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1. Introduction

This paper deals with the TAYLOR coefficients of functions that are regular in-
side the unit circle C and have only one singularity on C . Much of its motivation
comes from the following lemma of GAIER [3, pp . 327, 328] :

If for some a > 0 the function f (z) - E a n z n is regular and bounded in the disc
z + a < 1 + a , then a n = 0 (n- ' /'') .

We shall apply the term GAIER region to any open region which contains the
unit disc z < 1 and whose boundary does not meet the unit circle C except at
z = 1 . In particular, if a GAZER region is one of the circular discs in the lemma
above, we shall call it a, GAZER disc .

In § 2, we show that GAIER's lemma cannot be improved, in the sense that the
0 cannot be replaced by o, and we state our Theorem 2, of which GAIER'S lemma is
a special ease . Three sections are devoted to the proof of this theorem .

While Theorem 2 provides bounds for individual TAYLOR coefficients of functions
satisfying certain restrictions in a GAZER disc, Theorem 3 (§ 6) gives a bound on the
sum of the moduli of coefficients in certain blocks of coefficients. On the one hand,
this bound cannot be deduced from Theorem 2 ; on the other hand, certain results
of FEJÉR show that the bound is the best possible .

§ 7 uses the technique of § 6 to obtain a theorem on the series En I a n 2 ; § 8 deals
with the convergence of r a n and with the uniform convergence on the unit circle
of Ea n z° ; and § 9 is devoted to a partial analogue of Theorem 2 for GAIER regions
other than GAZER discs .

2. On GAIER'S lemma

Since GAIER'S lemma is proved by means of the equation
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where Fis a suitable contour, it is reasonably regarded as a generalization of CAUCHY'S
inequality I a„ I < M on the TAYLOR coefficients of a bounded function . Since
CAUCHY ' S inequality can be sharpened (for large n) to the relation a„ = o(1) by
GUTZMER'S relation

Y an 2r2n = 2, f 1f(re` o) 2 dO,
n=o

the question arises whether GAIER'S lemma can be improved in the same way. If
the hypotheses are slightly strengthened, this is indeed the case : in a private communi-
cation, GAIER has pointed out that if f (z) is continuous in the closure of a GAIER disc,
then a,, = o(n-I / 2 ) . But GUTZMER'S proof of his theorem [5] is based on the relation
cos (0+y) _ - cos 0 ; and the customary modern proof of his theorem relies
heavily on the fact that the set of functions {z"} (n-0, 1, 2, . . .) form an orthogonal
set on C. In the case of GAIER'S lemma, the trigonometric relation cannot be used,
and the functions {z"} do not form an orthogonal set on GAIER'S contour ; therefore
the following result should not come as a surprise .

Theorem 1 . There exists a function f(z) = L' a,, z', regular and bounded in a
GAIER disc, for which lim sup( a n n 1 " 2 ) > 0 .

To prove this theorem, we show first that for any fixed number b(0 <b <1)
the function

g (z)

	

(-1)J zmi
i=o

is bounded in the disc I z - b < 1 -- b, provided the sequence of positive integers
m increases fast enough .

We denote by Cb the circle z - b = Ib , and we choose a sequence {Ei }
with Ei > C and E' Ei < oc . The integers m o and m l can be chosen arbitrarily . There
then exists an open arc A 0 on Cb , containing the point z = 1, and such that

on A0 . We choose m 2 and m3 large enough so that

zlm' < z m' <E l
on the complement of A o relative to C b . The arc A o has an open subarc A r , con-
taining z = 1, such that

on A 1 . We choose m 4 and m5 large enough so that

z

zm0 - zm '
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M, < z

< E0

< Ez

M,
< E2

on the complement of A 1. If the construction is continued in this manner, then
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on Cb and consequently g(z) is bounded inside of Cb .
We turn now to the function

f(z) -9 z+I

	

z 1
\ 2 -) _

	

(-1)' (- 2---) n=0
Zn .

If mj - co fast enough, f (z) is bounded in the GAIER disc z + 1/2 I < 3/2 . Also,
a slight computation shows that if mj	oo fast enough, then

an

	

(7Ln)-7'2

for n = [mj/2], j = 0, 1, 2, . . . . This proves the theorem .
The following theorem differs from GAIER'S lemma in that it replaces the bounded-

ness of f (z) by the boundedness of (1-z)k f (z), where k is a real constant .

Theorem 2. Let f (z) = 1 an z' be regular in some GAZER disc z + a I < 1 + a ,
and let k be a real number such that (1 z)k f (z) is bounded in this disc . Then

In this estimate, the 0 cannot generally be replaced by o ; the replacement is permissible
i f k < 1 and (1 z)k f (z) approaches a limit whenever z -- 1 from the interior o f the
GAZER disc .

3. The case k > 1

Here the estimate is well known . It can be obtained from CAUCHY'S formula
by integration along the circle z I = 1 -1/n . That the 0 cannot be replaced by
o is seen from the example /(z) = (1-z)-k . It is noteworthy that, in the case k > 1,
the hypothesis that (1-z)k f (z) is regular in a GAZER disc and continuous on the
closure of this disc does not yield a better estimate on an than does the hypothesis
that (1-z)k f (Z) is regular and bounded in the unit disc .

4. The ease k -- I

Again, integration along the circle z I = 1 -1/n gives the estimate an - 0 (logn) .
For a precise discussion of the situation where (1-z) /(z) is merely assumed to be
regular and bounded in the unit disc, the reader is referred to NEDER [7] . Here we
shall only show that

i) an = o(log n) if (1-z) /(z) is regular and bounded in the unit disc and ap-
proaches a limit as z -~- 1 from the interior of the unit disc ;

ii) regularity and boundedness of (1- -z) /(z) in a GAZER disc does not imply
that an = o (log n) .

an = 0(nk-I) if k > 1 ,

an =0 (log n) if k-1 ;
an = 0 (n(k-1)12) i f k< 1 .
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To prove the first of these propositions, suppose that (1-z) /(z) is regular and
bounded in I z < 1, and that lira (1--z) /(z) = A. Then

z -' L

A

	

(h(z)
1(z) = 1-z + 1--z ,

where O(z) is bounded in z I < 1 and O(z) -* 0 as z - 1 in the unit disc. The
TAYLOR coefficients of A/(1-z) are all equal to A and cause no trouble . Let

Then
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Vz)
1-z n=0

z In+, on Fn approaches

b I < 1-
I

	

(P (z) dz'

	

'n 2,7L '' z n ~' 11_z'.

where Pn is the contour z = 1 -1/n. Since the value of
1/e as n -> oo, it suffices to prove that

f O(z) ! I
dz' = o (log n) ,1 - z

In

and geometrical considerations reduce the problem to the task of showing that,
with z - (1--1/n) e` ,

(1)(z) d0
= o (log n) .f X02 n-2

-n

Un

Now, if 0 < On < and Mn - max I O(z)
then

2n- On
(1)(z) d0

< 2 M

	

`0- = 2 M log (7r/On) ,1/62 +n2 -
n

for z =

	

-On < O < on ,

0(z) 1 d0 < 2 Mn

	

l0-

	

2 Mn log (n On

	

n2 On + 1
1/0. 2 + n,-2 -

	

V 02 -} n: 2
n

< 2 Mn log (1 + 2 n On) < 2 Mn log (1+27rn) .

On the other hand,

where M is a bound for O(z) in z < 1 . If we choose 0, = 1/log n, then Mn -* 0,
and it follows that bn = o(log n) .

To prove that regularity and boundedness of (1-z) /(z) in a GAIER disc does
not imply that an = o(log n), we use the polynomials
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FEJÉR [2, pp . 74 76] proved that on the unit circle C these polynomials have a
bound which is independent of n . We believe that the following new proof of this
proposition is of interest because of its simple and elementary character .

At z = eie, the sum of the 2 r middle terms of Pn (z) has modulus

Also, by ABEL'S summation, the sum of the first n	r terms is

and, for0<10

r z n-J(1 _ z 2j- 1)

j= r - 1

r L
j=1

zn-j

	

1

	

-r 1
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1

	

n-j-1.
z h -

	

, zhr~-1

	

-0

	

j=r+1 .%(9 -i 1) h o

	

'

0

n, this has modulus less than 2 n/(r+1) I O
of the last n	r terms has the same bound, and therefore

n G2r101 +

	

4~T
(,+1) 0 -

for 0 < I O ;5 n. The choice r = min(n, [n/

We now write

and we form the function

O

n ( z )
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We assume that the sequence {ni } is chosen in such a way that 2 n' < n2,- 1 for
z = 1, 2, . . . . Since the TAYLOR series of F(z) has infinitely many terms with co-
fficient one, F(z) is not bounded in J z < 1 . However, it follows from considerations
similar to those in § 2 that F(z) is bounded in the disc z -- 1/4 < 3/4, provided
n i -~- m fast enough .

Let
/z ; 1

2 n=-o

]) then gives the desired result .

1 z n

. The modulus

n

Then G(z) is bounded in the GAIER disc I z + 1/2 < 3/2. On the other hand, it
is easily verified that, if n i

	

oo fast enough,
ni'/27

>l, bj > log n i O(nil) ,
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where the second term on the right-hand side is obtained by a slight modification
of Problem 145 of PÓLYA and SZEGÖ [10, vol . I, pp . 66 and 230] . It follows that, if

/(z) = G(`) _1--z n-0

then (1-z) 1(z) is bounded in a GAIER disc, while an/log n remains greater than a
positive constant for n = [n'/2] .

5. The case k < 1

In proving that an = 0(n (k-1))2) we shall essentially follow GAZER and estimate an
by CAUCHY'S formula, with the contour of integration composed of the arc

I' :

	

z = (1+c1 02)e

	

-7r < 0 <7

where c1 is a positive constant small enough so that the curve I' lies in the GAIER

disc I z + a I < 1 + a , except for the point z = 1 . (A moment's consideration
shows that this path of integration is permissible even when 0 < k < 1 .) Then

2 nz I an =

	

Pz)
zn+~ dz

I

d(P
C C3 0
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Now, when u > 0 and p is a positive integer,

(I __

	 1
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+ 2c,(P \

dO, k(1 +cyT2)n \
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u2p'

P'

any choice of p greater than (1-k)/2 shows that the last integral has a bound inde-
pendent of n, and it follows that an = 0(n(k-1)/2) .

If the function (1-z)k 1(z) is not only bounded in a GAIER disc but is continuous
in the closure of a GAIER disc, then

z

	

A

	

T(z)
(1 - z) k + (1 - z) k

where O(z) is bounded in the GAIER disc and O(z) -~ 0, as z -> 1. The contribution
to an from the n-th TAYLOR coefficient of the first function on the right is 0(nk-1 ) _
o(n(k-1)/2) . The contribution from the second term on the right can be treated much
as in the discussion of the case k - 1 (see § 4) ; we omit the details .

We will now show that for every k < 1 . there exists a function /(z) _ X an zn

such that (1-z)k /(z) is regular and bounded in the GAIER disc z + 1/2 < 3/2,
and such that lim sup ( an n(1-k))2 ) > 0
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For any fixed k, we choose an integer h such that h + k 0. We begin with
the function

W

G(z)

	

g(z, pp) ,
j=1

where {p;} is an increasing sequence of positive integers and

g (z, p)

	

p k z9p• (I-zP) h .

We choose a positive constant c 4 small enough so that the curve

K :

	

z = (I-c4q)2) e"° ,

	

-ar G 0 < az

encloses the disc < 3/4. On K,
2p2 = (1	c 02)2P2 < e 2c,P'(1)2 .4

z	1/4

Iz
Also on K,

~1-zPI= 1-(1-c402)PeP'P

_ [1	(1	c4 02 ) P ] 2 + 4(1-c4 02)P sin 2 p(P }12 .l

	

2

Since 1- XP < p(1x) for 0 c x < 1, the first term in the braces is not greater
than (c4 p 02)2, and it follows that 1 - zP < c5 p 0 I . Therefore, for z on K,

I (1-z)k g(z,p) < cs p 0
Ih+k e -2C,(P1b)

9

and since h + k > 0, this has an upper bound independent of p and 0. Moreover,
(1-z)k g(z,p) -± 0, as z -~ 1 along K ; and on any closed arc of K that does not pass
through z = 1, the function (1-z)k g(z,p) can be made arbitrarily small by choosing
the integer p sufficiently large . It follows that we can apply the method used in the
proof of Theorem 1 to choose the sequence {p} in such a way that (1-z)k G(z)
is regular and bounded in the interior of K.

Finally, we consider the function

f(z) =

	

a z"=G z+l\

	

~ g
z
21 pp

n-o

	

(
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7-1
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,

From our discussion of G(z) it follows that (1-z)k f(Z) is regular and bounded in
the GAIER disc z + 1/2 < 3/2. It remains only to examine the coefficients an .

The coefficient of zP 2 in the polynomial g(z2-
1 , p) is

pk 2-2p2 h (-1)z 1h) 2-zP (2 p2 +
AP)

	

pk
2-2P2 (

2P 2)

L1

	

II
2p2

{ 2r2

	

2p 2
a=o

	

\

	

p

	

p

	

z=i r=1

Each product in the last expression is of the form
	 .zP

p 1	r
jl

	

2pz + 2r)r-1 (

and its logarithm approaches - 22/4 as p -- oo .
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It follows that the coefficient of zP' in g (J,z
2

p is asymptotically equal to

n
pk (,7p 2) -1/2

	

(
1)~(h) e "f/4 .

R=p

	

a,

Since e -1 /4 is a transcendental number, the sum in the last expression is different

from zero. Now let n = p2. Because the contributions to an from the terns
g /z ± 1 p )
I\ 2 j

are zero for j < i and o(pk-1) for j > i, provided pj -~ co fast enough, it follows that,
as n - co through the values p, ,

k-1

	

(k-1)/2an ^ pt

	

n

where P is a constant different from zero . This concludes the proof of Theorem 2 .

6. On blocks of terms from the series ...̀ . I aj
We now turn our attention from individual coefficients to sums of the form

2n
Sn = :I aj

7=n

If f (z) satisfies the conditions of Theorem 2, then

Sn = 0 (nk )

	

if k > 1 ,

Sn - 0(nlogn) if k=1,

Sn = 0 (n k+1)/2) if k < 1 .

For the case k > 1, this estimate cannot be improved, as is shown by the example
j (Z) _ (1-z)-k . The following theorem improves the estimate for the remaining
values of k .

Theorem 3 . If /(z) satisfies the condition of Theorem 2, then

Sn = 0(n k) if k > 1/2 ,

Sn =0(1/n log n) if k=1/2,

S, = 0(nk/2-1 ./4)

	

if k < 1/2 ;

if k + 1/2 the 0 in this estimate cannot be replaced by o .
In the proof we will need the following auxiliary result .

Lemma . Let f (z) = S' a j zj be regular in I z < 1 , and let m be a non-negative :
integer such that f f(m ) (z) ~2 dz I < n

	

n- 2, 3, . .
in

where Pn is the circle I z I = l. - 1/n. Then
S'n < c n(a- 2rn -I - 1)/ 0-

where c depends only on m and on a.
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By GUTZMER'S relation (see § 2), the hypothesis of the lemma implies that (with
z = (1-1/n) e"~)

2n

fj(j	1) . . . 0-M +1)
j=n

But for j<-2n,

f ~ /(z)

The desired estimate now follows from the lemma . That the 0 cannot be replaced
by o is seen at once from the example /(z) - (1 z) -k .

The case k = 1/2 is treated in the same way . The only difference is this, that

2j-2m

	

4n- 2m
1- n)

	

> 1- n

	

>C 1 >0,

where c 1 is independent of n; also, for j > m,

j(j	 1) . . . (j m+1) > c2 jm ,

where c2 > 0. Therefore, the last inequality implies that
2n

	

2n
s 2 < Y

,j2m I a1_

	

7 2m < 6
3 W n-

2m-1

j-n

and the lemma follows .
We now begin with the proof of the theorem for the case k > 1/2 . Here we will

use our lemma with m = 0. To estimate I /(z) ~ at the point z - (1 -1/n) e` 0 , we
apply CAUCHY'S formula, with the circular contour ~	 z I = 1/2n . On this con-
tour, 1 --

	

> c4 ( 0 + n-1 ) ; therefore . /(z) < c5 (0 ~ + n-r)-k ; and con-
sequently

A slight modification in the computations in the proof of the lemma gives the estimate
Sn =0(/nlogn) .

We point out that in the case where k > 1/2, we have only used the fact that
(1--z)" /(z) is bounded in the unit circle, rather than in a GAIER disc .

For k < 1/2, we apply our lemma, with the integer m chosen in such a way that
2 m -+- k	1/2 > 0 . To estimate I /' m) (z) at the point z = (1 1/n) e` 0 , we ase the
circle

and the circle

2 1 dz I < 2 c5 f (0 -n 1)-2k d0 < cs n2k-1

0

z

a1 12
(
1

	

1 \ 21 2m < 1

= 1/2n

	

if

7L

	

- 2,-r

0I <n-12

I = c $ 02

	

if n -112 < 0 <~T ;

/(m ) (z)
2 d0 <n" .

f / (z) 2
dz < 2 c5 f (0 +n-1) --1 d0 < c,, log n .

rn 0
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here c8 denotes a positive constant small enough so that (1-~)k fp is regular and
bounded inside of the curve ~ = (I+ C, 02) e"o , -,7L < 0 < 7

We observe that in either case the relations

C, (l 0 I + n-1) < 1 - ~ <
clo

(10 + n-1)

hold on the circle associated with the point z = (1 1/n) e' o. It follows that, for
0 <n - ' 12I,

	

,
f(m) (z) < e11 n m (I 0 +n-.1)-k

and
n-1/2

f (m) 2 d0 < C12 1L2m+k-1/2 .

Similarly, for n - ' / 2 < 0 < ~,

f (m) ( z) I < e18
0-2m

(
0 + n-1 ) - k ;

since 10 < 0 I + n-1 < 2 0 , this leads to the estimates

/(') (Z) I < C 14 l e 1-2.-k
-n-1/2 n

J + J

f(m) 12 dO < clg n2m-f -k-1/2
ti

	

n -1/2

and it follows from the lemma that S n = 0(n k/2-1-1/4)

FEJÉR [1] (see also PERRON [8] and [9, § 5]) has shown that if f (z) _ E'a n zn =
(1-z) -k e l l ( '- ' ) , then as n -} oo, while k is a fixed real number,

an =	nk/2-3/4 sin [ 2 n -
(11c _ 3

	

-}- 0	/

	

(4	

2

	

4

	

n / }

.

~e

	

h
Consequently, the 0 in the estimate above cannot be replaced by o .

The following result is an immediate consequence of Theorem 3 .

Theorem 4 . I f f (z) = E' an zn satisfies the condition o f Theorem 2, with k < 1/2,
then E an I < cc .

Again, FEJÉR'S example shows that the theorem becomes false for k = - 1/2 .

7 . On the series

	

j I a1 12
i

If /(z) satisfies the hypothesis of Theorem 2, with k < -1, then the conclusion
of Theorem 2 implies that

	

j aj 2 < oo . Again this result can be improved by the
1

method of the preceding section .

Theorem 5 . I f f (z) = Z an z n satisfies the hypothesis o f Theorem 2, with k < -1/2,
then Y j l a1 l 2 <

Do .

i
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It suffices to deal with the ease -1 < k < -1/2, so that we may apply the pro-
cedure of § 6, with m - 1. The theorem then follows from the inequalities

2n 2n

2<n-1 V j2 al I 2 C cl n 1 f If' (z) I 2 I dz
1=n

	

~n

and the fact that the integral in the last member is less than c2
nk+s 2

If k = --1/2 the conclusion need not hold, as is easily seen from FEAR' S example .

a1

8. Convergence and uniform convergence on the unit circle
Theorem 6. I f f (z) _ X at z1 satisfies the condition of Theorem 2, with

then E a1 converges .

We apply Theorem 2 to the function

g(z) = Pz)

F(

n
a,

i-o

co

=1

> c I bt

8i z1 ,
1-u

Qn . (z) ,

log ni ,

k < 0,

where sj = ao + a1	+ aj . Since (1 z) k-F1q(z) is bounded in a GAIER disc,
s n = 0(n k / 2), and the proof is complete .

It follows from a theorem of GAIER [3, Zusatz, p . 331] that mere continuity of
/(z) in the closure of a GAZER disc does not imply convergence of Eat . This is also
seen from the following example :

Let

where the Q,,, (z) are the functions constructed in § 4 . If the sequence {n i l is chosen
as in § 4, and if b i -*0, then E b t Q,,, (z) converges uniformly in the disc I z - 1/4 < 3/4

and thus F(z) is continuous in this disc . Hence the function f (z) = F (z2 1 ) is con-
tinuous in the disc z + 1/2 I < 3/2. Since, for n = [nz /2],

where c > 0, the partial sums of the series E a1 are not even bounded if bi --* 0
slowly enough .

We turn now to the problem of uniform convergence . If k < 1 and (1-z)1 f (z)
is regular and bounded in a GAZER disc, the TAYLOR series E an zn of /(z) converges
uniformly on every arc of the unit circle that does not contain the point z = 1 ;
this follows from Theorem 2 in conjunction with a well-known theorem, of M . RIESZ
[12] (see LANDAU [6, p . 73]) . On the other hand, we know from Theorem 6 that the
TAYLOR series converges at the point z - 1 if k < 0, and from Theorem 4 that the
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TAYLOR series converges uniformly on the entire unit circle if k < --1/2 . The
question remains as to whether this last statement can be extended to the case
k < 0. The answer is in the affirmative .

Theorem 7 . I f f (z) _ 1 an z n satisfies the condition o f Theorem 2, with k < 0,
then .' an z n converges uniformly on z I = 1 .

By the preceding remarks, it suffices to assume that -1/2 < k < 0 and to prove
uniform convergence of I an e`n" for 0 < a < a/4. For the sake of convenience,
we shall restrict ourselves to the interval 0 < a < n/4 ; the proof for the interval
- r/4 < a < 0 is analogous .

As at the beginning of § 5, let I' be the curve z = (1 + cr 02) C"I" - 7C < 0 < n ;
and let z o = e", 0 < a < n/4. We note first that for any z on

z-zo = I (1+ cg 02) e" --

where c 2 > 0. Hence we obtain, for positive integral n and p,

n+p

	

I

	

z n+1 I_ ( zo / z) P

i=
Ian zo

	

2~ca

	

f@) zn+2- I

	

zo/z dz
r
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In 4 we use the estimate 02+10a

I f(z) I IdzI
4 z ~n+I ~ z _ za

	

3

> C2(q5 2+

< C

Let the parts of the last integral that correspond to the intervals - :T _< 0 < a/2,
a/2 < 0 < 2 a, and 2 a < 0 < n be denoted by Il, 12, and 1, respectively.

In Il we use the estimate 02 -}- 0 - a > CA-0> 0 ;ill 1
3 we use the

estimate 02 + 10 - a I > 0 - a > 0/2 . From these and from the method used
in § 5 we get the inequality

2 , (Pi -k-I do

	

k/2h + 13 <

	

- (1 -ci l) n < C4 n

> a 2/4 + 10
2a

1 2 <

	

( 2 a)_
k

	

dP
(I + c I a2/4)n

	

a2/4 + I C) - a
a/2

The integral in the last member can be evaluated directly and is equal to

log «
a-2 + log aa4

<	C5 log a < C13 a k/2 .

O-a I)

0 I-k dP

(I+C102)n(02+',(P

	

a!)

a I and obtain



Vol . V, 1954

	

Functions Regular in GAIER Regions

	

51

Thus

< C

	

a - k/2

	

C nkl4

	

kl4
< C nkl42

	

7 1+ Cl n a 2/4

	

7

	

3+ C 1 n a s/4

	

g

(note that 0 < - k/4 < 1/8, and that therefore t -kl4/(1+c1 t/4) < M(k,c1) for
t > 0) .

The preceding estimates lead to the inequality

n+p

I aj zo' C C3 (I1 + I2+ I3)
j=n ';1

and the proof is complete .

9. Functions regular in GAIER regions
We shall call a GAYER region (see § 1) a GAYER region of order p(p > 0) if it con-

tains the interior of the curve

2nIan l=
P

z(0) = (1+c

Pz)
z n_ 1 dz < C2

0 P)
9

< C 3

< C9 nk l 4 ,

for some positive value of c .

Theorem 8. Let f (z) = X an zn be regular in some GAIER region of order p (p> 1),
and let k be a real number (k < 1) such that (1-z)k f (z) is bounded in this region. Then

an
=O(n(k-1)lp)

The proof proceeds as in § 5 . We choose an appropriate curve

I' :

	

z = (1 + c 1 0 P ) e'

	

< ~ ,

and we use the fact that

I

	

Cl pT" de
~k - .~ Cl ~P)n

	

1 + C1 01 1

d

	

- < C n(k-1) lp
Ok (1 + e, Op)n

	

4

We note that if (1-z)k f (Z) is continuous in the closure of a GAIER region of
order p, the O in the statement of Theorem 8 can be replaced by o. Moreover, for
functions continuous in the closure of a GAIER region of order 1, our result reduces
to a theorem of M . RIESZ [11] (see also LANDAU [6, p . 64]) . For a similar result
closely related to RIESZ'S theorem, see GAIER [4, Theorems 1 and 2] .

4*
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