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n
Consider the product 17 (l - zak) where a t<a2l • • • <an are positive

k=1
integers. Put

n
max Ii (I - za') I = M (a,, a	an) , f (n) = min

	

M (a, , a2, . . . , a n ) .
z!-=t i=1 Q l , a2, . . . , an

Clearly M (a,,..., a n ) C 2n (equality if and only if (a„ a an ) > 1
or a, = a2 = • • • = an = I ) . The determination of f (n) seems to be a very dif-
ficult question, and even a good estimation of f (n) does not seem easy .
In the present note we are going to prove that f (n) 11n-1 as n-;oo, and
it seems possible that a refinement of our method would give (exp z=ez)

f (n) < exp (n 1-c)

for some c < 1 . The lower bound f (n) > V2n is nearly trivial, and we are
unable at present to do any better .

We want to remark that it is easy to show that
lim [M (1, 2, . . . , n) ]tin
n= oo

exists and is between 1 and 2 .

Put z= e2Rra , < a > = I I _ eznia I . Several further questions can be
asked. It is not difficult to prove that for almost all a (almost all means
except a set of Lebesgue measure 0)

n
(1)

	

lim jI <ka>=0<
k=1
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(2)

A simple computation then shows that

Perhaps (1) holds for all a .

It is easy to see that

(3)

Then

Cc - p"
q i,,

P . Erdös and d. Szekeres

We only outline the proof of (1) . A special case of a well known theorem
of Khintchine states that for almost all a there is an infinite sequence of
integers pn and q„ satisfying

_ (	1	_
\ qn log qn

qn
lim ji <ka]=0<

k=1

n
lim jI <ka>=oo<

k=1

holds for almost all a . (Clearly (3) can not hold for all a, e.g. it fails
if a is rational). To see this we observe that a simple computation shows
that if the qn are the integers satisfying (2) then

qn -1
lim 11 <ka>=oo<

k=1

Perhaps one could determine how fast (1) tends to 0 and (3) tends to oo

for almost all a .

ís it true that for all a
n

(4)

	

lim max H I z-eznik« = oo ?
Izl= 1 k=1

An old conjecture of P . Erdős which would imply (4) states as follows :
Let z 1 , z	be any infinite sequence satisfying I z, I =1 .

n
lim max rj z - z, I = oo .

Iz1= , i=1

On the other hand a simple computation shows that for the qn satisfying (2)
qn

(5)

	

lim max rl I
z - e2nikal=2 ,

z1 =1 k=1
and perhaps

n
lim max F1 Iz-e2nikal<op

Izl=1 k=1

for all irrational a (it certainly is oo for rational (x) .



(6)

(7)

(9)

which proves the Lemma .

THEOREM 1 . To every s there exists an n o (s) and A = A (a), B = B (e)
so that for every n > n o (e) and every a which does not satisfy one o f the

it
Onthe productn(1-zak)

k=1

n

	

nlim jj <ak a>=pp, lim jj <aka> =0?
k-1

	

k=1

0oc= P + - , (P, q) = 1 -
q

	

q2

t+q
Ij <ta><qa' .

t=t+i

11-41<11+yk1 1+c2 (1 +	
q+1-k))

1111 - zk 1 < 2 Ij 1 +c2 1 +	1	)~

	

q°=,
k=1

	

k=1

	

k

	

q+ 1- k

si

Finally we pose the following problem : Let a, < as < . . . be any
infinite sequence of integers . Is it true that for almost all a

Throughout this paper 0 C a < 1 and c, , c2 , . . . will denote positive
absolute constants, 10 < 1 (and the 0's appearing are not necessarily
the same) .

LEMMA 1 . Let

Then for every l

If 0=0 the product in (7) is 0, hence (7) holds . Thus we can assume
0 0. Order the numbers e2nita, 14- 1 < t < l+q according to the size of their
arguments and denote them by z, , z2, . . . , zq (0 < arg z, < arg z. < . . . <
< arg z q < 2n, i . e. (6) implies that the z's are all different) . From (6)
we have

(8)

	

arg zk = 2% k +
9

	

(k= 1, 2, . . . , q).(
9

	

q

put yk = e2ai(k-112)1q . From (8) we evidently have

Now from kÍ11 I 1- yk l = 2, kÍ1 1
1
1 - yk l is simply the value at z=1 of

=

	

(=

(z -1)/(zk-1)=z4+1/ and (9) we have
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inequalities

(10)

	

Bn <
we have

Theorem 1 means that (11) is satisfied except if a can be approxi-
mated ,well" but not „too well" by rational fractions with „small" deno-
minators .

Assume first that a is such that for every p and q < A

a- p
q C en

n
II<tet><(l+e) " .
t=1

a- p
q

for some 0 < p < q < A

By a well known theorem of Dirichlet there exists a q G e n for which

(13)

	

a-pI <1< 9

	

(p, q)=1 .
9

	

qen q'

By (12) q > A . Put uq C n < (u+ 1) q . Then we have by < to >C 2 and
our Lemma (since 28 < l +e for small a and q'lq < AV A for q > A > e)

if A > A (t) is large enough .

It for some q ,<_A, cc- P <-
q

	

en
then by (10) we can assume that

a-

	

<
Bn

. But then the arguments of the numbers e2ni(vq+1)a, v < tt,

1 < l C q (uq C n < (u+ 1) q) differ from the corresponding q-th roots of
unity by less than 1/B. Thus for B sufficiently large a simple computation
gives

II <ta>< 2vq< 1<(Y+t)9
or

1

	

q

	

1 n1A q
(15) [I <ta>=G [I <tai [I <ta> <(21u

	

22 <( ) 2 <1
t=1

	

t=1

	

uq<t-n

and Theorem 1, follows from (14) and (15) .

n

	

n

	

n
II <ta><2ggclu<2enq`'q < 2—A`'A <(1+E)"
t-1



Next we prove
THEOREM 2 .

n
On the product 11 (1-x akl

k=l

lim f (n)lln =1 .

Let m 2 < n < (m+ 1) Z . Consider the product

g„ (z)= rj rj (1 -X2k1) (I-2)n-m2 .
k=11=1

33

In other words a, = a ., I and the other a's are the
integers 2k l, 1 < k < m, 1 < 1 < n1 . To prove Theorem 2 it will be suffici-
ent to show that

(16)

	

Jim Max I g„ (z) 1'1" =1 .
Izj=1

We evidently have for I z I < 1
1-zIn-m2<2z7~n (i . e . n- m2 <2Vn) .

Thus to prove (16) it will suffice to show that for every e if m > m o (e)

(17)

	

max F1 Íj I1-z2kII= Max [Í rj <2k1a><(1+2s)m2 .
Iz1 =1 k=1 1=1

	

0<a-l k=1 1=1

Consider the numbers 2ka=ak , 1 < k < in . We claim that only o (in) of
them satisfy (10) . Since q < A it will suffice to show that only o (m) of
them satisfy (10) for a fixed q .

Suppose in fact that ab satisfies (10) for a certain q . Then we have

ak - P

	

bk where 1 < 11) k < 1 . Also ak+1 -
P~ _ 2bk where p'=_2 pq

	

n

	

B

	

e

	

q

	

n

(mod q). Thus (10) can be satisfied for at most log B/s
+1 consecutive

tog 2

values of k and these are followed by at least c 9 log n values of k for
which (10) is not satisfied for this particular value of q applying this
argument for all the k < m which satisfy (10) we obtain that (10) is satis-
fied for only o (m) values of k, as stated .

Now we can prove (17) . Write
m m

	

m

	

m
rj rj < 2k1a > = rj 1 rj < 2kla > rj2 rj < 2kja
k-1 1=l

	

k 1=l

	

k l=I
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Thus

m

CI < 2kla > < (l +E}m .
1=

m
Il2 II <2'1(x><(1+e)n".
k 1=1

P. Erdős und ó . szekereid

m
where in 1l, k is such that 2 11 41= ak satisfies (10) . Clearly IZ

1=1
2m, thus by what we just proved

n, n < 2111a > = 2 ' (2) .
k 1=1

By Theorem 1 we have for every k in 112

(18) and (19) implies (17), and thus Theorem 2 is proved .

THEOREM 3 .

f(n)jV211 .

To prove Theorem 3 write

n
rI(l-X,,,)=YX6'-~Xc"

	

ól<b2<'' , ; el <c2<''*i-1

First we show that

(20)

	

~b°=~c°, p=0,1, . . ., n-1 .
i

n
To show (20) observe that 1 is an n-fold root of lI (1-Xal) . Thus

i=1e) ( 1)=0 for p=0,l, . . .,n-1 ; or

Xb1(b,-1) . . .(b,-p+l)=fc,(c,-1) . . . (c;-p+1),p=0,1, . . .,n-1,
i

	

i

which implies (20) . From (20) we immediately obtain that at least n b's
and n c's do not vanish which implies Theorem 3 by Parseval's equality .
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