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In a recent paper Salem and Zygmund [1] proved the following result:
Put

(v=0,1,...,2n)

and denote the ¢,{f) the »th Rademacher function. Denote by L_{t, 8)
the unique trigonometric polynomial (in 6) of degree not exceeding » for
which
Lt &) =gfl) (b=01,... 2n)
Denote M, (t) = max | L,(, ). Then for almost all ¢
DEb<tn

= ML)
= 2
neca (1OF -.l's-}i P
I am going to prove the following sharper
TrroreEm 1. For almost all ¢

i Mal) e ML) 2

== log log n g o loglogn =
~ Instead of Theorem 1 we shall prove the following stronger (throughout
this paper ¢, ¢s .. will denote suitable positive constants)

Turorem 2. To every ¢; there exists a constant ¢, = cale;) 50 that for
m = #igley, ©y) the measure of the set in ¢ for which

2 2
—loglogn —eyg < M (f) <—loglogn + ¢,
1 =

i5 not satisfied, is less than 1/u%,

Theorem 1 follows immediately from Theorem 2 by the Borel-Cantelli
Lemma. Thus we only have to prove Theorem 2.

First we need two simple combinatorial lemmas. Let s be a sufficiently
large integer, we define for 1 =4 << m (for the purpose of these lemmas)

Pmsall) = @ilf), Poilt) = Puilt).
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LEmMA 1. Let m > my(c,). Then neglecting a set in ¢ of measure less
than 1/2m® there exists for every t a &, 0 = & = m satisfying
(1) Prarlt) = @ralf) = (—1)" for all 0 =1 < }logm.

The measure of the set in ¢ for which k = [r log m] satisfies (1) is cle;a.rIF
equal to

2"[{1%‘]*'1} = 2""“‘“".

But there are clearly [m/log m] 4 1 possible choices of r (i.e. » can take

all the values 0 = r << m/log m). Thus by an obvious independence ar-

gument the measure of the set in ¢ for which none of the possible choices of
r satisfies (1) is less than

{1 s E—Mm}mlrlosm - é_m—u,
for every ¢, if m = myle;), which proves Lemma L

Lemma 2. To every ¢, there exists a ¢, so that for m = my (e, ¢) neglecting
a set (in ) of measure less than 4m — ¢, we have forevery 4,7, (0 =7 = m)
and v, (— m|2 < » << m(2)

@) Sum=h§PﬁWurﬁHﬁ%dWmﬂt

It is well known that the measure of the set in { for which

|éhw%m@%mww*

holds is less than
{3] E‘E—lﬂii]wm - %m—q—a
for sufficiently large ¢;. In (3) there are fewer than m?® possible choices
for » and », thus Lemma 2 clearly follows from (3).

Now we are ready to prove our Theorem. (Define for 0 <» =n
M, = Ggq_y Ogpspy = 8,). It i5 well known that

En
@) Lat.0) = 5y S0 D0 — 2,

where I (0)=sin(n+34)f/sin 36 is the Dirichlet kernel. Let «, = 0 << o,
We have

) Lolb0)= g5 (ZAODMO—s)+ S0 0Du0—0s)) = EitEi

Now we consider only the { which satisfy Lemmas 1 and 2, (put m = 2n),
by our Lemmas we thus neglect a set in ¢ of measure less than »—". Put

(6) L=+ 5
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where in £{ 0 =< » = [log #] and in Z}’ [log n] = » = ». We evidently have
by |D,(0) = 2n 4+ 1 and a simple computation

() = 2 D8 —a)l

2n + L ggesliogn)
1 1

2n + lisr;jhuﬁin

=1+

1
{;1‘*1‘%*"' ﬂ"-

2n 41
Further by partial summation and Lemma 2
1

B = B T T pogrerga Sl — $0a@) (1) D0 — )

n—1
=2, (17 D= ta) = (=)D, 0—ts)

® hlls,...u{m-uh'mu Ot

1
e = g (=)D O0—si)

= % _|__ 1 es(log ".Jiuzh""" + €g < €y

since a simple computation shows that for 2, S 0 < «,,

IDu0 — ;)| < G

D0 = a1s,) + Daf0 — Gpsrin)] < g

(6), (7) and (8) implies
o) 5 < ]ng lag n

+ g+ &g,
Shilasly we ‘can, show
_'.{“'}

{9). (Iﬂlandtﬁjmp]iuthﬂhrnmlfe for all { neglecting a set in ¢ of
measure < n~").

() [La(t, 0)] <~ log log  + ¢

Let now & satisfy Lemma 1 and put 8, = n(2k 4 1)/(2n + 1). Then we
have by (4) and the definition of &

hglugﬂ

+ 5
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1
{'f' a{l} “ﬂ,_- 1 Z '?:’J.'{'E.]'an

(12) 1
- Do < 00,0~
2n + ll'—*!-ﬂi!nswl (B = )+ 20 + | pyorjZhiorn ()Dp(0 — )
o E]_ + Ea
Further clearly
1 2
= e T
T L B 1
3(2n + 1)
(13) . 3 2
= —_—— - _i l wh :
21‘1"‘I[r|-¢:§logﬂ{2?’+1:|;:+ﬂ(r3)-}ﬂﬂgﬂgﬂ' Cy31
2(2n + 1:; 28
As in (8) we can show that
(14) PAS
(12), (18) and (i4) implies
2
{15} an{t, l:',r_lH - —'lﬂg ]'L'ig H— Lyy — Cyp-
=1

(11) and (15) complete the proof of Theorem 2.
By more complicated arguments we could prove the following sharper,

Treorem 3. There exists an absolute constant € so that neglecting a
set in { whose measure tends to 0 as » tends to infinity we have

2
M, (0) = —loglogn + ¢ + o(l).
T

(The exceptional set whose measure goes to 0 depends on %),
Using the methods of another paper by Salem and Zygmund [2] we can
prove the following

TuzorEm 4. There exists a distribution function (p(a) (ie.
wle), — e0 < w <7 oo is non decreasing, w(—o0) = 0, p(+o0) = 1), so that,
neglecting a set in § whose measure tends to 0 as # tends to infinity, we have

mf: L, 0) < a) = wle).

In other words: If we neglect a set in ¢ of measure tending to 0 (the excep-
tional set may depend on #) we have for a { not belonging to this exceptional
set the following situation; The measure of the set in 0 for which L (f, §) < a
holds, equals gpla) -+ o(1).

We do not discuss in this paper the proofs of Theorem 3 and 4.
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