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I. Introduction. It is a well-known theorem of aebysev that the 
probability of the relation (12, m) = 1 is 6~~‘. One can expect this still 
to remain true if m = g(n,) is a function of r&, provided that g(n) does 
not preserve arithmetic properties of ~2. In this paper we consider the 
case when g(x) is the integral partibf a smooth function f(m), which in- 
creases slower than 3. More exactly, let Q(a) be the number of ?z, < 3 
with the property (a, g(m)) = 1. The probability that n and g(n) are 
relatively prime is then by definition the limit lim{Q (z) [CC). Our main 

result is that if f(a) satisfies some mild smoothness assumptions, has 
the property !A) f(z) = ( /I gl o x o oga) and satisfies condition (B) of 5 2, 
then the probability in question exists and is equal to 6~~~. Condition (B) 
means roughly that f(x) increases faster than the function logil:log,a. 
In $ 3 we show that condition (B) is the best possible. Condition (A) may 
be perhaps relaxed; but it, cannot be replaced by f(a) = O(x/logloglog~). 
We also consider the average number of divisors of (,N, g(,n)). This is the 
limit lim[H(X)/z}, where S(x) is t,he sum of the numbers of divisors of 

all nuZYers (98, g(w)), n < x. We assume throughout8 that f(m) is a mono- 
tone increasing positive function with a piecewise oontinuous derivative; 
P(y) will denote the inverse of f(x). By v, ,u, C, c7 we denote the standard 
number-theoretic functions, by log,s, log,m, . . . the iterated logarithms 
of 8. 

We begin with some elementary identities. Let Qk($) be the number 
of integers ti ,< x: such that n and g(n) have no common factors < k. 
If H(m, d) is the number of IZ < x with dl(n, g(n)), then 

* This work was supported in part by the Nxtional Saieme Found&ion Grant, 
KSF G- 1975 held by one of the authors at Wayne State University. 
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By the properties of the function p, the inner sum is 1 if (k! , n, g(n)) = 1, 
i. e., if (n, g(n)) has no divisors greater than 1 and not exceeding k, and 
otherwise is 0. Hence 

In particular, if k = n, then, since AY(z, d) = 0 for d > g(m), we obtain 
W) 

0) Q(x) = j+$w%m 
d=l 

There are similar but obvious formulas for 6’ (m) and LYk (m) - the sum 
of the numbers of divisors, not exceeding k, of all numbers (12, g(n)) with 
n < 3, namely 

(3) 

(4) 

A function f(m) will be ca,lled homogeneousZy equidistributed modulo 1 
(or shortly h. e.) if for each integer d, 

h(m) = ;f(&) 

is equidistributed modulo 1. This means that for each subinterval I of 
(0, l), the density of n’s for which h(n)- [h(n)] belongs to I, is equal 
to the length of I. 

THEOREM 1. If f( 17: is homogeneously equidistributed, then ) 

(5) 

Pro of. It follows from the definition of S (x, cl) that this is the number 
of integers k with kd < m and dig (i&X) ; or the number of 7~ < SC’ so that 

is in the interval (0, l/d). Since f(s) is h. e., lim[S(rc, @ia] = d-‘. Taking 

now into consideration the relations (l), (3ynd the inequalities &k(m)’ 
> Q(m), &(z) < S(m), we obtain (5), since 

ccl CD 

c 
d-‘p(d) = 67?: 

c 
d-2 - Ix2* 

6 d=l d=l 
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All known simple criteria for f(z) to be equidistributed modulo 1 
(by Weyl, Polya-&ego, see Eoksma [2], p. 88) guarantee also that af(t)z) 
is equidistributed for arbit.rary positive constants a, b. The simplest 
set of conditions is 

(AI) f(r) = o(x) for .c+ OG) 

and the additional hypothesis that f’(x) decreases. We shall mention 
here that the last assumption and (B,) can be replaced by 

(P(y) is assumed here t’o ha,ve a piecewise continuous second derivative). 
If f’(a) decreases, the last integral is equal to l/f’(~)+const with 
r: = P(y), and hence (C,) is implied by (B,). Further natural conditions 
which in the presenc.e of (B,) imply (0,) are 

lim{P”(u)/P’(tb)} = 0 or 
- 

j/P’~(u),du = O(P’(y)). 

To establish our statement it is sufficient to show that f(n) is equi- 
distributed mod 1 if it satisfies (A,) and (C,). Let I = (a, u +B) C (0, l), 
then the number of n’s for which [f(m)] = k and f(n)- [f(n)]~.l, is 
~U7~+0(1), where dPk = P(q)--P(tk), sk = k+a+6, tl, = k+a, except 
if k+a+6 > f(n) = y, when sk = y. Because of (A,), the total number 
of n < o with f(z)- [f(n)]& is 

iv = 2 dl?&+o(x). 
wad(q 

Now 

;q- {P(s,+IJ(sk-l)} i = p?r(Tj,)--P’(l;ll)j < jyP”(u),du, 
k-l 

hence 
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2. The Main Theorem. Our main result is the following: 
THEOREM 2. Let f(x) be h. e. and Zet 

(4 f(m) = 0 (~/hw) , 

P) mf’(4 
lo&f(x) -+ co’ 

(C) f’(y) < fMf’(m) for some cou&wat $I for all y >, x > 0. 

Thelz 

(6) ,n?Q(x) 2 
x-.+mx 79’ 

Proof. Let &(x) be defined as in $1. Then by (l), 

where ~3~ --f 0 for k +- 00. To prove the theorem it is therefore sufficient 
to show that 

is arbitrarily small if k is sufi~ntly large. Here. Rk (m) = Qk (x) - & (s) 
is the number of 12 < x such that for some. prime p with k < p < g(z) 
we have pi%, pjg(m). It follows that 

We consider the contribution to the sum (8) of the part of the curve 
y = g(x) given by g(n) = nt; these n, satisfy F(m) < rt < P(mf1). 
We put 7& = B”(m+l)-ET(m), except when nz+l > S, in which case 
we put km = F(a)-P(m). The contribution to kY(m, p) is zero if ptm, 
otherwise it does not exceed 

Hence 

(9) 
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say, where Z0 = [g(~)/p]. For s -+ 60 we have by (A) 

21 < sca,~$ = o(g(wwj = O(Q). 
PP 

For E > m we hztve with properly chosen 6, &, 5 < &, 

hence by (C), 

(10) 
Therefore, 

80 that for an arbitrary E > 0, 

if k is sufficiently large. 
The sum & we split into two parts XL, EF, the first sum being ex- 

tended over all p for which 

(11) &P < g(~)-l-l-A%hs(~), 

and where A = HE-‘, and the second corresponding to p for which the 
opposite inequality holds. In the first case by (10) and (C), 

< -- MiE 
s(d-&P+l 

< 

hence for large E, 

In the second cae, g(z)+l--8log,g(8) < l$p ,< g(a), hence p 
divides one of the consecutive numbers g(m)-+l- [Jlogzg(m)], . . . , g(a), 
hence also their product N. Clearly, 
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We we the relation(l) 

and obtain 

for large m, by (C) and (B). Substituting our estimates into (9), we obtain 
that (7) does not exceed 5~ for large x. 

~OIEEM 3. Let f(x) be h. e. and satisfy (C), moreover 

(A’) f(x) = 0 (xllo!P) 7 

(B’) sf’(z)/log2f(x) -+ cm. 

Then the average order of the number of divisors of (n, g(n)) is f+: 

Instead of (8) we have now 

where n. runs through all integers, prime or not. The proof is similar to 
that of theorem 2, but simpler. 

3. Counterexamples. To show that condition (B) is t’he best possible 
in Theorem 2, we shall use t’he following fact. There is an absolute constant 

(1) This result is well known, but since we do not know who first proved it we 
give a short proof. It follows from the prime number theorem (or from a more ,elemen- 
tary result) that 

n p > 71. 
p<21og2 

Therefore by a simple argument 
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C such that for each &I > 0, there is an &p > 0 and infinitely many 
values of n with the property 

(12) 
p,(m) m < et for all m with n < m < n+szlog,n. 

See [I], p. 129, where a(m)/m > 2 is shown to be possible for 
n < m < n+C,log,n. The same proof establishee u (m)/m > l/e1 in 
intervals n. < m < 12 + Ed log, m, and the known donnections between 
tp and u give (12). 

THEOEEH 4. Let f(x) be increasing anal let 

@“I 

Then 

(13) 

mf’b-4 
lo&f (4 

< iv. 

,m&(4 6 
G x ‘3’ 

Proof. From (B”) we obtain by integration f(x) < logax for all large x. 
It follows also that f’(x) +- 0, hence that g(x) takes all large integral 
values. From (Z), using the argument and notations of 0 2 we have, if 
d(n) is the number of divisors on n, 

O(X) B(V 

(14) c?(x) = ~p(d)S(x, a) = y 
a=1 d=l 

PWC ( % +om) 

BP) 

2z.z 
22 

~~m+~o(~;) 

me1 dpn m-1 

=fkm?!-mJ 
m-+ 0(9(Ww9(4) 

‘wL=l 

7 k q(m) +O(logsx). =JI m-g- 
Ta=1 

We take x such that g(x) = n is one of the n. for which (12) holds. Let 
x1 = (l+S/N)x, 8 > 0, n, = 9(x1). Then we have by (B”) for some 
x < 5 < Xl, 
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hence nl-n < const+blog,m. By (14) and (X2), 

&(x1)-QW = 2’ hnc +o(log3x) < E(~~-~)+O(log~Lc), 
m<m<n1 

for an arbitrary E > 0, if S is sufficiently small. This gives 

Q(G) Q(x) x +/1-s - = -.-. 

$1 m $1 
~+ow, 

and if a denotes the constant a = (l-l- S/X)-’ < 1, we obtain by The- 
orem 1, 

A simple computation shows that f(x) = clogalog,m satisfies (B”) 
as stated in the introduction. 

In the same way we can prove lim[Q(a)/a] = 0, if instead of (B”) 

we have xf’(m)/log,f (xc) --f 0. 
Similar statements hold for the condition (B’) of Theorem 3. If f(z) 

is increasing and 

and if even mf’(m)/logzf(a) + 0, then lim{s(a)/m} = fco. 
To prove for example (15), we note that there are arbitrary large n 

with cs(n)/n >, Clog2fi; if n. has this property, we put f(m) = % and 
z1 = m+M-‘m/log,f(x); then x,/z +- 1 and 

f(%-f(m) = f’(E)(G--) < ;f’cE,e:los..#ct) G 1 

by (B”‘). Hence k, > q - g. As in (14) we obtain 

a(fi) S(s,)- S(a) = k,-- +o (log%) > oJ!Pm+ 0 (log3z), 
n 

therefore by Theorem 1, 

lim(S(a,)/q} > lim{S(z)/m} +CM-’ > $x2. 
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THEOREM 5. There mists a ffunction f(x) with the properties 

(A”) f (4 = O(~/W@), 

CC”) f(x) is concave and f’(x) 3 0, 

szcch that lim[&(x)/x] < 6~~‘. 
ProoFLet .zl > 0 be arbitrary; we select 6 = 8% according to (12) 

and put Z = [6log,lz]. For some of the integers n of type (12) we put 

(16) f(x) = +-(x--a) for iv, = nl+n <x < 2x,. 

We choose a sequence of n’s satisfying (12) in such a way that the inter- 
vals (N,, 2N,) are disjoint; the function f(x) is obtained by linear 
interpolation outside of the intervals (Nm, 2X%). It is easy to check that 
f(x) is concave and satisfies (A”), (C”). 

Moreover, g(x) = n-+-s for x = nl+nfsl+t, 0 <,cs < 72, 0 <t < 1. 
Hence the numbers (m, g(m)) for J T, < m < 2N, are exactly thenumbers 

(17) (nZ-+n+sZ+t, nfs) = (n+t, nfs); t = 0,1, . . . . Z-1, 
s = 0, 1, . I., n. 

‘Fixing t, we see that the. number of s = 0 , 1, . . . , n with (n+ t, fl+ 8) = 1 
is at most 2~(rt+ t), since ~(n+t)/(n+t) < el by (12). Therefore, 

&Wf&)---&Wn) d %(~+Q~-l-l, 

~m{&(2&)/2&] ,< gxm {QWpL~/~7n) +el -c 68, __ 
which proves our assertion. 

Similarly, there are functions f(x) satisfying (C”) with f(x) 
= O(x/log,x) for which (15) holds. We take in (16), Z = [Slog,n] and rt 
such that a(n)/n > Clog,n. Then the sum of the number of divisors 
of the numbers (1’7) is greater than 

with large C, . Therefore 

arid (15) follows. 
At present we can not decide whether condition (A) of Theorem 2 

can be weakened to o(a/logs~). 
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