POLYNOMIALS WHOSE ZEROS LIE ON THE UNIT CIRCLE
By P, Erpis, F. Herzoc axp G, Preanian

1. Introduction. Lot

(1) Pz = U. (1 — 2/wy),

where the points w; lie on the unit circle €. Tt has been shown by Cohen[1]
that, on some path T which joins the origin to €, the inequality | P | < | holds
evervwhere except at 2 = 0. In an oral communieation, C. Loewner hag estab-
lished the existence of a polynomial (1) for which every radius of the unit dise
passes through a point at which | P | > 1.

We will describe (see Theorem 1) a very simple example of a polynomial (1)
with the property that on each radius of the unit disc there exist two points
2/ and 2 such that | P{2) | < 1and | P(") | > 1.

In connection with Theorem 1, the following question might be asked: Does
there exisf a universal constant L such that for every polynomial (1) the in-
equality | P | < 1 holds on a path which conmects the origin to ' and has length
at most L? This question has recently been answered in the negative by G. R.
MacLane [2].

Bection 3 deals with the polynomials (1) in the cases n < 4. In these cases
there always exist two half-lines from the origin on which

(2) | PE | = |1—|e["| end [PE[Z1+ [z,

respectively. Here we point out the problem of determining the greatest degree
n for which a polynomial (1} always satisfies the inequalities (2) on two appro-
priate radii of the unit dise or on two half-lines from the origin,

2. The example. The polynomial to be deseribed is of the form
® PO = 10+ @) (ol =1i=1,2 0.

Roughly speaking, each factor determines a set of directions §, of total range
slightly less than w, such that on every radius in one of these directions Pz)
takes values of modulus greater than 1. The crueial problem in the eonstruction
is this, to choose the integers &, in such a way that ench factor bears the sole
responsibility, on some circular are concentrie with the unit cirele, of determining
the signum of log | Plz) |.

Let A7 be the set of all w on € for which

(4) —x/8 < argle/w)’ < x/3, modulo 2,

Received September 13, 1054; revision received Jamury 8, 1955,
247



348 F. ERDOS, F. HERZOG AND G. PIRANIAN

and let B, be the set of all w on €' for which

(5) 2r/3 < arglofw,)’ < 4r/3,  modulo 2r.
{4, is the union of j disjoint, closed ares, each of length 27 /37; the same is true
of B, .)
We write
(6) log [1 + (2/w,)'] = (2/w)'e(2),

where ¢;(0) = 1 and ¢,(z) 1s holomorphic and different from zeroin | 2| < 1.
With each index j we assoeiale a number r; (0 < r; < 1), to be determined
below. Then by (3) and (6) wehave, for | | = land p = 1,2, -+ , g,

log Plrw) = 2 kmylu/e)'d(re)
o)

i .i:,,r,(“‘) mfm){ 2 ;:f v %ﬁﬁ}

I we A, or B, , the factor {w/w,)" satisfies the inequality (4) or (5), respectively;
the factor ¢,(r,w) is arhitrarly close to 1 if r, is small enough; and, as we shall
show below, the modulus of the sum 3., in (7) ean be made arbitrarily small
by the proper choice of the &, and the r, . It follows then that, forwe 4, ,

—x/2 < arg log Plro) <r/2, that is, | Plrgs) | > 1;
and that, forwe B, |
w2 < arg log Plre < 3%/2, that 1s, [ Pl | < 1.

It remains to show that the sum 3., in (7) ean be made arbitrarily small,
It will suffice to show that, if the k; and the r; are properly chosen, then the
qlg — 1) quantities (k;/k,) ra ™" (j = p) are arbitrarily small.

With m a positive integer to be determined below, let

k-' = 2-“'%—:']“'—!]' r,o= 2—"'.90—21'” (J‘ = 1.2 ... q}
go that r; < 27", It is easily verified that, for 7 = p,
(k; ,-".Fc,}r'"’ = ETRETY e

Thus we need only choose m sufficiently large, in order to accomplish our purpose.

Sinee 2.3 1/j = =, it is possible to choose a finite ¢ and a corresponding set
of points w; (j = 1, 2, --- , ¢) such that each of the sets \JA,; and \JB, covers
€', The following resuli is now immediate,

Tuaeorem 1. There erists a polynomial (1) such that on every radivs of the
unit dise there exist poinds 2* and 2" with | P(z) | < 1 and | P(z'") | > 1.




POLYNOMIALS 249

3. Polynomials of degree at most four.

Tagorem 2. Let P(z) = [ (z — &), with | 2, | = L. If n < 4, there
cxiat two valucs 6 and 8" sueh that

|Pee®y | 2|1 —=7"| and [Po™)|2>1410
Jor0 £ ¢ < m,

3, 1
i

2

We omil the trivial casesn = 1 and n = 2. In the case n =
denote the three angles formed by the radii Oz, |, with 27 = o =
and o + 8 + v = 2r.

To show the existence of #, we write'z, = 1, 2o = ¢”, and 2, = ¢™'7, and we
prove that | P(r} | < |1 — | for 0 € r < =. BSince

[P | =1 =7|(1 = 2rcos B+ "ML — 2r cosy + ')},

it will suffice to show that

a=1=¢y = [P

= {1 —A72e(1 + )1 + cos B + cosy) + (1 — 4 cos § cosy)] = 0,

o, 3, %
y=0

IV

Now
B 0=B-v2<p2<r2 sad 0Z(B+7v/2=525/3,
and therefore
14 cosf 4 cosy = 1+ 2 ecos[(8 + +)/2] cos{(8 — ¥)/2]
= 1 — eos[(8 — v)/2] = 0
and because 1 + r* = 2r, it follows that
A" =L — )41 4 cos 8 + cosy) + 1 — 4 cos B cosy]
= r{1 — )9 — 4(1 — cos 8)(1 — cosv)]
. = r'{1 — %9 — 16sin"(8/2) sin’(+/2)].
But, by (8),
0 < 4sin(8/2) sinfy/2) = 2 eos{(8 — 7)/2] — 2 cos[(8 + v)/2]
<2-2(-% =3,

and therefore the value 8' = () has the required property.

To show the existence of 8" in the case n = 3, let a, 5, ¥ be the same as above,
We write 2; = €% 2, = ¢, and 2, = ¢'"**"; and we will show that
[Plry | 214 for0<r < =, Ha>wthen|Plr)| = (1 4+ 79" 2141
In what follows we therefore restrict « to the interval 2r/3 < a« < m; and we
write tos (a/2) = {, so that cos (3a/2) = 4 — 3tand 0 < < 1/2.
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Sincew € /2 + 8 < 32/2, wehave | r — 2 | = | r — ' |, and therefore
| Pry | = (L — 2t o)1 — 24! — 30) 4+
it remains to show that the quantity
=1 = 2t L — 274l — B ] = (L4

ia nonnegative for 0 < r < o and 0 < ¢ < 1/2.
A simple compntation shows that A = 4,71 + ¢} + A1 + 7 + A7
where

A, = 211 — 48) = 0,
A;=3-200+320'=(1 — 43 — 85 =0,
A, = =2 4 41 4 8¢ — 328,
Since 1 ++* = 2, g
A" > P24, + 4,)
=471 4 1 — 10F + 27 4 168 — 8
= 471 — 20(1 — 28901 4 3t — 26) > 0.

In the case n = 4, let o, 8,7, § denote, in cyclical order, the four nonnegative
angles formed by the radii 0z , witha + 8§ + v + 6§ = 2r
In order to establish the existence of §, we asshime that the notation has been
chosen in such a way thaty + § < w. Wewrites, = 1,5, =¢" 2, = " =
e Y gy = ¢, and we will show that | P(r) | < [1 — ¢ for0 < 7 < o,
Wenotethat | r —2 | = |1 —rlandlr—zﬂ <14y Bneed<LiL
T — % = m, we have the inequality

|r—2 | < [r—&" | = |r4+e' ],
and therefore
|(r —&llr—2) | S| =™ | 147
The required result is now immediate,

To show the existence of @' in the case n = 4, let &, 8, v, & be the same as
above; assume that the notation has been chosen in such a way that

(9) at+fzrzy+s at+dbzxzg4y, BZ6

We writa 2, = & "™, g, = g 2, = @' P o m 1Y Wa note that
(9) ituplica

(10) r—a2 a2+ 55a248 <r+a/l

Two cases arise. If @ > /2, we shall show that | P{r) | = 1 + ' for0 < r
< @. Fore > , the matter is trivial. For#/2 € o < rand» = 3, 4, the
inequalities (10) give

ir_gi'lzlr_eﬂr—m'!}lﬂ ]f—f—zj |;
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therefore
1P |2 |r—a | |r+e|" = |r’_3‘:|=
=1—2Fcosa+r' 214+

If @ < »/2, we shall show that | P(ir) | > 1 +r*for0 < r < «. By (10),
|ir — 2, | 2 |ir — "™ | = | ir + 2, |, henee

| Gr — z)(ir —2) | = |7 + 4|
= [1 + 2r" cosla + 28) + ']}

= (1 + 27 cose + )
Also,
| Gir — 2)(ir — 2) | = (1 + 27 cosa+ 1)},
s0 that
|Plir) | 2 1 4+ 2¢" eona 4 ¢ > 1 4o,

This eompletes the proof of Theorer

In conclusion, we note that in the ¢ en = 4 the inequality | P{(z) | = 1 does
not necessarily hold everywhere on the hisector of the greatest of the four
angles involved. Tosee this, letz, = ¢, 2, = — 1,2, = 2, = ¢ '™, Then
| P{1/2) | = (9/16) 3"* < 1, Considerations of continuity show that even if
a > f§ >y > b >0, the inequality | P(z) | = 1 need not hold everywhere on
the bisector of a.
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