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To Avexanves Osrrowskr for his 60th birthday

By Pave Ernos in Los Angeles, California, Frorz Henzoo in East Lansing, Michigan,

and Gmonce Prmasian in Ann Arbor, Michigan

1. Introduction

This paper deals with the Tavvon coefficients of functions that are regular in-
side the unit eirele © and have only one singularity on €. Much of its motivation
comes from the following lemma of Garen [3, pp. 327, 328]:

If for aome a == U the function f(z) = a, 2" is vegular and bounded in the dise
|z+a]l<l+a, thn a, =0(n""")

We shall apply the term (vArer region to any open region which contains the
unit dise |z | < I and whose boundary does not meet the unit eirele € exeept at
z= 1. In particular, if a Gaign region is one of the circular dises in the lemma
above, we shall eall it & Gaaer dise,

In § 2. we show that Garen's lemma cannet be improved, in the sense that the
€ canmot be replaced by o, and we state our Theorem 2, of which Gagn's lemma is
a special case. Three seetions are devoted to the proof of this theorem.

While Theorem 2 provides bounds for individual Tayvon coefficients of funetions
zatisfving cerfain restrictions in a Garen dise. Theorem 3 (§ 6) gives a bound on the
gim of the moduli of cosfficients in certain blocks of coefficients. On the one hand,
this bound ecannot be dedueed from Theorem 2; on the other hand, eertain results
of Feakn show that the hound is the best possible.

§ 7 uses the technique of § 6 to obtain a theorem on the series Zn | a, [*; § 8 deals
with the convergence of Lo, and with the uniform convergence on the unit eirele
of Xa, 2" and §9 is devoted to a partial analogue of Theorem 2 for Gaier regions
other than Gaer dises,

2, On Gaer's lemma

Siner Garen's lemma i proved by means of the equation

1 (=)
[ M/j;lldz.
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where I'is a suitable eontour, it is reasonably regarded as a generalization of Cavgny’s
inequality |a, | = M on the Tavyrvor coefficients of a bounded funetion. Sinee
Cavewy's inequality can be sharpened (for large n) to the relation o, = o(1) by
Gurzmer’s relation

o

3w =g [ |1 s,

-
the gquestion arises whether Gaier’s lemma can be improved in the same way. If
the hypotheses are slightly strengthened, thisis indeed the ease: in a private communi-
eation, Gaten has pointed out that i f{2) is continuons in the doaure of & Gaen dise,
then a, = o(n "), But Gurzmen's proof of his theorem [3] is based on the relation
eos (@4 7) = — cos &5 and the customary modern proof of hiz theorem relies
heavily om the fact that the set of funetions (="} (n==0, 1, 2, ...) form an orthogonal
set on . In the case of Gaien's lemma, the trigonometric relation cannot be used,
and the functions {z"} do not form an orthogonal et on Garer’s contour; therefore
the Tollowing result should not come as a surprise,

Theorem 1. There exists a function f(z) = X, 2", regular and bounded in a
Gater dise, for which Hm sup(|a, | n'?) = 0.

To prove this theorem, we show first that for any fixed number 5(0 <6 <1)
the funetion

)= 3 1y
=0

is bounded in the dise |z — 5| < 1--5, provided the sequence of positive integers
m; inereases fast enough.
We denote by € the cirele [z — 86| =1—b, and we choose a sequence {g,)

with £ = 0 and X' < oo, The integers m, and »; can be chosen arbitrarily. There
then exists an open are 4, 6n €, containing the point 2 = 1, and sach that

|zm'. == i | = &

on A, We choose m, and my, large enough =0 that

= ™ i

on the complement of 4, relative to €, The are 4, has an open subare 4, con-
taining z = 1, such that

|:m' —:m'l < g
on 4;. We choose my and my large enough so that

[ 8™ = | ™ e

on the complement of 4, I the construetion is continued in this manmet, then

’
("2 —z"a+11) | < 2 +z%ae,

oS
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on € and consequently g(z) is bounded inside of €.
We turn now to the function

41 v a1\ s
fy=e*3) = S =S
¥ T n=I}
I m; — oo fast enough, f(z) is bounded in the Gaer dise |z - 1/2 | < 3/2. Also,
a slight computation shows that if m; —= oo fast enough, then

1/

[y |~ ()

for n = [my/2], §=10,1.2, ... . This proves the theorem.
The following theorem differs from Garer’s lemma in that it replaces the hounded-
ness of f(z) by the boundedness of (1-—2)* f(z), where k is o real constant.

Theorem 2. Let j{z}) = X'a, =" be regular in some GaiErdise |z 0 | <1+a,
and let k be @ real number such that (1—2)* (z) is bounded in this dise. Then

6, — D(r*) i k=1

i, == O(log w) if k=1,
oy = {J[n‘k_”"'z_] if k< 1,

In this cetimats, the () cannot generally he replaced by o) the veplacement is permissible
i k=1 and (] =" f(z) approaches a limit whenever = — 1 from the interior of the
GATER  dise,

3. The case k& =1

Here the estimate is well known, It can be obtained from Cavewy’s Tormula
by integration along the cirele |z | = 1 — I1/m. That the O cannot be replaced by
o is seen from the example f{z) = (1—z) % It is noteworthy that, in the case & = 1,
the hypothesis that (1—2)* f(z) is regular in & Garer dise and continuous on the
closure of this dise does not vield a better estimate on o, than does the hypothesis
that (1—z)* f(z) iz regular and bounded in the unit dise.

4. The ease k=1

Again, integration along the cirele | = | = | — 1/n gives the estimate a, = O(logn).
For a precise discussion of the situation where (12} f{z) is merely assumed to he
regular and bounded in the unit dise, the reader is referred to Neper [7] Here we
shall only show that

i) a, = oflog n) if (1—2) f(z) is regular and bounded in the unit dise and ap-
progehes w limit as 2 = 1 from the interior of the unit dise;

i) ;'egulurity and houndedness of (1—z) fz) in a Gamen dize does not imply
that o, = e{log =n).
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To prove the first of these propositions, suppese that (1—z) fiz) is regular and
bounded in | 2| < 1, and that lil'r; {1—2) f(zj = A. Then
e

o=y,

where @(z) is bounded in |z| =1 and @®{z) =0 as = —1 in the unit dise, The
Tavror coefficients of Af(1—z) are all equal to A and cause no trouble. Let

iz
1 —z 5 Z h"! x" o

=ik
Then
iiz) | dz
by | = o [cull__
where I, is the contour |2 | =1 — Lfn. Sinee the value of [ [*"! on I, approaches

1/e as n -+ oo, it suffiees to prove that

i Qiiz)| |d=

l—z

= oflogn),

and geometrical considerations reduce the problem to the task of showing that,
with z = (1—1/n)e'®,

{L (RIS o log n) .

[ e T
Now,if 0 = 0, = wand M, = max | @) [for e = (1 —1n) ", —0, =6 =6,
e

iy By
[ |dhiz) dE . .
= 2N, . | [ ot G2 )
./ IR f}@ﬂ - login &, - | n*e 1)

<2.M, log(l+28n 6} = 2.M log(]l -+ 2an).

O the other hand,

2 by
diz) 46 i6 .
F&TW.-EHI — 2 M log (#]6,) ,

n

||."-.

where M is a bound for | @(z) |in |z | = 1. 1f we choose @, = 1/log n, then M, — 1),
and it follows that b, = o(log n).

To prove that regularity and boundedness of (1—z) f{z} in & Garer dise does
not imply that a, = oflog n), we use the polynomials

- + 2 :ﬂ +1 33?1-—3

- | ; !
2] = g !T...-|" TR ST R e




Yol ¥, 1454 Funetions: Resular in Cargp Rerlons 43

Feagn |2, pp. T4—76] proved that on the unit circlé © these polynomials have a
ound which is independent of n. We believe that the following new proof of this
proposition is of interest because of its simple and elementary character,

At z— ¢, the sum of the 2 » middle terms of £, (2} has modulus

_" -ﬂ..r _.Ya"..l r iy
p gt e sl RV iy S B 2 i
= 4 =

Also, by Asev’s gummation, the sum of the st » — ¢ terms is

P e
=t 4 U = P s I N

and, for 0 < | @ | = &, thiz has modulus less than 2 =/(r+ 1) | @ | . The modulus
of the last » — v terms has the same bound, and therefore

47

|Pu{3mjlégr|ﬂ| ! frk1) @l

for 0 < |8 | ==a The choiee » = minin, [7/| & ]} then gives the desired result.

We now write
Quf7) = 2 P&

o s otl? 2 et it 2at ?

e A ] .|. - - — —

s n—1 1 I 2 no*

and we form the funetion
Fizy= 3 @, (2.
=

We assume that the sequenee {m} iz chosen in such a way that 2a) <] | for
i=1.2 ..., Sinee the Tavvon series of #(z) has infinitely many terms with co-
efficient one, Fiz) is not bounded in | = | < 1. However, it follows from considerations
similar to those in § 2 that F(z) is bounded in the dise [z —1/4 | = 34, provided
w—= @ fast enough,

Lt

mz1=ﬁ‘[=;1)=i"-'*n=”‘- |

Then iz} is bounded in the Gaen dise |2 4 12| < 3/2. On the other hand, it
is easily verified that, if »; — oo fast enough,

Img?e2]

E b = & log u, — O(n1)

=
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where the second term on the right-hand side is obtained by o slight modification
of Problom 145 of Péruya and Szeco [10, vol. 1, pp. 66 and 230]. It follows that, if
i
flz) = I If?-]: == E "Inz
f=

then (L—z) f(z) is bounded in a Gamen dise, while a,/log » remaing greater than a
positive constant for 2 = [n/2].

5. The case B < 1

In proving that a, = G(n™ %), we shall essentially follow Garew and estimate a,
by Cavcny’s formula, with the eontour of integration eomposed of the are

I' z={1+e,@e", —a=@=gx.

where ¢ is & posifive constant small enough so that the corve I7 les in the Garkn
dise |2+ a|=1+4a, exeept for the point 2 =1. (A moment’s consideration
shows that this path of integration is permissible even when (0 < & < 1.} Then

g RS -, ; | oL
2| ay, | ,j it 5"*/4:*'[14;1:1%:“ (1+1 Irth*)M
¥ o
J, dif ol d
= ¢ _— =1}/ i)
B Faj @1+ o )" o [ uh(1 = ud )
i 1]

Now, when « = 0 and pis a positive integer,

(e 2 =B i et

any choice of p greater than (1—&)/2 shows that the lastintegral has a bound inde-
pendent of », and it follows that e, = O(n'*1"),

I the funetion [l—a}* f(z) is not only hounded in a Gamen dise but is continuons
in the elogure of & Garer dise, then
E | iz
z S —
'“:} :I--z_lp‘ ! (1 —z]
where @{z) is bounded in the Gareg disc and @(z) —= 0, as = — 1. The contribution
to a, from the s-th Tavion eoefficient of the first function on the right is O(s* ') —
o(n k- D) The contribution from the second term on the vight can be treated mueh
ag in the dizeussion of the case & = 1 {see § 4); we omit the details.

We will now show that for every & < 1 there exists a function f(z) = L'a, 2"
such that (1—z)* f(z) is regular and bounded in the Garen dise |2+ 1/2 | < 3/2,
and such that lim sup (| a, | a2 = (.
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For any Tixed &, we choose an integer & such that & 4 & = 0. We begin with
the funetion

G(z) = vﬁ'{-ui’.l

1 =
where {p} is an increasing sequence of positive integers and

g{zp) = gt 21—,

We choose a positive eongtant o, small enough so that the curve
K: z=(l—c@y)e", —a=d=gn
eneloses the dise |z —1/4| <3/4. On K,
29 = (g @ < g terd”

Also on K,
|1 —#" |= |1 — (1 — D% e¥® |

= : [T — (1 — e, @] +4(1 —e, D" sin* M }

Simee 1 —a® = p(l—u) for 0 = » = 1, the first term in the braces iz not greater
than (¢, p ®2)%, and it follows that [1—2" | = o5 | p®|. Therefore, for z on K,
| {‘1 _z}ﬂ E(z-ﬁi | :E: [ | P (Il |?i!-|-k ﬁ—Mn[PI}h :
and since & 4 k = 0, this has an upper bound independent of p and @. Moreover,
(1—2) g(z,9) =0, a2 2 — 1 along K ; and on any elosed are of K that does not pass
through z = 1, the function (1 —=z)* g{z ) can be made arbitrarily small by choosing
the integer p sufficiently large, Tt follows that we can apply the method used in the
proof of Theorem 1 to choose the sequence {p;} in such a way that (1—z2)" Gi{z)

is regular and bhounded in the interior of K,

Finally, we consider the funetion
f{z‘l—\nz—(’{" ) '51 -(I-lr;l-Pj.}.
n=i z J--| =
From our diseussion of @(z) it follows that (1—=2)* f(z) is regular and bounded in
the (ramer dise |z +1/2 | < 5/2. I remains only to examine the coefficients a,.

The coefficient of 2* in the polynomial y(zt!-, ) is

R h gpt 4 Jp’* ap 2 T
ko—2" % ¢ 144 4 Ap( P ip ~2p* = AR
Eaceh product in the last expression is of the form
ip

I} (1-ses).

and its logarithm approaches — A*/4 as p —+ o .
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It follows that the coefficient of 2* in g {Zt I—, -,u) is asymptotically equal to

h ¢ :
ﬁmﬁrWSW—uﬂﬁer.
i=n A

Sinee ¢ ' s a transcendental number, the sum in the last expression is different

[rom zero, Now let n = pf. Because the contributions to a, from the terms g {z -: -5 ? }

are zero for § < i and o(p! ") for j = i, provided p; — oo fast enough. it follows that.
a2 n — oo through the values g7,

4y fo = = Ve,
where # i 4 constant different from zevo. This coneludes the proof of Theorem 2,

6. On blocks of terms from the series X |a;|
We now turn our attention from individual eoefficients to sums of the form

25
Sﬁ — 31 IJJ-
frar
[f {(z) satigfies the conditions of Theorem 2, then
= 1 (n") if k=1,

S, —0O(mlogn) if k=1,
S, =0m*y it k<1,

For the vase & — 1, this estimate cannot be improved, as is shown by the example
f(z) = (1—=z)"% The following theorem improves the estimate for the remaining
valueg of

Theorem 3. If [{z) satisfies the condition of Theorem 2, then

8, —0(n") if k=172,
8. = (}f]n log u] af k=1/2
8. — On 1) it k=1/2;

if &= 1/2 the O in this estimale cannot be veplaced by o,
In the prool we will need the following anxiliary result.
Lemma. Let f(z) = Za; 2! be vegular in | 2| <1, and let m be o non-negative
indeger such thet
[ ™) lae] <n*, w=2.8...,
Fa
where I, is the circle |2 | =1 — 1/n. Then

Sﬂ - n[u—“lm-l 18 ’

where ¢ depends only on m and on o,
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By Guazmen's relation (see § 2), the hypothesis of the lemma implics that (with
z="[1—1/n) #i“'}

n _ e -
S liG—1) . G—mt1) o |2 (1 — )" 1'] 1™ (2) 2 d@ <.
j o ! ]

ﬂ.-

But for j = 2 #, -
=2 i e,

")

where ¢, is independent of w; also, for j = m,
Ji—1) oo (f—m+1) = 0gf™

where e, = 0, Therefore, the last inequality implies that

in i)

25 S o i < qatam,
J=u Jj=n

and the lemma follows.

We now begin with the proof of the theorem for the case £ = 1/2. Here we will
uge our lemma with m — 0, To egtimate | fz) | at the point z = (1 — 1/n) &, we
apply Caveny’s formula, with the circular contoar | £ — 3| =1/3n. On this con-
tour, |1 —2|=¢(|©|+ n'); therefore, |f(z)| <6, (| @| +»1%; and con-
sequently

[ [ da| <25 [ (@401 "*dO < cyu**",
. :

" 0 =

The desired éztimate now follows from the lemma, That the ¢ cannot be replaced
by o is seen at once from the example f{z) = (1—z) "
The case & — 1/2 is treated in the same wav. The only difference is this, that

[ 1) 2 |dz | <2e5 [ (O4n7)7"dO < c;logm.
Ir:n 1]
A slicht modifieation in the computations in the proof of the lemma gives the estimate
o N i':-‘“. wlogn.

We point out that in the ease where £ = 1/2, we have only used the fact that
(1—=" f(z) is bounded in the unit vircle, rather than in a Gaier dise.

For & = 1/2, we apply our lemma, with the integer m chogen in such a way that
S | k- 1/2 = 0. To estimate | f™(z) | at the point z= (1—1fn) ' we ase the
eirele '

|t—z|=1/28a i | 8| =n""",

and the eircle
|f —=| = 6% if o1 o |8 =
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here ¢, denotes a positive constant small enough so that (1—2)% £(2) is regular and
bounded inside of the curve £ = (1 4+e, @)™, —a =@ =5.
We observe that in cither case the relations
o @ +a) <[1—{] <eu(| @ +n)
hold on the eircle associated with the point = — (1—1/n) &, Tt follows that, for
18] = n2,
|F™(2) | < e n™ (] @ | +m3)7%,

a1

f “Hmr 2d@ < o pio k=10

i
Similarly, for ™ '* < |08 | = =,
™) | < @7 ( 8 | +07) 7
since |© | < | €| 4w <=2|6 |, this leads to the estimates
™R | < ey | @75F,

el iz by

[+ [ 11 a0 <y minir-i,

—m g—1

and

and it follows from the lemma that S, = G(p"= 1),

Fratn [1] (sce also PErron [8] and [9, §El] ) has shown that if j{z) = Xa, 2" =
(1—=z) &Y then as n — a0, while k is a fixed real number,

=2 aeeese e faafe. (k8 LS
mﬂ_l'".ﬂn |511’ll-].-ﬁ (2 4)n|+{)('lr':w.).l+

Consequently, the 0 in the estimate aboye cannot be replaced by o.

The following result is an immediate consequenee of Theorem 3.

Theorem 4. If {{z) = X a, 2" satisfies the condition of Theorem 2, with k = —1/2,
then X |ag | =< o0

Again, FEIER's example shows that the theorem beeomes false for & = —1/2.

7. On the series %_"j |a ?

IT f(z) satisfies the hypothesiz of Theorem 2, with B == —1, then the conelusgion
of Theorem 2 implies that Z jlay|* < co. Again this resalt can be improved by the
¥

method of the preceding section.

Theorem 6. If j(z) =X a, 2" satisfies the hypothesis of Theorem 2, with kb < —1/3,
then E;l'|r;j|= < 3.
!
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It auffices to deal with the ease — 1 = k < — 1/2, s0 that we may apply the pro-
cedure of § 6, with m = 1, The theorem then follows from the inequalities

2n 2n =

Tl T e W 12 - el |
3_;.l|uj-';w-1\ 72| @ | _*"_--_.cln.’l||'|f|,’_z]i3|4:{a|
JI=n I=n lf-n

and the fact that the integral in the last member iz less than o, n* ™
If & = — 1/2 the conclusion need not hold, as iz easily een from Frién's example.

B, Comvergenee and uniform convergence on the unif cirele
Theorem 6. If f{z) = Zu 2! satisfies the condition of Theorem 2, with kb < (),

then Xa, converges,

We apply Theorem 2 to the function

(=) -
g - => ﬁ}_z_ﬂ‘

=)=

Tk

where & —a, 4+ @y +++ - a,. Since {1— Pt

s, — O(n"™), and the proof is complete,

It follows from a theorem of Gamer |3, Zusatz, p. 331] that mere continuity of
f{z) in the closure of a Garen dise does not imply convergence of X'a,. This is also
seen from the following example:

Lt

glz) is bounded in a Gaen dise,

Fiz)= 2: b W, (=),
=1
where the ¢, {z) are the functions constracted in §4. If the sequence {n,} is chosen
as in § 4, and if b,—0, then Z'b, @, (z) converges uniformly in the dise [z —1/4| = 3/4
and thus F(z) is continuous in this dize. Hence the function f(z) = F(:- L ) is con-
tinuwous in the dise |2 4 1/2 [ = 8/2. Sinee, for n = [a}/2],

a | =c|b|logn,

1=

1=

where ¢ = 0, the partial sums of the series X'a; are not even bounded if b, —=10
slowly enough.

We turn now to the problem of wniform eonvergence. Tk < 1 and (1 —=)* f(2)
iz regular and bounded in a Gaen dise, the Tayvor series X a, 2" of f(z) converges
uniformly on every are of the unit circle that does not eontain the peint z = 1;
this follows from Theorem 2 in conjunction with a well-known theorem of M. Riesz
[12] (see Laxmav [6, p. 73]). On the other hand, we know from Theorem 6 that the

Tavror series converges at the point =z — 1if & < 0, and from Theorem 4 that the
Archiv oér Mathenmrife V. |
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Tayron series converges uniformly on the entire unit eirele if & < —1/2, The
question remains as to whether this last statement can be extended to the case
k=0, The answer 15 in the affirmative,

Theorem 7. I f(z) = Za, =" satisfics the condition of Thearem 2, with k =<0,
then X a, 2" converges uniformly on |z | = L.

By the preceding remarks, it suffices to assume that — 1/2 = & < 0 and to prove
uniform convergence of La, ¢™ for 0 < |2 | < a/4. For the sake of convenience,
we shall restrict ourselves to the interval 0 < o < =/4; the proof for the interval
— o/l < a < 0 is analogous,

As at the beginning of § 5, let I be the curve z = (14, @Y &, —a = = a;
and let z, = ¢, 0 <« < 7/4. We note first that for any z on [,

|z—zu|=;|[l-|-f1¢'3}¢f"' -8 | = (P [P —2z]) ,

where ¢, = (. Hence we obtain, for positive integral # and p,
"i’ [}, i B

=) [ el ., | Ll TP
» gff Tz —gy J e @+ 1P —al)

Let the parts of the last integral that corregpond to the intervals — 7 = @ = 22,
a2 =@ =2q and 22 = @ = 7 be denoted by I, [, and I, respectively.

In I; we use the estimate @* - |@ —z | =a— P = | P | ; in I, we use the
estimate @° 4+ | — g | =@ — o = @2, From these and from the mnthud used
in §5 we get the inequality

"“drI: kid
fl—l-fﬂ"i;f “-I-tqtf.?“:l < BT

In I, we use the estimate @* | |@ —a | = a¥f4 + | @ — 2| and obtain

ia

3 2t [ g
Y= 04 aaup [ 2@ —a]”

=2

Il

The integral in the last member can be evaluated directly and is equal to

log * —|— log = -::—c,,]uga: < g,
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Thus

o M I8
Ky [mat)”
1y {n71-|-c,nm=||'-.*. G 1 fonays =@M

(uote that 0 < — k/4 < 1R, and that therefore 1~ *%/(1 +c, t/4) < M{k,c;) for
¢ 0).

‘The preceding estimates lead to the inequality

nip

2 aa = el f Lt g <opnt,

j=ms

and the proof is complete.

9, Funetions regular in Gaer regions
~ We shall call a Garer region (see § 1) a Gaign region of order p(p = 0) if it con-
~ tains the interior of the curve

(D) = (1 +-c|diF) 6, —a=D=a,

far.snme-pmiﬁwmlue of .

Theorem 8. Let f(z) = Za, =" be regular in some GALER region of order p (p= 1),
aned let e be a veal number (k < 1) such that (1—z2)* f(z) is bounded in this region. Then

a8, = O (nlk—10p) |
The proof procesds as in §5. We choose an appropriate eurve
i ;:.(1+.:_1|¢j’]_g“‘, —m=P=m,
,,g;we use the fact that
' —| |l TS EF_'E.}} dd
%}ﬁﬁ ‘/ =+1““*“f¢*ﬂ+n1m’?[ titeer|®
L

g (e~ 1)1p
e s
. uf AR

ote that if (1 —z)* f(z) is continuous in the closure of a (vaier region of
the 0 in the statement of Theorem 8 can be replaced by 0. Moreover, for
continuous in the closure of a Gaier region of order 1, our result reduces
rem of M. Riesz [11] (see also Lasxnav [6, p. 64]). For a similar result
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