Let ¢ > X, and denote by m and » the initial
ordinals belonging to ¢’ and a respectively. We define sets 8,,, 7', for

ap?
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v<n as follows. Let v,<m, and suppose that S,, and T',, have been

defined for v < »,. Then we let S,, be the set of all pairs (v,, 4) such that
AcZ(v<vy)8,,; |A|l<a'; [APE(v<vy) T, =9.

In particular, (v, ¢)€S,,,, so that §,, #0@.

Let 7',,, be the set of all sets {z, (v, 4)}, such that (vo, 4)€8,,,; ze4.
This completes the definition of S,,, 7',, for v<n and it follows that

SyuBey=90 (p<v<mn).
Put  S,=3(v<n)8,; T,=3w<n)Te; To= (S, T,
Then |8, |=Z(v<n)|8,,| ZZ(r<n)l=a. (2)
Also  T,=3Z@<n){{z, (v, A)}.: (v, 4)e8,,; 264} <[S,P

so that I', is a graph. In the remainder of the proof of Theorem 2 we shall
suppress the suffix a.

Proof of (i). Let [{2g ¥, 25}:]*<T. We have to deduce a con-
tradiction. We may assume that
Ty = (v 4)e8,, (@<3); rp<y<y<n.
Let «<<B<3. Then
for., (vg, Ag)} = {Zp, (v, )} = {2, 25} T
and therefore either z,ed; or z;ed4,. Now
{2 d, =8, Z(r <v,)8,=0
and hence z,€8, Ag<=8, Z(v<vy8,; v, <vg;
(& 2p) = (Zos (v, Ap)}eT, .
Therefore fg, 2} e [P T, <[4 Z(v<v) T,=0,
by definition of 4,. This is the desired contradiction, and (i) follows.

Proof of (ii). Define fe[0, m)S as follows. Well-order S in such a
way that whenever u<v<m; zeS,; yeS, then e<y. Let z,e8,
and suppose that f(z) has been defined for & < ;. Then z,= (v,, 40)€8,,,
for some v,<n and some A, <X(v<wy)8,, and f(x) has already been
defined for ze d, Also, |4, <a'=|m|, so that there exists an ordinal
flxg) <m such that f(x) #f(z) (ved,). This defines f(x) for zeS.
Now let {y, z)eT. We want to prove f(y) % f(z). We may assume that
x= (v, A)eS,; yeA. Then by definition of f(x), we have f(x)f(y).
This shows that f(z) is an admissible “ colouring ” of I' with |m| colours,
so that x(I)<|m|=a'.
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We shall now assume that
x(I'y<a’ (3)

and derive a contradiction. Let %4 be the initial ordinal belonging to

x(T'). Then there is ge [0, k)S such that g(x) # g(y) whenever {z, y}e T.
We define, for u <m, sets L, and ordinals p, as follows. Let p, <m,
and suppose that L, and p, have been defined for p < g, and that

L,=8; p<n (p<pg)
Then, by Zorn’s Lemma, there is a maximal set L, such that
L,<=8; [L,T=@; g)#g(y) whenever {z, y}. L, ;
L, <X (p,<v<mn)8, for each p < p,.
Then, by definition of a’, L, #@. Also,
|, = {g@): ze L} <Ik| <a,

Fol
and it follows that there is an ordinal p, <7 such that L, <X (x <p,,) S,
This defines L, and p, for p<m. Put &,=(p,, L,) (p<m). Then
EFSSP# (p<m). Letp; <py<m. Then

B+#L,< (Z(p,<v<n)8,)(2w<p,)8,).

Hence there is v such that p, <v<p,. so that p, <p, (a3 <po<m).
Since g(¢,) <k (u<m), and |k|<|m|, there are ordinals «, B such that

a<B<m; g&)=g(&). Put L=L,+{¢). Then
&= (pp Lp)eS, S (p, <v<m)8, (p<a)
and hence, by definition of L_,
L/<Z(p,<v<m)S, (x<a. (4)
If we assume that there is e L, such that
{z, £p1e T, (5)
then ze L,<X (v <p,)S,; x= (v, 4), for some v, <p,;
{&, (pps Lp)y = {£p (v, A)} = {®, {5}e T,
and we have either ze Ly or £,e4. Now
@, =8, 5 (b, <v<n) 8, =0,
go that, in view of p;>p, >,
§pe8,, A8, Z(v<v)8,=0.

This contradiction proves that (5) is false. We infer from the definition

of L, that
[LTPT=8. (6)
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If zeL,, then {z, &}={, (p, L)}eT, =T'; g() #g(&)=g(&).
This implies, by definition of L,, that
g@) #9(), i {o,yl.<L,’. ™
Finally, if fﬂaLa, then the contradiction
588, L,<8, Z(v<p,)8,=0
follows. Hence {y¢ L, so that
L=-L,. (8)

The set of relations (4), (6), (7), (8) constitutes a contradiction to the
maximum property of L,. Hence the assumption (3) was false and (ii)
is established.

Proof of (iii). We suppose that o is such that ¢, < ¢ implies 2% < a.
We begin by deducing that, whenever b < @, then a®? <{a. If, first of all
@ is a limit number then, by [4],

a?=Z (< a)a? <Z (< )20 L (g, < a)a=a.
If, on the other hand, ¢ = ¢t then
a? g (29)1‘3 = 2ecb ga

We can now prove that |8,|<a (v<<n). Let v, < n, and suppose that
|8,| <a for v<w,. Then it follows from the definition of §,, that

18,,] ST B <a)(E@<w)S,]) < B <a)(e|nl)?
LTb<a)a®<aa' = a.
This proves that | S,| <a (v <n) and hence, by (2), that
a<|8|=Z(w<n)|8,|<a|n|=aq,
and (iii) follows. This completes the proof of Theorem 2.

6. Proof of Theorem 3. If a’ =a then we may put I,/ =T',. Now
let @' <a, and let m be the initial ordinal of cardinal a’. Then
a =X (up <m)a,, for some suitable cardinals a, <a. Let I')= (8, 7)),
where 8, = {(1, z): p<m; ze 8, },

i ={{p, z), (p, Y)}: p<m; {&, yle Tcﬁ]- ; cu=a,t,

and 8, and T, are the sets of nodes and edges respectively of the graph
I',, defined above. By Theorem 2

x(Le,) = G‘,: =,
and therefore, by definition of T,
x([y') =sup (p <m)e, =ea.
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Let us now suppose that @ satisfies (1) for some set B possessing the
property given in Theorem 3. Then we modify our definition of I') by
putting T',' = (8,/, T,'), where 8, = {(b, z): be B; xze8,},

T/={{® o), (b, 9)): beB; (& y}eT,}.

We have x(I',') =sup (be B) x(I'y) = sup (be B)b' = a and, by Theorem 2
i),

a <l )<Z(beB)$(T,) =Z(be B)b <a|B|=a.
Finally, if @ satisfies (i) of Theorem 3 then the set {a} can be used as B,
and if a satisfies (ii) of Theorem 3 then the set {b; Ry <b < a} can be
used as B. This proves Theorem 3.

7. Our next theorems are most conveniently expressed in terms of a
partition relation of the form

A (b, A 9)

Here A is a set, b a cardinal number and A a set of sets. The relation (9)
expresses, by definition, the proposition that, whenever [4]® = K,4 K,
there is X = A such that

either [X2c K,; |X|=0
or [X]2<K,;; XeA.

The negation of (9) is denoted by
A+ (b, A2

Let Q be a set of sets. A set A4 is said to be of first Q-category if there is
Q'=Q such that |Q'|<|Q| and A=X(XeQ)X, and otherwise of
second Q-category.

THEOREM 4. Let Q be a set of sets and suppose that | Q| is a regular
infinite cardinal. Let A be a set which is of second Q-category, and denote
by A, the set of all subsets of A which are of second Q-category. Then

A (R, Ay)2

Remark 1. Let Q be the set of all closed, nowhere dense sets of real
numbers. Assume that 2Mo=X,. Then a set 4 of real numbers is of
econd Q-category if, and only if, 4 is of second Baire category. For
the complement of every closed set is the union of open intervals with
rational endpoints, so that | Q| = 2% =X,. Now Theorem 4 shows that
if the nodes of a graph T, which does not contain any infinite complete subgraph,
form a set A of real numbers of second Baire category then there is @ subset
X of A, of second Baire category, which is independent, i.e. which is such that
no two elements of X are joined by an edge of I' (assuming 2™ = RK,).
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In the case of graphs of a more special type similar results have been
obtained by F. Bagemihl [5] which are, however, not implied by our result.

Remark 2, If n is an infinite ordinal such that |n| is regular then we
may put, in Theorem 4,

(= {{v}: v<n}; A = [0, n).
A subset X of 4 is of second Q-category if, and only if, | X| =|n!. Hence
Theorem 4 states in this case that, in the notation of [2], a > (X, a)® when-

ever a =a' >N,. This is the theorem of Dusknik and Miller [3] in the
special case of regular cardinals.

Proof of Theorem 4. We may assume that Q= {4,: v<n}, and
that n is an initial ordinal of cardinal |Q| (=R,). Let [A]? =K+ K,.
We have to find a subset X of A such that either

[XP<K,; |X|=xu (10)
or [XP<K,; XeA, (11)

If A¢X (v <mn)d, then (11) holds for X = {£}, where £ is any element
of A—Z(v<n)4, Nowlet AcZ(r<n)d, Forxed we put

Uslz) = {y: {z, y}aKo}.
Case 1. There are elements x,, ..., 2, of A such that
2, e ATIA < k) Uy(zy) e, (k< wy).
Then (10) holds for X = {xg, ..., &, }.
Case 2. There are k, z,, ..., 2, such that k <w,; @, ..., 4 and, if
D = ATL(A < k) Uy(z,),
then DelA,; DU(x)gA, (xeD).

Then we define y,, ..., , as follows.

Let I"'lll<% and Yoo oo ?vueD- It DCE (v< Vﬂ)({yv}+Uﬂ(yv}+Av)
then there are g, ..., 4, <n such that DX (v <w)Z (n<p,)4,.
Now, since | v| <<|n| =|n|', we have g = sup (v < vy) u, < n and therefore .

DeX(p<p)d,; DgA,,

which is a contradiction. Hence we can choose

Y,,6 D= (v < vo) (W} + Uy, +4,).

This defines ¥, ..., #,. We now show that (11) holds for X = {y,, ..., #,.}-
First of all, [X]*<K, by definition of y,. Also, if X ¢A,, then there is
vy <n such that X <X (v<»)4,, and then y, e X <X (v <v,) 4,, which
contradicts the definition of y,. This proves Theorem 4,
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8. Our last theorem will imply that the assertion of Theorem 4 is
false if | Q] is any singular infinite cardinal, provided we assume a version
of the general continuum hypothesis.

TrEOREM 5. Let o be a singular infinite cardinal number and let B
be a non-empty set of cardinals less than a such that be B implies 20 = b+,
and let @ =sup (beB)bf. Then there is a set Q of sets such that, if
A=Z(XeQ)X, and A, denotes the set of all subsets of A which are of second
Q-category then (i) |Q|=ua; (i) Ael,; (i) 44=(3, A,

Proof of Theorem 5. let beB. Then 2" <a. For since o’ <a,
it follows that e is a limit cardinal, and hence b << a@; b+ <<a, and there is
ce B such that b+ <c¢ Then 20" <2 =c¢*<a. Let m and n be the
initial ordinals of cardinal ¢’ and @ respectively. Then there are cardinals
a, < a such that e =X (u <m)a, There are b,& B such that

a,<b, (p<m).

By Theorem 2 there are graphs I',*= (S, *, T *), without triangles,
such that

¢(0F) =x(T *)=b1 (p<m); S*8*¥=0 (p<v<m).
Let Q=Zp<m){X: X<=8*; X]?T*=0},
A=3(XeQ)X.
Then Q| <Z(r<m)2t’ <a|m|=a.
On the other hand, there is fe Q4 such that zef(z), for xe 4. Then
p<m; {x, y}sTﬁ* imply f(x) #f(y). Hence X(Pg*)§|ﬂl;
a=Zp<m)a, <Z(u<mb=3(p<m)x(* <|Q|m]; e <|Q|.

Therefore (i) holds.

If Q'cQ; A<X (XeQ')X, then there is ge (Q')4 such that zeg(x),
for ze A. Again, the relations p<m; {z, y}e¢T,* imply g(=) #g(y),
and hence we have X(I' *) <|Q'[;

e <E(E<mx@,H<|||m]; a<|Q].

This proves (ii).
We now consider the partition
[A?=K,+K,, where K,=3X(u<m)I*; K,=[4]—K,
If Y<A and [Y]2<K,, then [Y]*< T *, for some u <<m, and therefore,
since I',* does not contain any triangle, | Y| < 3.

t Such a set B exists, for instance, if @ is such that &, < b << @ implies 2! = b+, in
which case we may take B = {b: N, < b< a}.
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On the other hand, if Z<A and [Z]*<K,, then ZS *e(;
Z=%(u<m)Z8,*=3%(XeQ")X,

where Q" = {Z8,%: p<m}cQ; |Q"|<|m|<a. Hence ZgA,, and
(iii) follows. This completes the proof of Theorem 5.
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