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1. Introduction. Let S be a set and f(x) a function which makes
correspond to every x€S a subset f(x) of S so that xgf(x). Such a function
f(x) we shall call a set-mapping defined on S.

A subset 'S8 is called free (or independent) with respect to the
set-mapping f(x), if for every x€S8" and y € S’, x& f(y) and y ¢ f(x).

Let S=m= N, and n<m. Assume that f(x)<n for every x€S.
Ruziewicz raised the problem if there always exists a free set of power m.
Assuming the generalized hypothesis of the continuum the answer to the
problem of RUZIEWICZ is positive.

In our present paper we are going to define more general set-mappings
and raise analogous questions to those of RuziEwicz. Let there be given the
set S and a set of its subsets /. Assume that the function f(X) makes
correspond to every set X of Ja subset f(X) of S so that the intersection of
f(X) and X is empty. f(X) will be defined as a set-mapping of § of type
I. This is clearly a generalization of the original concept of the set-mapping.
(There I consisted of all the subsets of S having one element.) The subset
§'ES is called free (with respect to this set-mapping, or briefly a free
set of the set-mapping) if for every XS 8’ (X¢€/) the intersection of f(X)
and S’ is empty.

Our aim is the investigation of those set-mappings where / consists
either of all subsets of S of a given cardinal ¢ or of all subsets of less than
a given cardinal f. In these cases we shall briefly say that the set-mapping
is of type # or of type <{, respectively. If f(X)<n for all X of / we shall
say that the set-mapping is of order n. Our problems will be of the
following kind: Let S—um, further let f(X) be a set-mapping of S of order
n and type {. Does there then always exist an independent set of power p?

2. Definitions and notations. In what follows capital letters will
denote sets; x,y,2z,... are the elements of the sets; greek letters denote
ordinals; a,b,¢,m,n,t,p denote cardinals and k[ s, ... denote integers.

1 For the history and older results on this problem see [1], for the more recent
results and ramifications see [2].
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Union of sets will be denoted by -+ and =, intersection of sets by - and /1.
+ will also be used to denote addition of ordinals, — will be used to
define taking relative complements. x€A denotes that x is an element of
A, AS B denotes that the set A is contained in B (Ac B denotes that A is
a proper subset of B). @, will denote the initial number of N, (w,= w).
a® will denote the cardinal N... where a=N.. If £ is the initial number of
a, then £+ is the initial number of a*.
The cardinal numbers b, , are defined by induction as follows:
b,._n =, bﬂ‘ kil = 2b"'k.

The initial number of b, ; will be denoted by £2,, .

The proof of some of our theorems makes use of the generalized
continuum hypothesis. These theorems will be denoted by (%).

In the proof of some of our theorems, wich will be denoted by (%),
we make use of the following hypothesis:* -

Let m be a strongly inaccessible cardinal number, S—=m. Then one
can define a two-valued measure u(X) on all subsets of S for which
#(S)=1; u({x})=0 for all x€S§ and the measure is additive for less than
m summands. In the present paper we do not investigate the problem, if
these theorems are equivalent to the above hypothesis.

Let ¢(x) be an arbitrary property of the elements of the set A. The set
of all x€ H which satisfy ¢(x) will be denoted by {x:¢(x)}. The notation
{ } will also be used to denote sets whose elements are those which are
contained in the brackets { }. The set {X: XS S§; X =t} will be denoted by
[ST' and the set {X:XS=S8;S <t} by [S] "

For the study of the set-mappings we introduce the notations (m,n,f) —p
and (m, n, <t)—p to denote that every set-mapping, defined on S (S=m),
of order n and type ¢ (or <{, respectively) has a free set of power p. In
the opposite case we write (m, n, {)—-p and (m, n, <{t) —+p, respectively.

3. A short summary of the principal results and problems. As a
first step we show that if the type f of the set-mapping is infinite, one can
never assure the existence of a (non-trivial) free set, even if the order of the
set-mapping is 2, in other words we shall show that for every m and { = N,,
(m, 2,f) > t. (From this it is easy to deduce that (m, 2, <f)—++ N, for > N,
{see Theorem 1).)

Thus we can expect positive results only for (m,n, k)—p and
{m, n, < X,) — p, for simplicity we write (m, n, @) — p instead of (m, n, < ¥,)—p.

For the symbol (m, n, ) — p we obfain the following negative result:
Let m <N, then (m, 2, ») —+ N, (see Theorem 2).

2 See [3] and [4].
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Then we prove the following surprising result: (x%) Let m be strongly
inaccessible and n <m, then (m, n, ) —m (see Theorem 7).
The simplest unsolved problem here is the following:

PROBLEM 1. (N, 2, ) — N,?
(It is easy to see that (N.,2, w)-—N,, this easily follows from

(m, 2, ) —> N, for m < N.).

The problem of the set-mappings of type @ is closely connected with
a problem considered by ERDOS—RADO:

Can one split for each k (1 = k <N,) the subsets of & elements of S
into two classes so that if S,=8 (S,=N,) is an arbitrary infinite subset of
S, then there always exists a & such that §, has a subset of k elements in
both classes ?*

By the methods used in this paper we prove that if m is less than
the first strongly inaccessible cardinal m,, m, > N;, such a splitting is possible,
but if m is strongly inaccessible, m >N,, then there always exists an
S,SS, S,=um, such that for every k (1 = k<N, all subsets of S; having &
elements are in the same class (here we have to use (%%)). (See Theorem 9.)
By the symbolism introduced in [6] these results can be expressed in the
form:

m—-~(No) ™ if m is less than the first strongly inaccessible cardinal
m, >N, and

m —(m)~* if m is a strongly inaccessible cardinal, m > N,.

For the set-mappings of finite type our results are more complete.

For the set-mappings of type 1 we already stated that (%) (m,n, 1) —m
for n<m and m = N,. .

For strongly inaccessible cardinals m we have (m, n, w)—m (%k) and
consequently (m, n, k)— m (n <m) for every k too.

If m=WN., where e is a limit number (but we assume that N. is not
inaccessible), we can prove, using (), that (m, n, k) —m (n < m) (see Theo-
rem 8).

Thus in these cases the exact analogue of the results of RuziEwicz for
k=1 holds. .

If m = Na.1, the analogue of the conjecture of RuziEwicz fails already
for k=2, i.e. we shall show that (Mer-1, Na, k)—>k-+1for k=1,2,... (see
Lemma 2).

On the other hand, we can prove that (%) (Mo, Na) &) — Nanr (see

Theorem 3).

¢ See [5].

A Acta Mathematica IX/1—2
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Thus we know that the smallest m, for which the symbols (m, N, k)—
— Noy - .., (i1, Ra, k) — Neq are true, is Naiz, but, on the other hand, we do not
know the greatest p for which (Na+i, Na, k) — p is true. We can prove only
the following negative result: (%) (Naix, Na, k) —> Nasx if k=2 (see Theo-
rem 5).

So the simplest unsolved problem here is the following :

PROBLEM 2. (Ns, N, 3) = N,?

(N, No, 3)— N, is true and (N5, N, 3)— N, is false.)

For the set-mappings of finite order we have the following results :

If m is infinite, then (m,I[+1,k)—N, (see Theorem 10) and
(*) Raske-1, I+ 1,8)—Na for k=1,2,...; I=1,2,... (see Theorem 11).

We have no negative results corresponding to the result of Lemma 2,
but we know that (%) (Nes1, 2, 2) — Nay1 (see Theorem 5).

The simplest unsolved problem here is the following :

ProBLEM 3. (N;, 2,3) —N,?
((Ns,2,3)— N, is true, (N,,2,3)— N, is false.)
We investigate separately the set-mappings defined on a finite set S.
We have the following result: If p, m, [ and k are integers and p(m, 1, k)
denotes the greatest integer p for which (m,/41,%k)—p is true, then
k+1 k
alm < p(m, I, k)y<c,/mlogm
where the positive real numbers ¢, and ¢, depend on & and [
The following problem arises:

PrOBLEM 4. What is the exact order of magnitude of p(m, !, k)?

4, Proof of the results. We enumerate some simple properties of
our symbols:

If m<m and (m,nt)—p, then (m)n,t)— p.

If n<n and (m,n,f)—p, then (m,n,t)—p.

If p<p’ and (m,n,t)—p, then (m,n,t)—p.

Similar theorems are true for the symbol (m, n, <f)—p and we also
have

(myn,ty—p and (m,n<t)—p if t<t and (m,n <t)—p.

In what follows we shall use these theorems without references.

LEMMA 1. Let S be a set, S=t=N,. There exists a function g(X)
defined on the set [S]' which satisfies the following conditions :

(1) gXcX, @) eX)=t () gX)+g¥) if XFV.!

4 This construction is due to J. Novak.
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Proor. First we prove the existence of such a function in the case S—+¢

Then [S]=2'. Let £ denote briefly the initial number of 2¢, and let
{X,),-c be a well-ordering of [S] of type 2. We define the function g(X,)
by transfinite induction as follows: Let g(X;) be an arbitrary proper subset
of power ¢ of X,. Suppose that g(X,) is already defined for all x <» where
v < . Then {g(X.)}ucr =7 <2' and, on the other hand, [X,J=2" Thus
there exist proper subsets of power ¢ of X, different from all g(X,) for all
< v Let g(X,) be such a subset of X, with the smallest subscript. Thus
£(X,) is defined for all » <£2 and it is ob\rlous that conditions (1), (2) and
(3) hold.

Now let us consider the case S>¢. Let M be a maximal subset of [S]
such that X — ¢ for every XéM and XY < ¢ if X, Y are two distinct elements of M.
(The existence of such an M is assured by ZORN’s lemma.) Let {¥aj.. be a well-
ordering of M. Since Y,=1 for every « <7, we already know that there
exist functions g.(X) defined on the set [V,]' satisfying the conditions (1),
(2) and (3). By the definition of M there exists an « (e <), for every
X ¢ [S], for which X-¥ Y. —t Let a(X) denote the smallest « for which
X-Yo=L.

We define g(X) as follows:

2(X) = Zax)(X: Yaix)) +(X—Ya)-

From the properties of the functions g.(X) it follows immediately that
g(X) satisfies the conditions (1) and (2).

We have only to prove g(X))==g(X,) for X=X, where X, X, € [S].
We distinguish two cases: (i) (X)) =«(X;) = «, (ii) e(X)) == a(X).

(i) Then either X,-Ya== Xo-¥s or X,—VYe=5=X;—VY. and therefore
either gu(X: Vo) =ge(Xo-Ya) or Xi—Yu==Xo— Ya, hence g(X,)==g(X)

(i) We may suppose «(X;) < @(X.). Then, by the definition of e(X),

2(X) Yaxy=t and g(Xi) Yaxy<t,
hence g(')) £ g(X.). Q. e.d.

REMARK. In case S$>t, we can prove with a slight modification of the
construction the existence of a function g,(X) defined on the set [S]* satisfying
the conditions (1), (2), (3) and the following condition too:

(4) For every Y¢|[S] there is an X €[S} for which Y=g (X).’

We can not solve the following problem:

PrROBLEM 5. Let S be a set, S>t=WN,. Does there exist a function
2.(X) defined on the set [S] satisfying the conditions (2),(3), (4) and the
following stronger condition (1°) instead of (1):

5 See Ernds—Fopor—HajnaL's forthcoming paper.

iid
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(1) For all Xe[S] g(X)=X and X_-—"g_r_-(_,_?): £?
THEOREM 1. (m, 2,£) —~t if (=No; (m,2, <) —==Ny if 1> N,
We shall only prove the first statement ; the second is a consequence of it.

ProOF. Let S be a set, S=m = . We define a set-mapping f(X) of
S of type f and order 2, having no free sets of power {. Let g(X) be a
function defined on the set [S]' satisfying the conditions (1),(2),(3) of
Lemma 1. We define the set-mapping f(X) as follows: Let X be an arbit-
rary element of [S]'. If there is a Y ¢[S] for which X=g(Y), then by con-
dition (3) this ¥ is uniquely determined and by (1) the set ¥—X is not
empty. In this case we choose an element x of ¥— X and we put f(X)= {x}.
In the other case we put f(X)=0. It is obvious that f(X) is a set-mapping
of S of type ¢ and order 2.

If X, is an arbitrary element of [S], then by (1) and (2) we have
2(X)=X,, g(X) €[S

By the definition of f(X), f(g(X,))- X, = {x,} = 0. It follows that X, is
not free. Q.e. d.

We need the following lemma:

LEMMA 2- (sn+k-l) &a,k‘]“‘:"‘k‘l‘" l; (Nuﬂr, Sa,k‘)_’k'i_l (k=l,2,..-}.

Lemma 2 is another form of a theorem of KURATOWSKI—SIERPINSKI
proved in [7]. Therefore we omit the proof of it.*

The proof of KuraTOowski shows that the first part of Lemma 2 is true
in the following stronger form too:

Let S be a set of power Nei 1 and {X,}s-w,,, , @ well-ordering of S
of type may-1. One can define a set-mapping f(X) of S of type k and order
Ve, having no free sets of power k+ 1 and satisfying the jfollowing condi-
tion: (1) For every {x,,..., %y }€[S), xy € f({Xs,,..., % }) implies that
< Max (v, ..., 7).

THEOREM 2. (m, 2, ®) —~No if m < Nu.

ProOF.” Let S be a set of power Ny (k=1,2,...); {X%}r o, a well-
ordering of S and f(X) a set-mapping of S of type k& and order N, satis-
fying the first part of Lemma 2.

% The equivalence of Lemma 2 and of Kuratovski's paper [7] may be seen by using

the following idea. The splitting of Z"*' in [7] induces a set-mapping f(xy,..., X,) as
n+1
follows: f(xp,....x) = X DX, Xy o X Xy oo X, JEA L Where (i, ... )
(G =1
runs over all permutations of the numbers I,...,n

7 The idea of this proof for the case k=0 is due to ]. Surinv
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We define a set-mapping g(X) of § of type @ and order 2 as follows:

Let X be an arbitrary element of [S]™™ and {f;(X)}:. . a well-ordering
of type @ of the set f(X). We have two cases: a) X has at most k elements.
Then we put g(X)=0. b) X has more than &k elements. Then X has the
form (X, .o oo Xips Xiuys oo s Xy (e for £ <),

Let g(X) = 1{/i({Xsys . Xy })}-

Since g(X)-X=0, by condition (1) of Lemma 2, g(X) is a set-map-
ping. It is obvious that g(X) is of type @ and order 2. We have only to
prove that g(X) has no infinite free sets.

" Let ¥ be an arbitrary infinite subset of S§. Then there is a subset
{x,.}, , of Y such that », <w», for s, <s,. The set-mapping f(X) has no free
sets of k-1 elements. Therefore there isan i (0 =i=k) and an I < @ such
that

Xy = Jr({Xugs + o c0 Xog g3 Xizggn =0 o5 X}

Let X, denote the set {X,., ..., Xu. s Xu, ys ey Xup,,}- Then Xo €[S]™, Xoc ¥
and by b) g(Xo)={xs,}. Thus g(Xo)-Y={x,}==0; hence VY is not free.
Q.e. d.

Lemma 3. If [S]*'= X'I. and S by, «, then there exists a subset

So of S and a vy < wq such that [SJF"'S 1, and S = Nair (k=0,1,2,...)5

Proor. Without loss of generality we may assume that the sets /, are
mutually exclusive.

We prove the theorem by induction on k. In the case k=0 the theorem
is obviously true. Suppose now that it is true for a certain k and let S be
a set satisfying the following conditions:

() S>bgy iy () ST = 2> L, (") Lyly,=0 for »=Ewn,.

Let xo,...,x. be k-1 arbitrary elements of S. We split the set
S—{xo,...,x} into classes. The elements x and y belong to the same
class if and only if there is a »<mw, such that {x x ..., x} €/, and
19, X0y ..., Xi} €1, 1t follows from the conditions () and (") that this really
defines a splitting of the set S—{xy,...,x:} into classes. Let Qg denote
these different classes where @ runs through the ordinals less than w.. We
select an element xp, from each of the non-empty classes.

Suppose that we have already defined the classes le,,,:.;ﬂ and the ele-
ments xg, .5, for w <4 Let {8}, » be a sequence of type 4 of these ordi-

# This theorem is proved in [6]. By the symbolism introduced there the theorem
can be expressed in the form: If m > b“."‘,‘. then m —+ (N‘aﬂ);:;] .
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nals. Let us consider the classes ‘.
u.I-[J.Q#l . "ﬁi’- — {x[-]' AR xk' xﬂl e X'B_u}p- ks = Q'{ﬁlu}u- A

We split these classes into subclasses as follows: The elements
x,y of Qig,, ; are in the same class if and only if for an arbitrary
A€[{xo, ..., Xn, X5,...5,}, ;J'*" there exists a »<w, such that the sets
{x} + A, {y}+ A belong to the same class /,. It follows from the conditions (")
and (™) that this really defines a splitting of the class Qg,), ., into sub-
classes. Let Qg ..p,..p, denote the classes thus obtained where £ runs over
the ordinals less than a certain initial number. We select an element xp,..g,
from the non-empty classes (s, ... 4,

We shall prove that there is a sequence {,d’i};_mgga_k for which the ele-
ments X, ..p, are really defined. First of all we prove that £ < &2x_, x4 for every
A< 8¢ «and for every sequence {3}, ., 1.€. at every step in our process
the power of the set of all non-empty subclasses of the class Qiﬂ,_h_sp‘__}#‘;,_
is at most b, 1. Namely, we can obtain these classes as follows: First
we split the set Qfs . .pg,. )., corresponding to an element A of
[{xo, .. .. Xk, Xpy...8,},, )" into Na classes and then we say that x and y
belong to the same ctass if they belong to the same class for all A. On the
other hand, Aaba  and so [{Xo, ..., Xx, Xg, .. By F,l]”“ = by,.x- Thus the
power of the set of all non-empty subclasses of Qfs, \u s is at most

u' L
N 8.‘19 2 ™ .\'& SRl

Let A; denote the set of all sequences {8.}. ». By the result just
proved we have

J:q_.-.'l_ = b - bb?n E == 2&;@“ " Ru,k:b&y;ﬂ_; if i{;{e;a,k.

R W

Let S, denote the set > [Xo,..., Xk, Xoy. pt 5 A< LR, &, then
) i {ﬂluht--']\ €4,
S =4k =by, .

It is obvious from the construction that S=S§§ +

+ = (H Qp,...p;) and St = > S

{nel }:.__: g;g,ﬁ' = ;I'Q;u,k . .Qf k },.-;—-Qs;. k

Therefore §g+ - 2%, Dey i1 =b- w1 It follows by condition ()
that there is a sequence {g}x o for which H Qp, ... p, is non-empty. Thus
A Q.,. &
Qs,... p, is non-empty and therefore xs, . g, is really defined. It is obvious
from the construction that if 4;==4s, then xg,,,,g,_l:|=x,a[ By
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For the sake of brevity let xiy denote xs 4. Then for the set
Si={xh<gf_, we get §1>bsm;.-. If {xs,,..., %} is an arbitrary subset of
k+1 elements of the set Si, then by the construction there is exactly one
¥ < @4 such that {x,, ...,x,, x.} €/, for every 1> Max (4o, ..., 4). In this case
we say that {xu, ..., x,,} isan element of I;. It is obvious that [S,]*"—= Z I i

YWy
and £, -I,,= 0 for »,==v;. Thus by the induction hypothesis there is a set
8 © Siand a ¥ < e such that [So]*! S L and Sp = Nasr.

But if {xi;,..., Xa,,,} (Ao < +++ <4xy) is an arbitrary subset of k-2
elements of the set So, then{xa,, ..., X} € I;;, and therefore {xy,, ..., %, } €1y,
L e [So)**?*</,,. Thus we have finished the induction, and Lemma 3 is
proved. Q.e.d.

LEMMA 4. Let S be a set, S=m=N, (n < m) and f(X) a set-mapping
of S of type 1 and order n. The set S is the sum of at most n free sets.

Lemma 4 is a theorem of G. FODOR.?

(*) THEOREM 3. (Nayr, Nar k) = Nar1 (=1,2,...).

PrOOF. Let S be a set, S=Nuu and f(X) a set-mapping of S of type
k and order N.. We have to prove the existence of a free set of power
Nz For k=1 the theorem is well known. We shall suppose k> 1.

f{x, ..., xx}) will be denoted briefly by f(xi,...,xx). Let {xi, ..., Xx 1}
be an arbitrary element of [S]*'. We define the set-mapping g-,,.., -, ,(X)
of the set S—{x;,..., x4} of type 1 and order N, as follows:

For every x€S—{x1,...,%1} let g ...  ({x)=F(x1, ..., X1, X).
By Lemma4 S—{xi,...,X1}= 2 St . s, for every xi,..., Xs1, where

viwu
the sets S, ., _, are free sets of the set-mapping g, .. ., (X) for every
v<w.,. We may suppose that 87’ . ,-S:. . =0 for »==». Let
{Xu}u - wg,,, be a well-ordering of S of type waix. Let {Xuy, .., Xu ) (1 <+ <)
be an arbitrary subset of & elements of the set S. We split the set [S]* into
subsets Ii,..») where the symbol (#:...%:) used as subscript consists of k
ordinals less than wa. {Xu,...,Xu)€lo;..vpp if and only if x,¢€

ES‘L;-- forevery i (1 =i=k). Obviously

[S]= > Loy ... v
(e w) (o g i=1, .., k)
The set of the symbols (v;...%) is of power N. and by (¥) 8> by, k-1,
thus by Lemma 3 there is a subset Sy and a symbol (#1...%}) such that
[Sol* S [iss... 2y and So = Nasi.

. r“;-l THI‘_+1 asa z.uk

o See [8], Theorem 1.
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The set So is free. It is sufficient to prove that if {x.,...,Xs}
(wo < --- < i) is an arbitrary subset of k41 elements of the set Sy, then
X € F (X - - -5 Xig_19 Xpgyys =+ 0 X)) for i=0,..., k.

In fact, for example, in the cases i=5=0 we have {Xu;,..., Xu;_y» Xijyyseer X} €
Ef(yn ) and s «onww Xigg g5 King ...,x,lk}ef(,?mkg) and therefore

ﬂ
Xui 13X € Sty oty my s CONSEQUENtlY X € &y oy o oy (P y}) =
_f(x#m iy x#,_:r xF,HI i xﬂ-g)‘

We have similarly in the case i=0 that x.u{,ngﬂg__, e, ({Xug}) =
= f(Xu,s - .., Xu). Thus we have proved that there is a free set S, of power
Noit - Q e.d.

(#*) THEOREM 4. The smallest m for which the symbols (m,Na,k)—Np
O=p=e+1) are true is Vasx.

Theorem 4 is an immediate consequence of Theorem 3 and Lemma 2.

(¥) THEOREM 5. (Naix, Na, K)—>Rave if K =2; Nai1, 2, 2) + Nan-

We shall only prove the second statement, the first is a consequence
of it. We have stated the first one explicitly, to make Problem 2 clear.

PrOOF. Let S be a set, S—Na.i. We define a set-mapping of S of
type and orderz which has no free set of power Na.1. Using (%), we have
[S] =M =N, Let {X,}vw,, and {Xi}r.u,,, be well-orderings of
type wq., of the sets § and [S]¥«, respectively. We define the sets S, =
— (X uvand[S]3* = {X.: X, S S,; w<v.) Then S, = Na and [S],;*= . for
every ¥ <. way1. Let {xi}iw, and {X{}.co, be well-orderings of type w, of
the sets S, and [S],*, respectively. We can choose a sequence {T.}r-w,
(e, < Ts, if 61 < @) in such a manner that x; €X;. This sequence may be
defined by induction. Suppose that we have already defined xi , for every
o' < o, then the set {x }r<, has a power less than N, and the set X, being
an element of [S]'% has an element x; different from all x;. (0’ < o). Let 7,
be the smallest = for which x7 € X; and x;€{x/ .}, -0 .

We define the function g(x.,x,) for p <#» < w1 as follows: We define
2(xt, x,) for every fixed ¥ < wq and for all T<w,. If 7 is an element of
the set {T;}ow,, We put g(xi, Xy) = Xu, where wo denotes the smallest ordinal
number g for which x, € X7 (7 =1o, Xu == X,, Xu == x7 ) and put g(x7, x,) = Xo
in the other cases.

Thus we have defined g(x,, x,) for every u < ¥ < wq.. We define the
set-mapping f(X) of the set S of type and order 2 as follows:

If {xu, %} (< v) is an arbitrary element of [S], we put f({x.,x})=

= {g(Xu, X))
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We have to prove that there is no free set of power Na... Let S be an
arbitrary subset of power Nai1 of S and S a subset of Sy such that S§ = Na.
Then there is a ¥ < wen for which S§=X, and a % >w» such that
X, €[S]}= and x,,€So. Then, by the construction of the function g(x.,x.),
there exists a wg < v for which x'*oEX’ and g(xno,x,,ﬂ)e){,. This means
that {xu, %, ) S and f({xu, X })-So={g({Xu, X»o})} =0, consequently
the set Sy is not free. Q.e.d.

(*) THEOREM 6. If @ is an ordinal number of the second kind and N.
is not inaccessible, then (Ma,Ns, k)— N for every 8<e (k=1,2,...).

ProoF. We prove the theorem by induction on k. For k=1 the
theorem is well known.*

We shall now prove the theorem for k=2. Our proof shows clearly

how induction works in the general case.

Let S be a set of power N., f(X) a set-mapping of S of type 2 and
order N;. Let 7 be the smallest ordinal number for which &.=ZN%
(8. < B» < e if p < ¥). By the assumption of the theorem T < N.. Since {:6'< a,
we may suppose that §+2 < 8, for every v <.

We define N, as the sum Zﬂgp We may also suppose that

N5, = N,,+3 and that every 8, |s of the form y-+s where s = 3.

By Theorem 3 every subset of power N, of the set S contains a free
subset of power Ns,. So we may select a sequence {S,},.. of the subsets
of S which satisfies the following conditions:

(1) S, =Ns,; (2) S, is a free set; (3) Sy, Sy =0 if 1.
Put F,— ?SF. By (1) and (3) F,=N,,. Thus [F,;=N,,, conse-

quemiy 2, f(X)_Ry,_ Ng=N,, < Ns,. Therefore we may suppose that

@ F(X)-8,=0 if Xe[RR
Let S° denote the set > S,. If X €[S then X—={x,y}. In what

<1
follows f(X)-S° will be dennt;d by fi(x,y). Suppose now that x,y € S,. Then
fi(x,9):S, =0 for u>» by (4) and for p=w by (2). Thus fi(x,y) < F, and

We split the set [S,]? into classes. The sets {xi, 1} and {xs, yo} belong
to the same class if and only if fi(xi, y1) = fi(xe, yo). Using (¥), we have
[F] M =N =N,,1 =Nz, 2. Thus, by Lemma 3, there is an S;<S,

10 See e, g. [1].
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(3' = Np,-1) such that for every x,y€S, fi(x,y) is the same subset of F,.
We define S. as follows: S, =35, — > filx,»). It is obvious that

wow fm n C-b’,:

D ) =TRe =Ry, 2 <Np, 1

uzw, {5 v}es)
and therefore we have
(5) Ss = N, -1
Let S' be the set WZ;S}.. By the construction of S, we have

(6) fi(x,y):8'=0 if x,y€S! for every v<r.
Let F. be the set > Si. We define the set-mapping g,({y}) of the set

B
S+ of type 1 as follows: For every element y of S, let g ({y})—
= 2 fi(x)-S».

zer
We have e
2 AEY=F R =R, Ny =N,,.
rEF,
Thus the order of the set-mapping g,({y}) is less than Ng, ;. By the case
k=1 of Theorem 3 there is an S;SS, (S;/=Ng,-1) such that S; is a

free set of g,({y})
Let S° be the set Z S; and F, the set ZS,,L We have by the

construction of S, =

(7) §: =Nsp,-1-
From (6) we have
(8) filx,y)-8*=0 if x,y€S8, for every v<m,

and from (4), by the construction of S5, we get
©  filxy) 2 SI=0 if x€F, and yeF, or yeS;.
=v

Put fa(xi y)=f,(x, y)SJ

If xc F2 and y €S2, then, by (9), fo(x, ) SF,. We split the set Sy
into classes as follows: y and z belong to the same class if and only if
fa(x, ¥)=fa(x, 2) for every x€F;.

We can obtain these classes as follows: First we split S; into classes,
corresponding to every x€ F,, so that y and z belong to the same class
if fa(xo, ¥)=fo(xo,2) for this x, and thus we obtain at most [F, ]““ﬁ":
=N} =N, ., classes, since fo(x, YEIF™. y and z belong to the same
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class if they belong to the same class for all xo. Therefore we have split the

set Sy into at most XY, — N, .. classes, consequently, by (7), there is a subset

S: of power Ns, 1 of S whose all elements belong to the same class. It
follows that

(10) Se=Ns 1.
Let S* be the set > S, and F, the set > Si. If
PE JrE
(11) xeF, 9268,

then, by the construction of S, fu(x, ¥) = fi(x, 2). Further, by (8),
(12) fi(x,7)-8°=0 for x,ycS:.

We define the set-mapping go({x}) of the set §" of type 1 as follows:
For every x¢S§° there is exactly one » <t for which x€S,. Put
go(ixh= 2> _I(x, )-8" for all x€S® where » is the ordinal number

] él'ESp

for which x 68;, It follows from (11) that go({x}) = 7 -Np < Na-

The set S* has the power N,. This is true because by (3) the sets S
are mutually exclusive and by (10) S} =Np,-1. Thus, by the induction hypo-
thesis, i.e. by the case k=1 of our theorem which is already proved there
is a free set S* of gy({x}) such that S'cS® and §'=N.. Let Si be the set

S*.82. Then S§'= Z SioIf x, yE S* then there is a ¢ and » such that xéS

ko

and y€S,. We may suppose that u = ». Obviously, f({x, y})-S*=fu(x, y)-S§*
and, by (12), fu(x,y)-S*=0 if w=w. Further fa(x,y) Sgo({x}) if u<w.
Therefore fo(x,y)-S*=0 in this case too, since S* is a free set of go({x}).
Thus S* is a free set of power N, of the set-mapping f(x). Q.e.d.

In the proof of Theorem 6 we have made use of the assumption that
N is not inaccessible. In the case when N. is inaccessible, we can prove
(Na, N3, k) > Na (8 < @) only if we use (x). But using (), we can prove
the following much stronger result:

(#+) THEOREM 7. If the cardinal number N. > W, is strongly inaccessible,
then (Na, Ng, @) — N for every f< e.

PROOF. Let S be a set,§ =N, and f(X) a set-mapping of S of type
w and order N;. We have to prove the existence of a free set of power N..

Let f(x1,...,x;) denote briefly f({xi,..., x:}). Let ,u(X) be the two-
valued measure defined on all subsets of S the existence of which is assured
by the hypothesis (sx).
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Let {x;,..., xx} be an arbitrary element of [S]* and y€S. We define
" the set S:..., as follows: Let

(]) Sgl-""-k — {x:yef(xlr LB xksx); x:t:xly e x:!:xk}-
We define the set-mapping f’(xi, . .., xx) of the set S of type @ as follows: Let

2 fy..ox)={y:p(8. 5)=1} forevery {xi,...,x}€[S]"

We call f the derived set-mapping of f. First we prove the following
lemma :

(3) If f is an arbitrary set-mapping of S of type w and order Np (8< ),
then the derived set-mapping f' is of order Wy too.

To see this assume f'(xi,..., x;) =Nz for a certain {x,..., x:}€[S].
Then there is a set ¥ (V=N,) such that YSf'(xi,.. ., x:). Let )0y DE
a well-ordering of Y of type wg. For every v <y, by (2), u(S:). .)=1
and therefore w( Jf S!..)=1, since #<e and the measure u is ad-

t"«-;w’a

ditive for less than N, summands. Thus the set H S:iY..., is non-empty;

let xo be an element of it. Then y, € f(xi, .. X;;,Xra) for every » < wg, there-
fore Y f(xi,..., X, Xx0), consequently f(xl,.. x;,xn’ln:’ﬂg This is a
contradiction, because f is of order Nj. Thereforef (X1, ..., X < Np for
every {xi,...,x:} € [S]~-

Now we define the set-mappings fi(X) of S by induction on [

Put fo(x)=f(x) and fi.(x)=Ff/(x). We define SY;' ,, writing fi(X) in-
stead of f(X) in (1).

(4) The set-mappings fi(X) of type @ are, by (3), of order Ns.

Now we define a seguence {x.,}, «, by induction as follows: Let xo
be an arbitrary element of S. Suppose that we have already defined the ele-
ments x, for all w <, where » < w, is a given ordinai number, such that
x. €8.

Let S” be the set {x.}. » and S the set > fi(X). We

. xe[s¥-Ro;1=0,1,2,...
define the sets S’ ., as follows: Let

5) g \Shlae 0f w(Shla)=0,
Sl 0 it w8l )=1
Let further S be the set 2 S/« It follows that 8" = ¥ <N,
¥ Ep e T €9V 1=0,1,2, .
and S’ =»-No-Ns<N.. From (5) it follows by the additivity of the
measure that u(Sz)= 0. Thus the set S—(S”+ 8+ S¢)is of measure 1 and
therefore it is non-empty. Let x, be an arbitrary element of it.
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Thus we have defined x, for all » < w, and it is obvious from the
construction that x, == x, for »==u. Therefore the set S, ={X,},-w, is of
power Ne.

We define the set-mapping g ({x}) of & of type 1. Let g({x})=

[2:3

— > fi(x)-S, for every x€S,. We have by (4) that g({x}) = Ny-N,, i.e.
=0

2({x}) is of order Ng.1 <N.. Then, by a theorem of ERDOS already cited,"
there is a free set S, =S, of power N, of the set-mapping g({x}).

We shall prove that S, is a free set of the set-mapping f(x) too. Since
$E8,, 8, has the form {x,}, ., . If S, is not a free set of f(X), then
there is a subset {x,, ,...,Xy, } (#o<--<m) of S for which x,, €
Ef(x,,m,...,xw“i_l, x,-nm,...,x,,#k) for an i (0=i=k). If i =k, then Xy, € 8/, in

contradiction to the construction. Therefore we may suppose that i < k. But if
i < k, then by the construction I,.#RQS;”L Thus ‘u(S::p‘.'_?_ 2 )=1,

ey gy Vg™ Vg
1. e'l b}' (2)?

xpﬂ-‘;‘ Gf] (xv“:l’ vy xv‘ua._ i * xvlqua vaey xﬂ-“k—l)'
Repeating these considerations for f, f,,... instead of f, we obtain
that i =0 and

Xy, €fe1(Xs, )

But this is a contradiction, because S, is a free set of the set-mapping
g({x}) and ﬁ‘_,(x,,ﬂl)gg({x,ﬁ }). Thus S; must be a free set of f(x) and

§g= Rp- Q- €. d.

(#*¥) THEOREM 8. If « is an ordinal number of the second kind and
B< e, then (Na, Np, k) =N, for k=1,2,....

Theorem 8 is a consequence of Theorems 6 and 7.

THEOREM 9."

9a) Let m, be a strongly inaccessible cardinal number, my>N,, S =nm,
and [S]"=1+ I for k=1,2,.... Then there _exists a subset S, =S and
a series {Mi}ir,o, ..., where ny=1,2, such that S,=m, and [S]"E!,fk for
every k.

9b) Let m, be the first strongly inaccessible cardinal number greater
than N, and m<m,. Let S be a set, S—m. One can define the classes
It', I3 for every k so that the following conditions hold :

1 See [1].
12 Theorem 9 gives the solution of the problem of P. Erods and R. Rapo mentioned
on p. 113. The statement 9b) was first proved by G. Fopor,



126 P, ERDOS AND A.-HAJNAL

(1) KEBE=0 for k=1,2,..;

@ [Sf=K+16 for k=1,2,..;

(3) for every infinite subset S, of S there is a k such that neither
IS S I nor [S)'EE.

Proor. The idea of the proof of 9a) is the same as the one we have used
to prove Theorem 8. Therefore we shall only sketch this proof.

We define the classes /{', ;"' for every /< w by induction on I.

Put IF°=1, I"°—=15. Suppose that Ii", I' are already defined
and let {x,,...,x) be an arbitrary element of [S]". Put S . —
={x:{x,... xk,x}EI"’l “and 87 .. ={x:{x,....,x, x} €'}, We shall
say that {x,,..., x} /""" if u(Sh!..)=1 and {x,,..., i} € if u(SZ' )=l
Let w. be the initial number of m,. We define the sequence {x,},-o,6 by
induction. Let x, be an arbitrary element of S. Suppose that x, is already
defined for all w<w. For every I and X (X € [{xu}ucr]™™) there is an
a(Xx, 1) (n(X,))=1 or n(X,[)—=2) such that p(Sx"™")=1. The set

Il S3*™" is non-empty and we define x, as an arbitrary

xXe[{zpusr] M0 01,9,
element of it.
Put S, = {x,}, «,. We split the set §, into c]asses, x and y belong

to the same class if and only if for every [ <o {x} €I holds if and only

if {y}€ " holds. Thus we obtain at most 2% classes, and therefore there
is a class S,=S, of power m, which satisfies the requirements of 9a).
Indeed, S, has the form {x,,}, , . Suppose that for a k neither [S)]< /{ nor

[SJ k. Then there is a set Koyp oo X, ) (<--<m) and a

set {Xy,, oo Xuyd  (BE < ee <) for which {x,,,..., %, }e,”"“ and
{x,,ﬂi,... x,.ﬂ;} ¢ Iy'°. Then, by the construction, (X o v Xy l}e;k 11
{Xu05 o Xor HE L™, ..., and finally {x, } €"", {x,,ﬂ} € "', but this

contradicts the fact that x,, , X, belong to the same class S;.
To prove 9b) we shall first prove the following:
(i) If the statement is true for m=N., then it is true for m=2%.
Let Si be the set {#}, o,. Then 8§ =N, and by the assumption of
(i) one can define the classes /1, I satisfying the conditions (1), (2), (3)
of 9b) (with S: instead of S). To prove (i) it is sufficient to define a set §
of power 2%= and the classes /i, I satisfying the conditions (1),(2) and (3).
Let S be the set of all sequences {&},.», where & =0 or & =1.

Then S = 2%. Let x;, x> be two arbitrary elements of §, x;=kx, x; = {8,1,},.<;‘,u
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and xgz{si}hﬁa. Let »(x;, x;) denote the smallest ordinal number » for
which &, ==¢,.

We define the usual lexicografical ordering of S, we say that x; < x; if
and only if &, z) —0.

Now let {x;,...,x,} be an arbitrary subset of k elements of S. We
may suppose that x <--+<x;. We write #,...,% instead of
'v(xl 5 xg), sy p(xk..; N xn).

We define the classes If, /ii for k = 2 as follows:

(@) if »y <+~ < ¥y oOr 1> -+ >w., then we say that

IF it {n,..., nalel™,
Xy oois X : ]
b € B fn,.,mal € B

(b) in the other cases let {xi,..., %} € A",

Obviously, conditions (1) and (2) hold for S, I¥ and Ij. We have to
prove that condition (3) holds too.

Let S; be an infinite subset of S. It is well known that there exists a
sequence {X;}. »< So for which either x; <. < Xxp<eer OF Xy > e > X000,

We shall define a subsequence {x}.-» for which wu <o <py <---,
where w,, —v(x.,, x,_,,). Without loss of generality we may assume that
X, <---< X< ---. Let ¥’ denote the smallest ordinal number which occurs among
the ordinals »(x;, xv) (/< ®,l' <w,I==I'). Let I' be the smallest integer for
which &.—=1 and let / be the greatest integer less than [’ for which
&,-=0. Put x, = x,. It is obvious that ¥(x,, x)=1»" for every [" =/ and
v(xp, xpy > for I”,'"=1I. If we repeat this for the sequence xv, Xy, ...
we obfain an elemcnt x;,, and so on. The sequence {xj... satisfies our
requirement.

In what follows we write x; instead of x;, and w, instead of w; . Let
S’ denote the a set {x.},., and S the set {u}s—s.

I {0y e} (s, <+-- < ) is an arbitrary finite subset of i,
then {x,,..., X, ,, X} with s;—s1+1 is a subset of k elements of S’
such that »(x,,, x,) = s, - .., ¥(Xs,_,,Xs) =, ,. This means by (a) that to
every finite subset of k—1 elements of S/ there is a subset of k elements
of S’ such that the second belongs to It or to I if and only if the first
belongs to I7 or to I3, respectively. But there is a k for which neither
[S{]"S 4 nor [S{)*S 15 and for this & neither [S']" S If™ nor [S)*'S K.
Thus the sets S, I, I satisfy condition (3) too, and so (i) is proved.

Let w,, denote the initial number of my.

(ii) If e« is an ordinal number of the second kind, ¢ < and if the
statement of 9b) is true for every m =N, (3 < «), then itis true for m = N..
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Proof of (ii). If N, is inaccessible, then it can not be strongly
inaccessible, because 0 < e« < @y. Thus if N, is inaccessible, then there is a
B < a for which N, = 2%, but then, by (i), 9b) is true for N.. Thus we
may suppose that N, is not inaccessible.

Let S be a set, S=N. and 7 the smallest ordinal number for which
No=22Ns,, B <By<a for m<wm<t. In this case we have 7< N..
There is a sequence {S,},. for which §=2'S., 8,8y, =0 if 5= and

vE

§,==Ngy. By the assumption corresponding to every set S, (v <), we can
define the sets /"%, I*" so that (1), (2) and (3) hold for S,,If'”, Iy
instead of S, If, I}, respectively. Put S*— {»}, .. Then §* <N, and we can
define the sets /”°, I'" satisfying the conditions (1), (2) and (3).

Now we define the sets [t, /s for k=1,2,... as follows: Let
{x1,..., X%} be an arbitrary element of [S]*

a) Ifforevery i (1=i=k) x;€S,, and »,==»; for every i ==/, then let

I it {n,...w}elt”,
{xl:--”xk}ézlgk if {'Pl,...,yi-}efgk'-

b) If there is a » for which {xy,..., xx:} & S,, then let

VI i {x, .., 0leR”T,
{XL,...,xk}E;!g if {x],...,xk}E!‘_f,w.

¢) Let {xi,...,x) €l in the other cases.

It is obvious that conditions (1) and (2) hold for X, I.

Let 8 be an arbitrary infinite subset of §. Then either (0) §-S,==0
for infinitely many w» or (0o) there is a » such that S,-S" = No.

If (0) holds, then there is a subset S” of §" such that S” is infinite
and 8”-S,=1 for every ». Then, by the case a), there is a k for which
neither [S”I'SH nor [S"TCSE.

If (oo) holds, then there is a » and a subset §"” of §” such that
S <S8, and S” = No. Then, by the case b), there is a k such that neither
[S”T'S i nor [S”TCSE.

It follows that condition (3) holds, consequently (ii) is proved.

The statement of 9b) is true for m = N,."*

It follows from (i) and (ii) by transfinite induction that 9b) is true for
every m= Nq where e < ao.

REMARK. In the proof of 9b) neither () nor (%) are used.

12 See e.g. [5]
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LEMMA 5. Let S be a set, S=No and [S]*" =lo+ --- + 1. Then there is

an i (0=i=1) anda subset S,< S such that S, = Ny and [S)]""' I, for
k=0,1,2,...; 1=012,....

Lemma 5 is a theorem of RAMsSEY."
THEOREM 10. (m, I+ 1, k)—=No if m=Wy for [=1,2,...; k=1,2,....

PrOOF. Let S be a set, S=Ny and f(X) a set-mapping of § of
type k and order !+ 1. We shall prove the existence of a free set of power N,.

For every X € [S]* the set f[X] has at most / elements. Let f,(X),..., fi(X)
denote the elements of the set f(X). (If f(X) has less than ! elements, then
one element may occur more than once.)

Let us split the set [S]**' into the sum of the sets f,..., i as follows:
If {xo,...,x} is an arbitrary element of [S]**!, then it is an element
of I, (for i=1,...,1) if and only if there is a j (0 =j=k) for which
xi=f:({Xo, ..., Xj-1, Xir1, ..., Xx}). If such a j does not exist, then {xy, ..., x}
belongs to /.

Obviously [S]*' =1+« + 1.

Let now 8" be a finite subset of S and suppose that it has s elements.
If [S"]+* <[ for some i (1 =i=1{), then the set of subsets of S” taken
k+1 at a time has at most as many elements as the set of subsets of S”
taken k at a time. It follows that [k—f—])é ti] i.e. §=2k+1. Therefore,
for every infinite subset S’ of S, [ST*+' 9=/ for i=1,..., k. Then, by Lemma
5, there is an infinite subset Sy of § for which [Si]**' S [, but then S, is
obviously free. Q.e.d.

(#%) THEOREM 11. (Nesr-1, [+ 1, k) —Ra if @ is of the first kind;
(Na, [+1,k)— N if @ is of the second kind (1=1,2,...; k=1,2,...).

The first part of the theorem is a consequence of Theorem 3. The
second one follows for ¢ >0 from Theorem 8, and for ¢ =0 from Theorem
10. The hypothesis (#k) is used only in the case when N. is inaccessible.

We have stated Theorem 11 explicitly only to make Problem 3 clear.

In what follows let p, m, [ and k denote integers.

THEOREM 12. Let p(m,l, k) denote the greafest integer p for which
(m, [+ 1, k)—p is true. Then
k1 &
& lm<p(m,l k)<cs|mlogm
where the numbers ¢, and c» depend on k and | but they does not depend on
m, and ¢, > 0.

1 See [9].

% Acta Mathematica IX/1—2
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R+l
Proor. First we prove (i) aif/m < p(m, 1, k).
Let S be a set, S=m and f(X) a set-mapping of S of type k and
order [1.
If pis an integer for which there is no free subset of power = p, then
every X¢|[S]” has a subset Y€[S]"" such that Y is not free. But if

Y € [S]**', then there exist in [S]? at most (n;:::” sets X such that

Y S X. Therefore there are at least (.;:)/(n;:!;::] sets ¥ in [S]**' which

are not free. On the other hand, we know that there are at most m ! such
Y’s and therefore we have

k
>)
P <I(m]
[m—k—p] k)

p—k—1
It follows that for such a p

for some ¢ >0 which proves (i).

k
B Now we outline the proof of (ii) p(m, I, k) <c» | mlog m. Let S be a set,
S=m and M the set of all set-mappings of S of type k and order [} 1.
We define on M a probability field such that every element f of M has the
same probability. Let A be the following event: The set-mapping f(X) of S
of type k and order /-1 has a free set of p elements. For the proof of (ii)
it is obviously szifﬁcient to show that the probability of the event A is less

than 1 if p=c:|mlog m.
The probability of the event that a given subset of p elements of S is

a free set, is :
(m—p) ®)

!
(m-—k) ]
LY
" Thus the probability of A is less than 1 if

mmp] ()

l

[m—k
!

—

o —



ON THE STRUCTURE OF SET-MAPPINGS 131

It follows that there is a ¢ (cz=c2(k,[)) for which the probability of A
k
is less than 1, if p = c:|/m log m.
k
Consequently, p(m, [, k)<c:mlogm. Q.e.d.

(Received 18 Decernber 1957)

References

[1] P. Erpos, Some remarks on set theory, Proc. Amer. Math. Soc., 1 (1950), pp. 127—141.

[2] P. Erpds and G. Fopor, Some remarks on set theory. VI, Acfa Sei. Math. Szeged, 18
(1957), pp. 243—260.

[3] A. Tarski, Drei Uberdeckungssitze der allgemeinen Mengenlehre, Fundamenta Math.,
30 (1938), pp. 132—155.

[4] P. Ero6s and A. Tarski, On families of mutually exclusive sets, Annals of Math,, 4
(1943), pp. 315—329.

[5] P. Eross and R. Rapo, Combinatorial theorems on classification of subsets of a given
set, Proc. London Math. Soc. (3), 2 (1952), pp. 417—439.

[6] P. Ernos and R. Rabo, A partition calculus in set theory, Bull. Amer. Math. Soc., 62
(1956), pp. 427—489.

[7] K. KuraTowski, Sur une caractérisation des alephs, Fundamenta Math., 38 (1951), pp.
14—17.

[8] G. Fobor, Proof of a conjecture of P. Erdds, Acta Sci. Math. Szeged, 14 (1951—1952),
pp. 219—227.

[9] F. P. Ramsey, On a problem of formal logic, Proc. London Maih. Soc., 30 (1930), pp.
264—286.



	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21

