SUMMABILITY o A ¢LASE or FoURIER-STIELTIES SERTES. a7

Lemma 5. If d(t) s then, for any B > o, dp(t)—>4.
Tt is sufficient to assume that s = 0. By (3), since F'(t) is increasing,

;lg dalt) = énﬁ,{#} and the reguived result follows immediately,

Lesma 6. Leb y(f) be an tnoreasing function. 1f gif) =r ) du ~ st=
o

me {0, then p(f) ~ sad*1,

The proof is similar to that of a result due to Hardy and Littlewood®,
to which the lemma reduces when y(f) is & derivative,

Let 0 < 8 < 1 be & fixed number; then

(1—8)t p(Bt) < g(t)—g(68) < (L—E)ty(2).

Binee g(t)—g(ft) ~a(1—0) %, we have

—f=

lim ey (1) =85

T () (0) < (et 0 T 5(0) < 1 g
and the required result follows on allowing # to tend to 1.

To complete the proof of (ii) we employ the Littlewood technigque of
repeated differentiation. Let

F(t) = Fy(0), If’,,(ﬂ}:j: Fylujd, £=2, 3, ....

By Lemma 5, if ¢(t) — & themn oy (1) = 5 for an integer &, and this is equivalent
to J(t)~st*/li! By repeated application of Lemma 6 we obtain
F(t)~st, and the desired result w(r)—s follows by Lemma 4,

I am indebted to Prof. J. E. Littlewood for valuable suggestions made
during the preparation of this paper.
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Let a;, @, ... be an infinite sequence of integers, such that
Oz <ay<
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Denote by f(n) the number of solutions of 4,4-a, = n, by r(n) the number
of solutions of g;4+-a, <n; thusr(n)=f(0)4f(1)+...+f(n). Ina previous
paper [2] Erdos-Turdn conjectured that

rin)—en = 0[1)

onmmot hold. In the present paper we prove

TaeoreM 1. Ife =0, then

r(n) = ento(nt log="n). (1)
cannol hold,

Remarks. (i) The assumption ¢ +£ 0 is clearly necessary, for if ¢ =0
were permitted, (1) could clearly hold. if ay o0 sufficiently fast.

(ii) The leading term en on the right-hand side of (1) could be replaced
by more general functions such as, e.g., onddn® (0 < a < 1).

If ap = k* the estimation of r(n) is the classioal problem about lattice
points i a circle. Here it follows from the results of Hardy and Landau
that r(n) s en+dn¥ 4 o(n"4 log¥4n). It is rather surprising that our
result for a genernl @y is almost as good while its proof is mueh simpler.

We ean also prove

n ﬂU‘
Iy—el| = = 1)
‘?‘I:E‘irl ’ = T%; E>3

Theorem 1 remains true for sequences of non-negative numbers {a,},
not necessarily integers. The proof can be reduced to that of Theorem 1
by defining a,* as the nearest integer to ay.  Then the inequalities

rin—2) <r¥(n) < r(n+2)

show that Theorem 1 is true for r(n), if it is true for r¥(n).

We use the letter K as a generie notation for a positive number possibly
depending on the sequence {a.}, but on nothing else. The numerical value
of K will differ at different occurrences. It seems likely that one can
construet an infinite sequence a, << a, < ... for which

r{n) = cn--0(nl/1),

This we have not snoceeded in doing.

Another conjecture of Erdds-Turdn was that if fin) > 0 for all large n,
then [im f(n)=o0, and an even stronger conjecture would be that if
a; < ck® for all k, then [imf{n) =o. Here our method does not seem to
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be of any use, sinoe one can construet a sequence {a,} such that e, < ck®and

i (50 <o
The number f(b) can be interpreted in three different ways: (I) We

can count ¢ =£j twice and i =j onoe; (I1) i s£j can be counted once and
i=j also once; (IIT) i 4§ ean b= counted once and i=j excluded

altogether. If we put y[zj-:é z%, then the generating functions
1
If(n)z" in the three cases arve

M @ () He*+geY): (D e —gEY).

Our theorem is true for every one of the three interpretations,
In cases (I) and (IT) Dirne and Newman [1] proved that f(n) cannot be
a constant for n > n, We can prove in all three cases

TeEorEM 2. [f e >0, or e =0 and a, < AL, then
fm + £ (fy—e)'>o.
T - 2 (fi)—c)

We shall need the following :

LeMMA.  Suppose (=) = -!-:‘b.,z" is convergent for |z| << | and suppose

that oll b, are non-negative, real numbers. Then for 0 <a<m, z=re"
(0<r<1),

5| Iserrao g [ jsepas.

Proof. The funetion
MO)=1—|0fa| (|8]<|af), b(f) =0 (a <[6] <m)
has the Fourier series

o) = hf‘. 6™, 0, = (1—008 wk)/mak® > 0.
By Pameval's formula

[ posara=2 £ (= abr)’

o
T S YT Y )
Fe—w k=
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since all the terms in the first inner sum are non-negative. The sum on
the right-hand side is now

(S o) Ehird) = o j:’mwm Lg b(z)Rdd

—= | ls@nae.

But when [8] <|a, |4(8)| <1 and when |a|<|8| <m, k() =0. Hence

" 1gran [ moswpan= g jsera.

Proof of Theorem 1. Let
glz) = 5 20— Ty w0,
ket

where the summation in the last sum is over all different a, and ¢, is an
integer == 1. We give the proof for the case where the generating funetion

is g*(z). Then (1—z)'g%z)= E rm) 2™
n=>0
We must therefore prove that we cannot have

(1—2)2ge) = ¢ X net+h()
= ez(1—z) +-hiz); (2)
Bi) = éu”“”ﬂ' v, — o(r1/8 log—1/2 ),
Let § <r<<1,z=re® l—r<a<w By (2)
[;Ia*tzﬁ.Idﬂ=r_ulczu—z}—l+{1—z1 hz)|do
guj'_rp1—2[—1¢3+L|1—z||mz]fﬁ. (3)
Now (1—2) V2= Sy, 2, y, = O(n-V2), so that

.[:.i 1—z r'ld!?:]: [(1—2)V2[2df = 2 2|y, [P0 < K S r¥n/n

*‘:'..E]ug]-é-}. (4)
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W 8| <a, |1—z| < Ka. Therefore
[ n—slinaido < &= [ 1he)la)

<xa(["_a0)"([" hie)[rae) "

<Kan( £ |ugrrm)",
and +

SluBMmek X 12 pan log?— I 18 ptn
Hl“nl s uﬂu-ﬂ-l-"l“ +a(r) l—r .:-ﬂ-—-ﬂ““u

where 5(r) <e for 1 >r > ry(e), sinee |e,| < en'tlog~V'n for large n.
The first sum has [(1—r)~"%] terms each one less than (1—r)"¥4. For
the second sum comparison with the binomial expansion shows that

T atipn o K(1—r2)32 < K (1—r) %8,

m=]

Henee
1

I [0, [P < K(L—r) ¥4 Kn(r)(1—r) ¥ log* 1=

< Ks(1—r)¥tlogt 1 (r>ry(8), 5>0).
Therefore, for all r sufficiently close to one,
Lu-znuangﬂ < Ka¥23(1—r)¥4 log ¥4 1. )
Collecting (3), (4), (5) gives
LJ 0*(2)| 40 < K, log 7+ Ky a¥25(1—r)-¥4 log /2 1—1; . (4)
By the lemma with ¢(z) = g(z) = Z¢,r*,
r_.|ﬂ'[3}idﬁ}K=£-|g'{zj[dﬂ=Kul‘.d.‘r"-

= KaXe,r* = Kag(r?).
By (2) ¢ (r®) = er*(1 =13+ (L—r) A(r?)
= er¥(1—1%) -1t (1—12) O(Z -V pin)
> K(1—r)2—0((1—r). (1—r)=44)
= K(l—r)1,
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Henee r |g¥(z) | d8 > Kja(l—r)-12, (B)

Now choose 8 so that K, 8-%% = K,+ K, and put o = §~2/3(1— )2 !aglL_r-
Then (A) and (B) yield the contradietion K,8-%3 < K,+ K,.

Proof of Theorem 2. Tt
=% (fk)—oc)™
=g ( f(k)—o)
If t,/n—0 as n— o0, then ¢ must be an integer and therefore
t ;k§u|f{k‘]-n[;| iﬁﬂf{k]—{w{— l}a‘ =|r(n)—(n+1)e|.

Henee Theorem 2 can only fail to be true, if
rin) = en-o(n). {6}

But r{a,) =k* (< number of all sums a-ta, with i, j<k) and
r(2a,) = Je(k—1) (= number of all sums a,+ea, with ¢, j < k). 1t follows
that (6) can hold only if either

e=0 and Bla,—+0
or e=>0 and Be<a,< AP

The first possibility is excluded by the hypothesis of the theorem. It
remaing to disouss the seecond case. Then, with the previously used
notations, for §<—r-=1,

lglz)| < p T e K(1—r)2/2

and _r |g(z} b= 2 Die, 2198 = 2 By r™
| = K548 = K (1—p) 1R,

We can take care of the cases I, LI and TII simultaneously by intro-
dueing the symbol e whieh shall stand for ene of the numbers 0, 1, — L.
Then

(E(ﬂkl—ﬂ]s r‘”")m = (H—lr Iﬂl 72 (z) e (28 — K {1—z) ! iﬂrm)w
_,},,KJ;| §°(2)+ e (28)— K (1—2)| b
=K ]_1 g*(z)| dﬁ—}fi“[g{z’ﬂdﬂwﬂ !_| —z[-1dd

=K(l1—r) "1-"2—0({1—?'} Wit log 11T._,) = K(1—r) V4,
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where Schwarz's inequality was used to estimate the second integral.
Therefore

Bt rtn = (1—2) X[ f(k)—6)* 1% > K(1—r)* = K Enrn,
This implies Tt /n > 0. |
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ON LINEAR INHOMOGENEOUS DIOPHANTINE
APPROXIMATION

E. 5. BanyEs®.

1. The problems discussed in this article are concerned with the
evaluation of

1nt1 inf | w(ge-1-+ )| (1.1)
and Lim inf & |da-+y+2|, (1.2)
o ]

where we suppose that ¢ is irrational and that dety-to =0 for any
integral =, y.

In §2 T shall show how the algorithm used in [1] and [2] for inhomo-
geneous binary quadratic forms (produet of two inhemogeneous linear
forms) may be adapted to yield an analytic formulation of (1.1) in terms
of semi-regular eontinued fractions. The method is applied in §3 to give
a simple proof of the following theorem, which includes as special cases
theorems of Cassels [3] and Morimoto [5];

TuroruM 1. Forany kwith 0.< k< 1, there exist ¢ values of &, to cach
of which corresponds ¢ values of =, such that

I 2 _
i i l(patya)| =k (1.3)

(where ¢ denotes the cardinal number of the continuum).

# Reveived 10 May, 10565; read 12 May, 1953,
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