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LEMMA 5 . If 0« (t)-)- s then, for any /3 > oc, Op (t) --->- s.
It is sufficient to assume that s = 0 . By (3), since F(t) is increasing,

op(t) < -a q« ( t) and the required result follows immediately .

t

LEMMA 6 . Let y(t) be an increasing function. If g(t)
=10

y(u) du- sta

as t-*0, then y(t)~scta-1

The proof is similar to that of a result due to Hardy and Littlewood*,
to which the lemma reduces when y(t) is a derivative .

Let 0 < 0 < 1 be a fixed number ; then

(1-0)ty(Ot) < g(t)-g(Ot) < (1-0)ty(t) .

Since g(t)-g(0t), s(1-0«)t«, we have
_ a

limtl-ay(t),s 1-0'

s(1-0«)
lim(0t)1-«y(0t) <(1-0)0a-1'

s(1-0«)
i .e . lim t1-« y(t) < (1-0)0a-1 '

and the required result follows on allowing 0 to tend to 1 .
To complete the proof of (ii) we employ the Littlewood technique of

repeated differentiation. Let

F(t) = F1(t), Fk(t) =
Jo
Fk-1(u) du, k = 2, 3, . . . .

By Lemma 5, if 0, (t) -> s then 07,(t) -> s for an integer k, and this is equivalent
to Fk(t) _ stk/k ! By repeated application of Lemma 6 we obtain
F(t) st, and the desired result u(r)--s follows by Lemma 4 .

I am indebted to Prof . J. E . Littlewood for valuable suggestions made
during the preparation of this paper .

University College,
Swansea .

ON A PROBLEM OF ADDITIVE NUMBER THEORY-

P. ERDÖS and W . H. J . FUCHS .

Let a 1, a2 , . . . be an infinite sequence of integers, such that

0<a1<a2< . . . .

* See, e .g . G. H. Hardy, loc. cit . 170 .
t This research was supported by the United States Air Force under Contract No .

AF18(600)-685 monitored by the Office of Scientific Research .
$ Received 9 September, 1954 ; revised 22 October, 1954 ; read 25 November, 1954 .

F2



68

	

P. ERDÖS and W . H. J . FUCHS

Denote by f(n) the number of solutions of a j d- a, -- n, by r(n) the number
of solutions of ai+a, <n ; thus r(n) = f (0)+f(1)+ . . .+f(n) . In a previous
paper [2] Erdös-Turán conjectured that

r(n)-cn=0(1)

cannot hold . In the present paper we prove

THEOREM 1 . If c > 0, then

r(n) = cn+o(n 1 /4 log-1 / 2 n) .

	

(1)

cannot hold .

Remarks. (i) The assumption c =A 0 is clearly necessary, for if c = 0
were permitted, (1) could clearly hold, if a,,->- oo sufficiently fast .

(ii) The leading term en on the right-hand side of (1) could be replaced
by more general functions such as, e .g ., cn+dn« (0 < « < 1) .

If ak = k2 the estimation of r(n) is the classical problem about lattice
points in a circle . Here it follows from the results of Hardy and Landau
that r(n) :Acn+dnl/ 2+o(ni/4 log 1/ 4 n) . It is rather surprising that our
result for a general ak is almost as good while its proof is much simpler .

We can also prove

sup
1'1.n

r(l) - cl 4> 0 An

Theorem 1 remains true for sequences of non-negative numbers {ak},
not necessarily integers . The proof can be reduced to that of Theorem 1
by defining ak* as the nearest integer to ak . Then the inequalities

r(n-2) < r*(n) < r(n+2)

show that Theorem 1 is true for r(n), if it is true for r*(n) .
We use the letter K as a generic notation for a positive number possibly

depending on the sequence {a k }, but on nothing else . The numerical value
of K will differ at different occurrences . It seems likely that one can
construct an infinite sequence a1 < a 2 < . . . for which

r(n) = on +0(n1 / 4 ) .

This we have not succeeded in doing .
Another conjecture of Erdös-Turán was that if f (n) > 0 for all large n,

then lim f (n) = oo, and an even stronger conjecture would be that if
ak < ck2 for all k, then limf(n) = oo . Here our method does not seem to
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be of any use, since one can construct a sequence {ak} such that ak < ck2 and

n
lim - ( E f 2(k)) < 0 .n k=1

The number f (b) can be interpreted in three different ways : (I) We
can count i z j twice and i = j once ; (II) i *j can be counted once and
i = j also once ; (III) i O j can be counted once and i = j excluded

altogether . If we put g(z) = E zak, then the generating functions
k=1

Ef(n)Z? in the three cases are

(I) g2(z)

	

(II) 1 (g2(z)+g(z2)) ; (III) z (g2(z)-g(z2)) .

Our theorem is true for every one of the three interpretations .
In cases (I) and (II) Dirac and Newman [1] proved that f (n) cannot be

a constant for n > no . We can prove in all three cases

THEOREM 2 . If c > 0, or c = 0 and ak < Ak2, then

_ n
lim - E (f (IC)-c) 2 > 0 .
n aao n k=0

We shall need the following

LEMMA. Suppose c (z) = E bn zn is convergent for I z I < 1 and suppose
n=0

that all bn are non-negative, real numbers . Then for 0 < a < 7r, z = re"'
(0<r< 1),

1 a
2a -«

Proof. The function

h(0)=1-j0/«I

has the Fourier series

c (z)

0

n
2 dB > ~~

~j ~ (z) 12 d0
.

h(0) = 0 (a < 10 I <,r)

h(0) = 2 cke'ke, Ck = (1-cos ak)/7rack2 > 0 .
k=-c

By Parseval's formula

~~ Ih(0)0(z)j2d0=2,r E ( E ckbrrl)2n

	

v=-oo k+l=v
w

7r L

	

E ek2 b12 r21,
v=-w k+l=v
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since all the terms in the first inner sum are non-negative . The sum on
the right-hand side is now

27r(Z ck2) (E bit r 2l)
= 2~ Jh2 (O)"

	

dO ~~ I O
(Z) 12 dO

_ « ~~ 1q(z)I 2 dO .

But when I O I< I r. I, I h (0) I< 1 and when

ra
I~I 2 dO>( A Ih(O)~(z)I 2 d0> 3~c IO(z)I2dO .

Proof of Theorem 1 . Let
co

g(z) =

	

zak=~cv za",
k=1

where the summation in the last sum is over all different aq and c,, is an
integer > 1 . We give the proof for the case where the generating function

M

is g2 (z) . Then (1-z)-1g2(z)= E r(n) zn .
n=0

We must therefore prove that we cannot have

a)
(1-z)-1g2(z) = c E nzn+h(z)

n=0

= cz(1-z)-2+h(z) ;

	

(2)

00
h(z) = E vn zn, vn = o(n1/4 log1/2n ) .

U-0

Let z < r< 1, z = reie, 1-r < a < 7r. By (2)

Ja
Ig 2(z)IdO=

J a
Icz(1-z)-'-+(1-z)h(z)Idd

a

	

«

<11 zI 1dO+
J
a « 11 zllh(z)I dO .

	

(3)

Now (1-z)-1/ 2 =Eyn zn , yn =0(n1/2 ), so that

J * * I
1-z I!1 dO = J I (1-z)-1/2

I2 d0 = 27r E I yn I2 r 2n < K E r2n/n

1
< K log

1-r'

	

(4)

a I < 10I < rr, h(0) = 0. Hence
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If 10 l < x, 1-z I < Ka. Therefore

17,
I 1-zI I h(z) I dO < Ka Jh(z)Id(O)a I

< Ka (la dO)
1/2

(J~ I h(z ) 12 d9)
1/2

a

	

+r-<-gas/2(E
mE I vn I2 r2n) 1/2 ,

n=0

and

I
vn I 2 r 2n < K

	

E

	

n1/2 r2n+,, ( r ) log-1 1

	

n1/2 r2n ,
n=0

	

n<1-r n>(1-,,)-ill

where q(r) < E for 1 > r > r0 (E), since I vn
I <

Enl/4log-1 /2 n for large n .
The first sum has [(1-r)-1/2] terms each one less than (1-r)-1/4 . For
the second sum comparison with the binomial expansion shows that

M

E nl/ 2 r2n < K(1-r2)-3/2 < K(1-r)-3/2 .
n-l

Hence

E Ivnl2r2n<K(1-r)-3/4+Kj(r)(1-r)-3/2log-1
1

n-1

	

1-r

< K82 (1-r)-3/ 2 log-1 1 1 r (r > r1(3), 8 > O) .

Therefore, for all r sufficiently close to one,

J« I 1-zI I h(z) I dO < Ka3/28(1-r)-3/4 log-1/2

Collecting (3), (4), (5) gives

K(1-r)-1 .

(5 )

J«
I g2 (z)I d0 < K1 log 1 1 r +K2a3/28(1-r)-3/41og-1/2 1 1 r,

	

(A)

By the lemma with 0(z) = g(z) = E c, r a ",

J
« l g2 (z) I dO > Ka J' I g2(z) I dO = Ka,E c,2 r2«,a

	

w
Kx E c, r2a„ = Kag (r2 ) .

w2 (r2 ) = cr 2(1-r2 )-1+(1-r2 ) h(r2 )

= cr 2(1-r2 )-1+ ( 1-r2 ) O(E n-1/4r2n)

> K(1-r)-1-0( (1-r) . (1-r)-b/4)
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Hence

	

Ja
jg2 (z) 1dO > K3 a(1-r)-1/2 .

	

(B)
a

Now choose 8 so that K3 8-2 / 3 > K1+K2 and put a = 8-2 /3 (1-r)1/ 2 Jog 11-r
Then (A) and (B) yield the contradiction K3 8-2/ 3 < K1+K2 .

Proof of Theorem 2 . Let
n

	

2
tn =

		

(f(k)-c) .
k=o

If to/n-->- 0 as n-.co, then c must be an integer and therefore

to > E jf(k)-cl >I E f(k)-(n+l)c =jr(n)-(n+1)cj .
k=0

	

k=0

Hence Theorem 2 can only fail to be true, if

r(n) = cn+o(n) .

	

(6)

But r(ak ) < k 2 (< number of all sums at+a; with i, j < k) and
r(2ak ) > 2k(k-1) (_-number of all sums a2+a; with i, j <k) . It follows
that (6) can hold only if either

c = 0 and k 2/ak -> 0

or

	

c > 0 and Bk2 < ak < Ak 2 .

The first possibility is excluded by the hypothesis of the theorem . It
remains to discuss the second case . Then, with the previously used
notations, for 2 < r < 1,

Y (z) < ErBk 2 < K(1-r) -1/ 2

+r

and

	

g (z) 2 d0 = 2rr E cv 2 r2a° > 27r E c„ r 2,, _

> KEr 2Ak2 > K(1-r)-1/2 .

We can take care of the cases I, II and III simultaneously by intro-
ducing the symbol E which shall stand for one of the numbers 0, 1, -1 .

Then
1/2

	

1/2
(E(f(k)-c)2r°') = (8 J Ig 2(z)+Eg(z 2 )- K(1-z)-1 2 d0)rr

>KJ~ g2(z)+Eg(z2)-K(1-z)-1I dO

> K
JA

lg2 (z) dO-K f jg(z 2 ) jdO-K f 11-z -1 dO

K(1-r)-1/2-O((1-r)-114+log 1 1r) > K(1-r) -1/ 2
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where Schwarz's inequality was used to estimate the second integral .
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ON LINEAR INHOMOGENEOUS DIOPHANTINE
APPROXIMATION

E. S . BARNES * .

1 . The problems discussed in this article are concerned with the

where we suppose that ~ is irrational and that ~ x+yH-a, 7,"- 0 for any
integral x, y.

In §2 1 shall show how the algorithm used in [1] and [2] for inhomo-
geneous binary quadratic forms (product of two inhomogeneous linear
forms) may be adapted to yield an analytic formulation of (1 . 1) in terms
of semi-regular continued fractions. The method is applied in §3 to give
a simple proof of the following theorem, which includes as special cases
theorems of Cassels [3] and Morimoto [51

THEOREM 1 . For any lc with 0 < k < 4, there exist c values of 0, to each
of which corresponds c values of a., such that

lim inf I x(q'x+y+u) = k

	

(1 .3)
IxIHM

(where c denotes the cardinal number of the continuum) .

* Received 10 May, 1955 ; read 12 May, 1955 .

evaluation of
lim inf I x(~x±y+a) (1 . 1)

and
xl->w

lim inf xI gx+y+4 (1 .2)
x~+.o

Therefore

to r2n = (1-r 2 )-1 (f(k)-G) 2 r2k >K(1-r)-2 =KZ.Inrn .

This implies lim ta/n > 0 .
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