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In a recent paper Salem and Zygmund [1] proved the following result :
Put

2TCv
a„ = avn~ _

2n

	

(v = 0, 1, . . ., 2n)
-{- 1

and denote the 99,'(t) the v-th Rademacher function. Denote by L.(t, 0)
the unique trigonometric polynomial (in 0) of degree not exceeding n for
which

L,,, (t, a„) = 92, (t)

	

(v = 0, 1, . . ., 2n) .

Denote Mjt) = max I L,, (t, 0)1 . Then for almost all t
050<2a

M,, t)
lim	~ <_ 2 .

(log n)an=~
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I am going to prove the following sharper
THEOREM 1 . For almost all t

lim	
M"'(t)

	 -- lim	
M"(t) - 2

-~ log log n n ="~ log log 'n n

Instead of Theorem 1 we shall prove the following stronger (throughout
this paper cl, C 2 , . . will denote suitable positive constants)
THEOREM 2 . To every cl there exists a constant C2 = C2 (C i ) so that for

n > N(C1 , C2 ) the measure of the set in t for which
2

	

2
- log log n - C 2 < Mn(t) < - log log n + C 2
7r

	

7r

is not satisfied, is less than I/n°l .
Theorem 1 follows immediately from Theorem 2 by the Borel-Cantelli

Lemma. Thus we only have to prove Theorem 2 .

First we need two simple combinatorial lemmas . Let m be a sufficiently
large integer, we define for 1 < i < m (for the purpose of these lemmas)

9'.+i (t) = 9'i (t), 9 9 -i(t) = T.-i(t)
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LEMMA 1 . Let m > m o (c l ) . Then neglecting a set in t of measure less
than 1/2m'1 there exists for every t a k, 0 < k < m satisfying

( 1 )

	

Tk+i(t) _ 92k-1-1(t) _ (-1) Z for all 0 < l < 2 log m .
The measure of the set in t for which k = [r log m] satisfies (1) is clearly

equal to

-2 [ (log in +1)2

	

2

	

< 2-109 m .

But there are clearly [m/log m] + 1 possible choices of r (i .e . r can take
all the values 0 < r < m/log m) . Thus by an obvious independence ar-
gument the measure of the set in t for which none of the possible choices of
r satisfies (1) is less than

(1 - 2-1o9m\m/1ogm < lm e l
/

	

2

for every cl if m > m o (c 1 ), which proves Lemma 1 .
LEMMA 2. To every c l there exists a c 3 so that for m > MO (C1, c 3 ) neglecting

a set (in t) of measure less than 2m - cl we have for every t, r, (0 < r < m)
and v, (- m/2 < v < m/2)

holds is less than
(3)

(4)

v
( 2 )

	

Sv,k(t) = I I (- 1 ) i Tk+i (t)I < C3 V! (109 m)I *
i=o

It is well known that the measure of the set in t for which
v

(-1 ) i9 k+i(t)I

	

C3 V1 (109 m)I
i=0

C4 C-1,32 log m <
2
M-e l-2

for sufficiently large c 3 . In (3) there are fewer than m 2 possible choices
for r and v, thus Lemma 2 clearly follows from (3) .
Now we are ready to prove our Theorem. (Define for 0 < v < n

OX-v - a2n-vt a2n+v = 00, It is well known that
1

	

2n
L,t (t, 0)

	

2n { 1 ~ 99v(t)Dn(0 - oc v)

where Dn (0)=sin(n+')0/sin 20 is the Dirichlet kernel . Let
We have

1

	

n

	

n
(5) Ln(t, 0 ) = 2n

	

1 (1w(t)Dn(0-ak+v)+ 1 p,(t)Dn(0-ak-v))=11+4*

Now we consider only the t which satisfy Lemmas 1 and 2, (put m = 2n),
by our Lemmas we thus neglect a set in t of measure less than n -', . Put

(6 )

	

11 = ~1+~1 '

ak < 0 < ak+1 •
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where in Eí 0 < v S [log n] and in Eí' [log n] < v < n . We evidently have
by IDn(0)I < 2n + 1 and a simple computation

(7 )

	

El <

	

1

	

ID n (0 - ak+v) I
- 2n + 1 O5v5[logn]

1

	

1

	

1
< 1 +	 I	 < - log log n + C ' .

2n + 115rslogn sin Yn

	

7E
2n + 1

Further by partial summation and Lemma 2

(s, Ut - s,, (t» (- 1)vDn (0 - a
} 1 [logn~<vsn

v,1
2n

k+v)

1

	

n-1

Sv,k (t) \ (- 1 ) vDn(8-ock+v) - (- 1) °+ ' D,n (e-ock+v+,) )2n + 1,=[,,,,,,]+,

(g)
	1		1109 n1+1D

2n -}- 1 S[1o9n ] ,k(t) (- 1)

	

n(0-IX,k+ [logn]+1)

1

+ 2n + 1 Sn,k( t )( -1 ) nDn(e-ak+n)

<	1 C 5 (log n) I I V-1 + Cg < C,
2n + 1

	

v>logn

since a simple computation shows that for oC k < 0 < «k+1
n

IDn(0 - ak+v)I < C8 -

and
n

ID. (e - OCk+v) + D. (O - ak+v+1) I < C8
v 2 .

(6), (7) and (8) implies
log log n

(9)

	

E, <	+ C4 + C 77

1
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n

v

Similarly we can show

(10 )

	

E2 <
log log n

+ C9

(9), (10) and (5) implies that for our t (i .e . for all t neglecting a set in t of
measure < n-',) .

2
(11)

	

L,, (t, 0)I < -log log n + C10 .a
Let now k satisfy Lemma 1 and put 00 = ;c(2k + 1)/(2n + 1) . Then we

have by (4) and the definition of k
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n

Ln(t, 00)

	

2m + 1

	

92v(t )Dn(0 0 - av)

(12)

	

=

	

1

	

D,,(00 - av)I+

	

1

	

99v(t )Dn(B O - cc,)
2n + 1 w-kj<J1ogn

	

2n + 1 w-k j zjlogn

	

/
-Z1 + Z2

Further clearly

Z
1

	

1

	

2
1

	

2n + 1 jrj<jlognsin (2r + 1),7

(13)

	

2 (2n + 1)
1

	

2

	

2
	 > -log log n - C11 .2n + 1 jrj<jjogn (2r + 1)a

	

r3

	

n
0 -

2 (2n + 1) T (n3)

As in (8) we can show that

(14)

	

1-Y21 < C12

(12), (13) and (14) implies
2

(15)

	

ILn (t, 0 0 ) I > - log log n - C11 - C12'n

(11) and (15) complete the proof of Theorem 2 .
By more complicated arguments we could prove the following sharper,

THEOREM 3 . There exists an absolute constant C so that neglecting a
set in t whose measure tends to 0 as n tends to infinity we have

2M
.(0) _ -log log n + C + 0(1) .

OT

(The exceptional set whose measure goes to 0 depends on n) .
Using the methods of another paper by Salem and Zygmund [2] we can

prove the following

THEOREM 4 . There exists a distribution function (V (a) (i .e .
y) (a), - oo < a < oo is non decreasing, ?p (- oo) = 0, V) (+ oo) = 1), so that,
neglecting a set in t whose measure tends to 0 as n tends to infinity, we have

m(0 : L,, (t, 0) <a) -->V(a) .

In other words : If we neglect a set in t of measure tending to 0 (the excep-
tional set may depend on n) we have for a t not belonging to this exceptional
set the following situation : The measure of the set in 0 for which L,, (t, 0) < a
holds, equals V (a) + o (1) .

We do not discuss in this paper the proofs of Theorem 3 and 4 .
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