
POLYNOMIALS WHOSE ZEROS LIE ON THE UNIT CIRCLE

BY P. ERDÖS, F. HERZOG AND G . PIRANIAN

1 . Introduction. Let

(1)

	

P(z) _ (1 - z/.;),
~=1

where the points w; lie on the unit circle C . It has been shown by Cohen[1]
that, on some path r which joins the origin to C, the inequality I P I < 1 holds
everywhere except at z = 0 . In an oral communication, C . Loewner has estab-
lished the existence of a polynomial (1) for which every radius of the unit disc
passes through a point at which I P > 1 .

We will describe (see Theorem 1) a very simple example of a polynomial (1)
with the property that on each radius of the unit disc there exist two points
z' and z" such that P(z) I < 1 and P(z") I > 1 .

In connection with Theorem 1, the following question might be asked : Does
there exist a universal constant L such that for every polynomial (1) the in-
equality P I < 1 holds on a path which connects the origin to C and has length
at most L? This question has recently been answered in the negative by G . R .
MacLane [2] .

Section 3 deals with the polynomials (1) in the cases n < 4. In these cases
there always exist two half-lines from the origin on which

(2)

	

I P(z) I < I 1 - z In and I P(z) I >- 1 + z i"

respectively . Here we point out the problem of determining the greatest degree
n for which a polynomial (1) always satisfies the inequalities (2) on two appro-
priate radii of the unit disc or on two half-lines from the origin .

2. The example . The polynomial to be described is of the form

0

(3)

	

P(z) = II [1 + ( Z/w
y

] k '

	

(
i=i

Roughly speaking, each factor determines a set of directions 0, of total range
slightly less than 7r, such that on every radius in one of these directions P(z)
takes values of modulus greater than 1 . The crucial problem in the construction
is this, to choose the integers k ; in such a way that each factor bears the sole
responsibility, on some circular arc concentric with the unit circle, of determining
the signum of log I P(z) .

Let A j be the set of all w on C for which

(4)

	

-7r/3 < arg(w/w ;)' < 7r/3,

	

modulo 27r,
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and let B, be the set of all w on C for which

(5)

	

2ir/3 < arg(w/w;)' < 47r/3,

	

modulo 2ir .

(A ; is the union of j disjoint, closed arcs, each of length 27r/3j; the same is true
of B ; . )
We write

(6)

	

log [1 + (Z/-X1 = (z/wX0i(z)

where q5; (O) = 1 and o ;(z) is holomorphic and different from zero in I Z I < 1 .
With each index j we associate a number r; (0 < r; < 1), to be determined
below. Then by (3) and (6) we have, for w I = 1 and p = 1, 2, . . . , q,

a
log P(r„w) _

	

k;rP(w/w ;)'~ ;(rDw)
=1

= kprP(w
P
)D~ (r2w)~1

	

k' r
v

D
(w/wD) D ~D(rpw)~,, D

If w c A,, or BD , the factor (co/w,)' satisfies the inequality (4) or (5), respectively ;
the factor 4P(r,w) is arbitrarily close to 1 if r D is small enough; and, as we shall
show below, the modulus of the sum E,,, in (7) can be made arbitrarily small
by the proper choice of the k ; and the r ; . It follows then that, for w E A, ,

-7r/2 < arg log P(r,,w) < 7r/2,

	

that is,

	

P(r,w) > 1 ;

and that, for w E B, ,

7r/2 < arg log P(r„w) < 37r/2,

	

that is,

	

P(r,w) < 1 .

It remains to show that the sum E;,D in (7) can be made arbitrarily small .
It will suffice to show that, if the k ; and the r ; are properly chosen, then the
q(q - 1) quantities (k;/k,) rP

-p
(j X p) are arbitrarily small .

With m a positive integer to be determined below, let

(7)

k i - 2m(2a- 1)ci- 1) r = 2-m (2q-2i+1)

so that r; < 2-- . It is easily verified that, for j 5~4- p,

(k,/k,)r'-P = 2-m(7-P)' < 2-m .

Thus we need only choose m sufficiently large, in order to accomplish our purpose .
Since E, 1/j = co, it is possible to choose a finite q and a corresponding set

of points w; (j = 1, 2, • . . , q) such that each of the sets UA. ; and UB; covers
C . The following result is now immediate .

(j=1,2, . . .,q),

THEOREM 1 . There exists a polynomial (1) such that on every radius of the
unit disc there exist points z' and z" with I P(z') I < 1 and I P(z") > 1 .
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3. Polynomials of degree at most four .

THEOREM 2 . Let P(z) = H'=, (z - z r ), with I z, 1 = 1 . If n < 4, there
exist two values 0' and 0" such that

P(re" B ') < 1 - r'

	

and

	

I P(re" B '') I > 1 + r'

for 0 < r <c .

We omit the trivial cases n = 1 and n = 2 . In the case n = 3, let a, y

denote the three angles formed by the radii Oz, , with 27r > a > ,3 > y > 0
and a + /3 + y = 27r .

To show the existence of 0', we write z, = 1, z 2 = e' Q , and z3 = e- ''', and we
prove that P(r) < I 1 - r3 ( for 0 < r < oc) . Since

P(r) I = I 1 - r 1 (1 - 2r cos (3 + r 2)'(1 - 2r cosy + r 2 )~,

it will suffice to show that

0' - (1

	

r3 ) 2 - P(r) 2

_ (1 - r) 2 [2r(l + r2)(1 + cos (3 + cos y) + r (1 - 4 cos a cos y)] > 0 .

Now

(8)

	

0 <- ((3 - y)/2 < (3/2 < 7r/2

	

and

	

0 < (/3 + y)/2 < 2 7r/3,

and therefore

i + cos 0 + cosy = 1 + 2 cos[((3 + y)/2] cos[((3 - y)/2]

> 1 - cos[(/3 - y)/2] > 0 ;

and because 1 + r 2 > 2r, it follows that

0' > r2(1 - r) 2[4(1 + cos 0 + cosy) + 1 - 4 cos (3 cos y]

= r2(1 - r) 2 [9 - 4(1 - cos (3) (1 - cosy)]

= r2(1 - r) 2 [9 - 16 sin 2 (0/2) sin2 (y/2)] .

But, by (8),

0 < 4 sin(13/2) sin(y/2) = 2 cos[(,t3 - y)/2] - 2 cos[((3 + y)/2]

< 2 - 2(-' ) = 3,

and therefore the value 0' = 0 has the required property .
To show the existence of 0" in the case n = 3, let a, (3, y be the same as above .

We write z, = e' "2 , z2 = e-'" 12 , and z 3 = e'` °/2+0 ' ; and we will show that
P(r) I > 1 + r 3 for 0 < r < . If a > 7r, then I P(r) ~ > (1 + r 2 ) 312 > 1 + ra

In what follows we therefore restrict a to the interval 27r/3 _< a < 7r; and we
write cos (a/2) = t, so that cos (3a/2) = 4t3 - 3t and 0 < t < 1/2 .
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Since 7r < a/2 + ~3 < 3a/2, we have r - z 3 I > I r - e3i a'2 ~, and therefore
P(r) > (1 - 2rt + r2)[1 - 2r(4 t 3 - 3t) + r 2 ]' ;

it remains to show that the quantity
0"- = (1 - 2rt + r2) 2 [1 - 2r(4t 3 - 3t) + r 2 ] - ( 1 + r3 ) 2

is nonnegative for 0 < r < - and 0 < t < 1/2 .
A simple computation shows that 0" = A,r(1 + r4) + A2r2(1 + r2) + A3r3 ,

where
A, = 2t(1 - 4t2 ) > 0,
A2 = 3 - 20t 2 + 321 4 = (1 - 4t 2)(3 - 8t2 ) > 0,
A3 =-2+41+813 -3215 .

Since 1 + r 2 > 2r,
All > r3(2A2+ A3)

=4r3(l+t-lOt2 +2t3 +16t 4 -8t5 )
= 4r3(1 - 2t) (1 - 2t 2)(1 + 3t - 2t2 ) > 0 .

In the case n = 4, let a, ,3, y, S denote, in cyclical order, the four nonnegative
angles formed by the radii Oz, , with a + 0 + y + 3 = 27r .

In order to establish the existence of 0', we assume that the notation has been
chosen in such a way that y + S < 7r . We write z, = 1, z 2 = e"n z3 = e` + ~ > _
e -i ` a+ '', z 4 = e-", and we will show that I P(r) I < 1 - r4j for 0 < r <

	

.
We note that I r - z, = l 1 - r I and r - z3 _< 1 + r. Since 0 < S <

7r - y < 7r, we have the inequality

Ir-z2 J <

	

r+e- ' ~,
and therefore

I (r - z2) (r - z4) I < I r 2 -

	

< 1 + r 2 .
The required result is now immediate .

To show the existence of 0" in the case n = 4, let a, a, y, 5 be the same as
above; assume that the notation has been chosen in such a way that

(9)

	

a+/3>7r>y+5,

	

a+5>7r>/3+y,

	

Q> S.
We write z, = e-~°"2, z2 = e i . '2 , z3 = e i"2 +a, z4 = e- c -12+a) We note that
(9) implies

(10)

	

7r - a/2 < a/2 + 5 < a/2 + (3 < 7r + a/2 .

Two cases arise . If a > 7r/2, we shall show that I P(r) J > 1 + r 4 for 0 < r
< - . For a > 7r, the matter is trivial . For 7r/2 < a < 7r and v = 3, 4, the
inequalities (10) give

Ir-zv > ~ r-

	

./2)
_ ~ r+z,~ ;

I



therefore

IP(r) I >_ Ir-z, I 2 Ir+zl 1 2 = Ire-z; 12

= 1 - 2r2 cos a + r4 > 1 + r4 .

If a < 7r/2, we shall show that I P(ir) >_ 1 + r4 for 0 _< r <
it - z3 I > I it - e"a> I = I it + z4 I, hence

(ir - z3) (ir - Z4) I >- I r 2 + z4

= [1 + 2r2 cos(a + 21) + r4 ] 1

> (1 + 2r2 cos a + r4) 3
Also,

I (ir - z 1)(ir - z 2) I = (1 + 2r2 cos a + r 4) i ,
so that

P(ir) I > 1 + 2r2 cos a + r4 > 1 + r4 .
This completes the proof of Theorem

In conclusion, we note that in the c e n = 4 the inequality I P(z) I > 1 does
not necessarily hold everywhere on the bisector of the greatest of the four
angles involved . To see this, let z 1 = e" /3 , z 2 = - 1, z 3 = z 4 = e 1̀3 . Then
P(1/2) I = (9/16) 3' /' < 1 . Considerations of continuity show that even if

a > a > y > 3 > 0, the inequality I P(z) I > 1 need not hold everywhere on
the bisector of a .
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