ACTA ARITHMETICA
V (1958)

On the probability that » and g(») are relatively prime’
by

P. Ernis (London, Ontario) and G. G. LORENTZ (Syracuse)

1. Introduction. It iz a well-known theorem of Ceby%ev that the
probability of the relation (n, m) = 1 is 6x~*. One can expect this still
to remain true if m = g(n) is a function of », provided that g(n) does
not preserve arithmetic properties of n. In this paper we consider the
case when g(x) is the integral part/of a smooth function f(«), which in-
creases slower than z. More exactly, let @(x) be the number of » < z
with the property (n, g(n)) = 1. The probability that » and g(n) are
relatively prime is then by definition the limit lim{Q(x)/2z}. Our main

T—-00

result is that if f(x) satisfies some mild smoothness assumptions, has
the property (A) f(z} = o(r/loglogx) and satisties condition (B) of § 2,
then the probability in question exists and is equal to 6=°. Condition (B)
means roughly that f(z) increases faster than the function logzlog,z.
In § 3 we show that condition (B) is the best possible. Condition (A) may
be perhaps relaxed; but it ecannot be replaced by f(x) = O(x/loglogloga).
We also consider the average number of divisors of (n, g(n)). This is the
limit lim{8(x)/x}, where S(x) is the sum of the numbers of divisors of
T—oo

all numbers (n, g(n)), n < #. We assume throughout that f(») is 2 mono-
tone increasing positive function with a piecewise continuous derivative;
F(y) will denote the inverse of f(z). By ¢, u, 0, d we denote the standard
number-theoretic functions, by log,z, log,x, ... the iterated logarithms
of .
We begin with some elementary identities. Let @, (z) be the number

of integers n < x such that n and ¢(r) have no common factors = k.
If §(x,d) is the number of n < @ with d|(n, g(n)), then

D @S, dy = Du@ Y 1= N u@.

ik ikt di(ig(n)) A=z d|(king(n)
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By the properties of the function g, the inner sum is 1 if (%!, n, g(n)) = 1,
ie., if (n, g(n)} has no divisors greater than 1 and not exceeding %, and
otherwise is 0. Hence

@) Qu(@) = D u(d)8 (@, d
) djk!
In particular, if k¥ = n, then, since S(x,d) = 0 for d > g(z), we obtain
o(x)
(2) Q@) = D u(d)Sa,d).
dm1

There are similar but obvious formulas for S(x) and Si(2) — the sum
of the numbers of divisors, not exceeding &, of all numbers (n, g(n)} with
n < @, namely

k&

(3) Sr(x) = ‘2 8(z, ),
pok

(4) 8(z) = ;‘sw , d).

A function f(x) will be called homogeneously equidistributed modulo 1
(or shortly h. e.) if for each integer d,

1
h@) = — f(da)

is equidistributed modulo 1. This means that for each subinterval I of
(0, 1), the density of n’s for which h(n)— [h(n)] belongs to I, is equal
to the length of I.
THEOREM 1. If f(z) is homogeneously equidistributed, then
- ¢@) Sz 1 ,
lim

- L 6x7% lim— ==
00 n T H 4

6
Proof. It follows from the definition of S(z, d) that this is the number
of integers k with kd < & and dig(kd); or the number of k < ad™' so that

(5)

1 1,
g )= [d )‘(kd)]

is in the interval (0, 1/d). Since f(x) is b. e., lim[8(z, d)/x] = d*. Taking
T—00

now into consideration the relations (1), (3) and the inequalities Qg ()
= Q(w»), Sp(z) < 8(z), we obtain (5), since

Sd‘z ald) = 6r2, Zd‘2 - %11:2.

d=1 d=1
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All known simple criteria for f(x) to be equidistributed modulo 1
(by Weyl, Pdlya-Szegd, see Koksma [2], p. 88) guarantee also that af(bx)
is equidistributed for arbitrary positive constants @, d. The simplest
set of conditions is

(Aq) flaey = o(z) for & — oo,
(B1) zf () - o for @& — oo,

and the additional hypothesis that f'(z) decreases. We shall mention
here that the last assumption and (B,) can be replaced by

¥

(Cy) [1F" (u)|du = o(F(y))
L]

{F(y) is assumed here to have a piecewise continuous second derivative).
If f'(x) decreases, the last integral is equal to 1/f'(z)4const with
2 —= F(y), and hence (C,) is implied by (B,). Further natural conditions
which in the presence of (B;) imply (C,) are

¥

lim{F” (u)/F’'(u)} =0 or lj‘|F”(u)|d-u — O(F'(y))-
U—=>00 0

To establish our statement it is sufficient to show that f(n) is equi-
distributed mod 1 if it satisfies (A,) and (C,). Let I = (a, a+4) C (0, 1),
then the number of #’s for which [f(n)] =% and f(n)—[f(n)]el, is
AF;‘—FO(I), where 4F,, = Fls)—F (1), sp = k+atd, p =k+ a, except
if k+a+d > f(n) =y, when s, = y. Because of (A,), the total number
of n <o with f(x)—[f(n)]el is

N = Z‘ AFy+o ().

k+a<f(x)
Now
AFk . | , 3 sk 3
P} = |F () —F' ()] < [ B (w){du,
k—1
hence
1 5 T
=0 3 (re-Faa+o(y |F”(undu) = s+o(1),
kta<fiz) 0

by (Cy).
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2. The Main Theorem. Our main result is the following:
THEOREM 2. Let f(x) be h.e. and let

(A) () = o(z[log,®),
zf’ (@)
B - 5
e fogo ()
(C) F{y) < Mf (x) for some constant M for all y =z = 0.
Then i
(6) L Y
[ ki
Proof. Let Q.(x) be defined as in § 1. Then by (1),
lim Q@) = M——(dl = E + g
00 r da Tca
aiel

where 6, — 0 for k — oo. To prove the theorem it is therefore sufficient
to show that
(1) im Ry, (%)

oo &
is arbitrarily small if % is sufficiently large. Here Ry(x) = Qp(z)—@Q(2)
is the number of #n < 2 such that for some prime p with k£ < p < g(«)
we have p|n, plg(n). It follows that

8) Ri@) < D S(@,p).

k<p=<g(z)
We consider the contribution to the sum (8) of the part of the curve
y = g(x) given by g(n) = m; these n satisfy F(m) <n < F(m+1).
We put %, = F(m+1)—F(m), except when m-+1 > x, in which case
we put k, = F(x)—F(m). The contribution to S(z, p) is zero if pim,
otherwise it does not exceed

1 ko
—[F(m+1)—F(m)]+1 = — +1.
. P

Hence

Y L k
(9) Rp(e) = 3 E (_’ﬂ _-..1)
k<p=g(z) m=1
M

- 2 26

k<p=g(®) l<p(x)/p

V ___g(zr;) of ;i”*’_{ 4 L‘“*"
ke {a() p k<p=gz) l<ly—1 P P

e B L ELLE

k<p=¢()
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say, where I, = [g(z)/p]. For & — oo we have by (A)

T & g(m}Z% = O(g(x)1og,) = o(x).

<z

For I > m we have with properly chosen &, &, &< &,

1 1
by = —— _-—,
SFE =TT
hence by (C),
(10) k< MEy, 1> m.
Therefore,

M Mx
kpt+ Kapt. o+ Egg—1yp g? (Bp+kpir +o oot hypa) < ?-’

so that for an arbitrary ¢ = 0,
Mz

3<s.::::,

2

N

=k

if % is sufficiently large.
The sum X, we split into two parts Z;, X3, the first sum being ex-
tended over all p for which

(11) Lbp < g(®)+1—Alogsg(x),

and where 4 = Me™', and the second corresponding to p for which the
opposite inequality holds. In the first case by (10) and (C),

M
by & Hpp ol +ooitKyay)
0 @) —lpt1 T "
Mz Mz &
g' = < = ]
g(@)—lp+1 Alog,g(x) log.g ()
hence for large a,

ex 1
I o — < 2sx.
' logyg (@) p%; P

In the second case, g(r)+1—Adlog,g(x) <lyp <g(z), hence p
divides one of the consecutive numbers g(z)+1—[Adlog.g(x)], ..., g(®),
hence also their product N. Clearly,

N < f(aytond®,
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We use the relation(?)

1
¥ = Cloggn
P

pin
and obtain
1 5
2y <max k, Y — < max - Clogyf(e)*%™
me<o@ L P i< f(fl

0111;13: f’(é) log,f(2) <

for large z, by (C) and (B). Substituting our estimates into (9), we obtain
that (7) does not exceed He for large .
TueoBEM 3. Let f(x) be h. e. and satisfy (C), moreover

(A%) H(x) = o(x/logw),
(B") rf'(2) logsf(z) -+ ~o.
Then the average ovder of the number of divisors of {n,g(n)) 18 —-n2

S 1
lim ____(93} ==  oapl
rso0 L 6

Instead of (8) we have now

8()—8x(x) = > Sz, n),

k<n=g()

where n runs through all integers, prime or not. The proof is similar to
that of theorem 2, but simpler.

3. Counterexamples. To show that condition (B) is the best possible
in Theorem 2, we shall use the following fact. There is an absolute constant

(1) This result is well known, but since we do not know who first proved it we
give a short proof. It follows from the prime number theorem (or from a more elemen-
tary rtesult) that

p = a.
p<2logr
Therefore by a simple argument




On the probability that n and g(n) are relatively prime 41

C such that for each &, > 0, there is an & > 0 and infinitely many
values of n with the property

(12) % < & for all m with n < m < n+te,logyn.

See [1], p.129, where g(m)/m > 2 is shown to be possible for
n < m < n+Cloggn. The same proof establishes o(m)/m > 1/e; in
intervals n < m < n--g,logzn, and the known connections between
@ and o give (12).

THEOREM 4. Let f(x) be increasing and let

zf' (@)

B < ]
il Togs/ (@)

Then

(13) lim 90 . %

Proof. From (B”’) we obtain by integration f(x) < log®w for all large x.
It follows also that f'(x) - 0, hence that g(z) takes all large integral
values. From (2), using the argument and notations of § 2 we have, if
d(n) is the number of divisors on =,

() g(x)

..’ km
1) Q) - ) @S, @) = N “(d)Z{E +oq)|

= d=1 djm
() 2 ) (@)

- et Y O(d(m)
2 2P mr S
g(x)
vk -+0(y(w)logg(w})
a(%x)

= k ——+O(Iog3m)

We take « such that g(x) = n is one of the n for which (12) holds. Let
z, = (14-6/M)z, 6 >0, n; = g(x;). Then we have by (B’’) for some
r < £E<um,

8
ny—n <14/ (&) (2, —2) < 1+'}ii"‘5ﬁ'5)

< 1+-0logsf(£) < 1+-dloggn,
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hence n,—n < const-édlogzn. By (14) and (12),
Q@) —Q(2) = 2 Ko i )+O(10g3m)<e(ml—m)+0(1ogam
oM

for an arbitrary & > 0, if 6 is sufficiently small. This gives
Q@) Qo) = a8

2, » @ oy

+0(1)$

and if o denotes the constant « = (14-8/M)™! < 1, we obtain by The-
orem 1,

@ 6 6
th( J L —ate(ll—a)< —.
NS ml ‘J'L‘s ﬂﬂ
A simple computation shows that f(z) = clogzlog,a satisfies (B")
as stated in the introduction.
In the same way we can prove lim[Q(x)/z] = 0, if instead of (B"')

we have zf (z)/logsf(x) — 0.
Similar statements hold for the condition (B’) of Theorem 3. If f(a)
is increasing and

(B™) wf' (x)logyf(#) < M,
then
(13) mS_(f) o ._;

@ 6

and if even zf (z)/log,f(z) —~ 0, then lim{S(z)/z} = - oco.

To prove for example (15), we note that there are arbitrary large n
with a(n)/n > Clog,n; if n» has this property, we put f(z) =n»n and
z, = x4+ M 'z/log,f(®); then z jr -1 and

1
He) —flw) = [ (E) (@ — ) < Iff'(f)éﬂong(é} <1
by (B’""). Hence k, = @, —. As in (14) we obtain

S(w)—8(2) = kn Q-!-O(logsw) > OM x4 O0(log®n),

therefore by Theorem 1,

hm{S{wI)}ml} llm{S (@) jo} +CM ™" > —rcz
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THEOREM 5. There exists a function f(x) with the properties
(A") f(z) = O(w/logs®),
(C"”) f(x) is concave and ' (@) — 0,

such that lim[Q(z)/x] < 672
Proof. Let ¢ > 0 be arbitrary; we select 6 = &, according to (12)
and put ! = [6log,n]. For some of the integers n of type (12) we put

1
(16) f@) = Fa—n) for N, =nl+tn<o<2N,

We choose a sequence of »’s satisfying (12) in such a way that the inter-
vals (N,,2N,) are disjoint; the funection f(x) is obtained by linear
interpolation outside of the intervals (N,, 2N,). It is easy to check that
f(x) is concave and satisfies (A'"), (C").

Moreover, ¢(z) = n-+s for @ = nl+n-+sl+t, 0 <s<mn, 0 <t <L
Hence the numbers (m, g(m)) for ¥, < m < 2N, are exactly the numbers

17y (nl+n-Ltsl+t,n+8) =(n+t,n+s); t=0,1,...,1-1,
§=0,1,...,%n.

‘Fixing t, we see that the number of s = 0,1, ..., » with (n+#{,n+¢) =1
is at most 2¢ (n-+1), since g(n+1t)/(n+1) < & by (12). Therefore,

Q(2N,)—Q(Na) < 26 (n-+1)1+1,
lim {Q (2N,) 2N} < $Hm (Q(No)/Nn) +&, < 6772,

which proves our assertion.

Similarly, there are funections f(x) satisfying (C”) with f(=)
= O(w/log,x) for which (15) holds. We take in (16), I = [dlog,n] and =
such that o(n)/n > Clogyn. Then the sum of the number of divisors
of the numbers (17) is greater than

n
. i
Zd((“s n+8)) = Z 7= o(n) = Onlogyn > O\N,

g=1 d|n
with large C,. Therefore

S(2N,)—S(N,) = O, N,
and (15) follows.
At present we can not decide whether condition (A) of Theorem 2
can be weakened to o(xz/log,z).
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