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ON THE PRODUCT I1 (1— 2%,
k=1

P. ERDOS and G. SZEKERES (Budapest)

n
Consider the product 7 (I - 2%) where a,<a,<---<a, are positive
k=1
integers. Put

max I1(1-2%)|=M(ay,a,,...,a,), f(r)= min M(a,,a,,...,a,).
zi=1 i=1 ay,0s,...,0n

Clearly M (ay,...,a,) < 2" (equality if and only if (a,, ag,...,a,) >1
Of ay=a,=+-- =a,=1). The determination of f(n) seems to be a very dif-
ficult question, and even a good estimation of f(n) does not seem easy.
In the present note we are going to prove that f(n)V"—1 as n—oo, and
it seems possible that a refinement of our method would give (exp z2=e¢?)

f (n) < exp(n'~)

for some ¢<1. The lower bound f(r)>>V2n is nearly trivial, and we are
unable at present to do any better.

We want to remark that it is easy o show that
lim [M(1,2,...,n)]Vn
n=m

exists and is between 1 and 2.

Put 2=¢%"¢, <a> =|1-e**=|, Several further questions can be
asked. It is not difficult to prove that for almost all « (almost all means
except a set of Lebesgue measure 0)

(1) lim [T < ka>=0.

k=1



30 P. Erdés and G. Szekeres

We only outline the proof of (1). A special case of a well known theorem

of Khintchine states that for almost all a there is an infinite sequence of

integers p, and g, satisfying

%) ’a—& =o(%).
n qn10g ¢n

A simple computation then shows that

dn
lim [T <ka>=0.

k=1
Perhaps (1) holds for all o.
It is easy to see that
o
(3 lim [T <ka>=oc0.
k=1

holds for almost all a. (Clearly (3) can not hold for all a, e.g. it fails
if « is rational). To see this we observe that a simple computation shows
that if the ¢, are the integers satisfying (2) then

gn—1
lim J] <ka>=o0.
k=1
Perhaps one could determine how fast (1) fends to 0 and (3) tends to oo
for almost all «.
Is it true that for all «

4) lim max [] |2—eike|=oo?
2] =1 g=1
An old conjecture of P. Erdés which would imply (4) states as follows:
Let 2,,2,,... be any infinite sequence satisfying |z|=1.
Then

e n
lim max []|z-2|=o00.
lz]=1 j—

On the other hand a simple computation shows that for the ¢, satisfying (2)
Gn
(5) lim max [] |z—é&2*k*|=2,

l2i=1 k=1

and perhaps
n
lim max [ |z-ée*ik®| < o0

— lzI=1 =1

for all irrational a (it certainly is oo for rational ).
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Finally we pose the following problem: Let a, < ag<... be any
infinite sequence of integers. Is it true that for almost all a

lim f[ < apa>=o00, lim ﬁ <agga>=0?
k=1 =
Throughout this paper 0 {a <1 and ¢4, ¢,,... will denote positive
absolute constants, |8| <1 (and the 6's appearing are not necessarily
the same).

LEMMA 1. Lef
p ]
(6) a==+—, (p,q)=1
9 ¢
Then for every |
i+q
(7) I <ta><go.
=141

If 6=0 the product in (7) is 0, hence (7) holds. Thus we can assume
85 0. Order the numbers e?*=, [+ ] < < [+ ¢ according to the size of their
arguments and denote them by z2,, z,,..., 2, (0<<arg z, <arg z,<...<
<arg 2, < 2m, i. e. (6) implies that the 2’s are all different). From (6)
we have

®) arg z,=2u(i+ i) (k=1,2,...,40)
9 q
Put y, = e?itk—12/s, From (8) we evidently have
1 1
9 1— 1 tdeiit e * 0
9 11—z | <| +h|(+c,(k+qﬂ_k))

Now from I1 |1=ye|=2, (*Iqi [1—-yg| is simply the value at 2=1 of
k=r] =1

(2% = 1)/(2*—1) = 2+ 1) and (9) we have

a 1 1
l -2 2 l+¢ (—- +—-————)){ e,
gf_lll kl< 113|( . k q-{-l—k d

which proves the Lemma.

THEOREM 1. To every e there exists an n,(e) and A= A(e), B=B (e)
so that for every n>> n,(e) and every a which does not satisfy one of the
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inequalities

1 p 1
10 — <L la=- =L — ome 0
= ql - for some 0< p<q< A
we have
(11) [1<ta><(l+e)

=1

Theorem 1 means that (11) is satisfied except if @ can be approxi-
mated ,well“ but not ,too well* by rational fractions with ,small“ deno-
minators.

Assume first that « is such that for every p and ¢ <A
1

en

. e

q
By a well known theorem of Dirichlet there exists a ¢ <en for which
1 )
a—flc—<=  (po=1.
q| qen "¢

By (12) ¢ > A. Put ug <n<(u+1)q. Then we have by <ta>< 2 and
our Lemma (since 2¢<1+e for small e and ¢ a << A4 for ¢ > A >e)

(12)

(13)

(14) H <fa><2.qqql<23ﬂqfnq—< Qen AC;I<(1+£)n
=1
if A> A(e) is large enough,

If for some ¢ <A,
Im-—ﬁ <L. But then the arguments of the numbers e2*itva+ha y <y,

| q Bn
<I<q (ug<n<<(u+1)q) differ from the corresponding g¢-th roots of

unity by less than 1/B. Thus for B sufficiently large a simple computation
gives

p 1
e 1 then by (10) we can assume that

n <tae> < —
vg<I=(v+1)g
or
njA
t=1 t=1 ug<t=n 2

and Theorem 1, follows from (14) and (15).



1t
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Next we prove

THEOREM 2.
lim f (n)V/ =

Let m* < n<(m+1)% Consider the product
&n(2)= 1 11 (1—2*) (1 -z,

=1 =1

In other words a,=a.= -+ =a@p_me=1 and the other a’s are the
integers 2¢[, 1< k<m, 1<I<m To prove Theorem 2 it will be suffici-
ent to show that

(16) lim lma_xl |gn(2)[/n=

We evidently have for |2|< 1
[1—zp-mL22Va (i e. n-m*<2Vn).

Thus to prove (16) it will suffice to show that for every e if m>m,(g)

(17) max ﬁ ﬁ |1-2%|= max ﬁ ﬁ <2Kla > < (1+28)™,
121=1 p=1 1=1 0<a<l j=1 =1

Consider the numbers 2*a=ay, 1 <k m. We claim that only o (m) of
them satisfy (10). Since ¢ < A it will suffice to show that only o (m) of
them satisfy (10) for a fixed gq.

Suppose in fact that «, satisfies (10) for a certain g. Then we have

1 2 2b,
— —’ where-— ]f:x|g;-. Also|ag,,— & | T“- where p'=2p
(mod ¢). Thus (10) can be satisfied for at most llog bys +1 consecutive
og 2

values of k and these are followed by at least c;logn values of k for
which (10) is not satisfied for this particular value of ¢ applying this
argument for all the k<Cm which satisfy (10) we obtain that (10) is satis-
fied for only o(m) values of k, as stated.

Now we can prove (17). Write

II 1'I<2*1c:> 1'[ l'[<2"!a>['[ n<9k:¢>

k=1 [=1 =1 k I=1
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where in I1, k is such that 2 a=a, satisfies (10). Clearly [1 < 24a S
I=1
< 2m, thus by what we just proved

(18) I, IT <2a> =2°.

k I=1

By Theorem 1 we have for every k in II,

[1 <2%a><(l+¢€)m.
=1

Thus
(19) 1, [T <24a><(1+€)".
=1

k

(18) and (19) implies (17), and thus Theorem 2 is proved.

THEOREM 3. s
f(n) = \2n.

To prove Theorem 3 write
n
}—[(l—x“'l"-;:xb‘—zxf*, b S iy G G e
=1 i

First we show that
(20) E‘:bf=§l:c?, p=01,...,n-1.
To show (20) observe that 1 is an n-fold root of ﬁ(l—x‘”]. Thus
f=]
f®(1)=0 for p=0,1, ...,n-1; or
Eb;(b,—l)...(b;—p+l)=zc,(c,—l)...(c;—p-rl),p=0,1,...,n—l,
¥

which implies (20). From (20) we immediately obtain that at least n b's
and n ¢’s do not vanish which implies Theorem 3 by Parseval’s equality.

(Recelved 12-XI-1958)
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