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£5. Case 1 )
Throughout this section we assume that we are in case 1, that is

G JO =1 (=S afn—k (=23
{5‘ E} g = 0 {k e 1: 2, & "-L

3 li Gl = oY
(5. 3) i mp ef* =00

TFor, (5. 3) is equivalent to the condition that e + e2® + ... diverges
when |z = 0.

It was proved in § 3 that
(5. 4) Lim (f(m))!'" = ooy

but apart from this the preceding sections pive little information about
the behaviour of f(x) in ease 1.
(5. 4) implies that

e fin)
(5. 5) it ]‘mmj“ﬂ_|.1}—“r

but on the other hand

" T Fin)
{5, 6) f = lim sup 5T

can be positive (see example 1 below). Anyway f is finite, by (2. 6).
B =<e™)
Theorem 18, We have, if n— oo,
(8. 7) lim sup ¢, /f{n) = oo,
(5. 8) lim sup ¢,/fie +1) = 1.

1) The first part appeared in this journal: Kon, Ned, Akad, v. Wetensch. (A}
54, 374382 (1051) = Indegationes Mathematicae 13, 374-382 (1851).
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FProof. (5. 7) follows from theorem 18 (§ 6). For assume ¢, < Mf(n), M
not depending on n; then theorem 18 gives f{r) = O {(4M)*}, which
contradicts (3. 4).

In order to prove (5. 8), we first remark that f(n + 1) =¢, for all
n =1 (see (5. 1)), Soif (5. 8) were false, then there would exist a constant
4 (0= i< 1) such that

{5.9) <= Af(in-+-1) (=28, ..
It follows, by (5. 1), that

(1= 2) flr 1) < (2) f(r) + 1) fn —1) + oo +

(5. 10)
FImA2)  (n=2,8..)

The sequence {p, ], defined by

1 | 1 v
G=M+ st gmp o T mem)  B=23.)

is convergent; hence a constant €' exists such that g, <€ (n = 2,3, ...).
It is now easily deduced from (5. 10) that

fony < 2L (HRBIOY™  _ 2,3, ..0)

This contradicts (5. 4), and so (5. 8) is proved.
The set of equations (5. 1) can be solved explicitly:
n—1
(5. 11) f(n) = “gl 2 Euy Cagy +os oy (=23, ..)
where, in the second sum, the summation variables i(1), ..., i(h) are
subjected to the conditions
$(1) =0, vy 5 () = 05 il 4 . i) =n—1.

We can obtain (5. 11) from the formal expansion (see (1. 4))
Fia) =+ S (C(@)"
A=1

The summands of (5. 11) correspond one-to-one to the ordered partitions
of n— 1; henee the total number of terms equals 22,
Let I, denote the largest one of these 2°-® gummands, Then clearly

(5. 12) L<{fmILY <2 (n=23..).

We can even show

Theorem 14. lim { f(n)/f,} " =1,

W0
Proof. Let ¢ be a positive number, and N an integer =1, Write
fin) = &, + X,
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where X, is the sum of all summands ¢, ... ¢, which satisfy

(5.13) S ilj) < en,
L ek, i <N

If ¢ and N are fixed, then X, can be roughly deseribed as corresponding
to those ordered partitions of n — | where the contribution of the small
integers is small. We shall show that the number of summands in X is
relatively small, if £ and N are small but fixed. If a partition n — 1 =
= (1) + ... + i(h) satisfies (5, 13) then we have
(5. 14) h<qyn (p=s+N"1)

For, the number of i's < N is at most &n, since each § is = 1. And, the
number of #'s = N i3 ab most N9, their sum being = n — 1.
The number of partitions satisfying (5. 14) equals

-4 o ﬂ'_ﬂ
(5. 15) 1“2{;“ .h-—I) < exp{nly—ylogy)}.
For we have generally, f 0 <u<ln—12=m=0,
n—1 < afn—1 _
3 (T <20 <aror

Taking m = |pnl,u=n we obtain (5.-15).

We can show that, if » is large, the largest summand [, of (5. 11)
oecurs in Xy, and we even have I, = X,. To this end we prove that to
edth summand ¢ of X a second summand ' (of either X, or X,) can be
found such that ¢ =2 &

In virtue of (5.3) we can choose k= (N, ¢) such that

(4. 16) o= g, o dMegrt gl (¢ = max c}).
<N

We pub ny = ng(N, £) = 2ke~!; henceforth assume n = n,,
Let the term ¢ of X correspond to the partition n — 1 = §(1) + ... +i(k),
then we have, say,

1)+ oo+l =8 =en, #H1) <N, ..., i) < N.

Now we obtain ¢’ from { hy replacing the factors

Coyy - -~ iy DY oV g4,
Then we have

1 = (g Jebylehl gb gy=x
We hive 8 > en > 2k and so [s/k] > § «/k. Therefore, by (5, 16),
(/1) > (agfor) ¥ > dMinerte . of b,
and go
o e e
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This shows that sach term of X is less than 2~ {; therefore I, << 1,.
The number of terms of X, is bounded above by the right-hand-side of
(5. 15); henee

I, < exp{wly—ynlogn
It now follows from f(n) = X, + X, that
lim sup {f(»)/{,}¥" < exp (g —y log %)
H—50
As =& + N, the theorem now follows by making ¢ =0, N = co.
The following theorem was already announced in § 4 (theorem 9),
Theorem 15, If 6,46, == o0, then f{n + 1}/f(#) = oo

Proof. We first prove: if 4 = 0, there exists a number B — B(A) =0,
such that [(n + 1) = B f(n) implies f{n +2) = A f(n + 1),
Let K be such that e, > A ¢, for all k = K, and take

B=A{l+eser®+ e+ coteper ¥}

Now asgume f(n + 1) = B f(n), and put L = min (r, K — 1). Then
we have (empty sums are zero)

font D =enfn) +epfu-1)+ ot e fint1-L) 3 e f(nt1-R)

fn s >ofme D+ 3 oufm+1-h).

We have fm + 1) = ¢, f(m) for all m, and so

epflm)+ oo tepfln+ L —L) < fin) fo Feger? + oo Fep el ™l <
<o f(n) Bld < e f(n+ 1)/
It follows that f(n + 2) > 4 f(n + 1).

By iteration of this result we find: Tf 4 >0, ¥ = 0, there exists a
positive number (A, k) such that

{5.17) Flo 4+ 1) =04, k) f{n)
implies
{0, 18) fm+j+1) =Af(n+7) (f =01, .00k

We can now show that f(n + 1)/f(#) = co. Let 4 be an arbitrary
positive number, and choose K such that ¢, ., > A ¢, for all £ = K.

We have lim sup f(» + 1)/f(n) = oo (see (5. 5)); therefore we can take
N such that N > K, [(N + 1) >0C(4, K) f{(N). We can show that

(5. 19) (IN+i+ 1) >AHN +§) (1=0,1,2...)
By (5.17) and (5. 18) we know that (5. 19) holds if j=0,1, ..., K.
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We proceed by induoetion. Assume (5. 19) to be true for j << K 4 m,
where m is a positive integer. Then we have

M Ko ml =

AN+K+m+1) < "? >, ¢ HN K +m+1—f) 4+ _ §+1 a::,ﬂf{N-I—E-f-m-—}'} =

>4 S o fIN+E+m—j)+4 :“g“; e (N +E +on=j) = A [(N+ K+m).

=1

This proves (5. 19). Simee 4 is arbitrary, we obtain f{m + 1)[f(m) — oo,

Lemma. For n=1,23,... we have

Ha+ 11 Gie1
TR e O S

Proof. Denoting the right-hand-side by ¢; + u, we have
n—1 ) n—1 "
for+ 1) = ey fin) + 2 Guya fin—R) e fm) & Z o fin=F) = (ey=+ ) ().
1

Theorem 18, If

Gl e

(5. 20) 5 = = = s
then we have
& 2 H3Yy 1
(5. 21) NS Sm S

i fint1) ey
e BRRBEEEN e
(5. 23) lim { f (m)fe._ 1 = 1.

Propf. TFor (5. 21) see the proof of theorem 12, § 4.

As Lo (5. 22), the lemma shows that the lim sup is at most 1. For,
(5. ) and (5. 20) imply that ¢,/e,; 1 =¢o. On the other hand, the lim
sup eannct be less than 1, since

B fle+1)
E TTk) 'c_,,}c o Az

Finally, (5. 23) follows from (5. 22) and from the fact that f(n + 1) = ¢,
for all n.

We ean deduce (5. 23) from theorem 14 also: Without loss of generality
we may assume ¢ = 1 (see the transformation (1.5)). Then (5. 20)
implies that {e¢V* | is a non-decreasing sequence, whence I, = ¢ _, for
all n

Theorem 17. Let € and o be positive constants, and g(k) = € &~
Then if

%Tm. q_-p:} wik) (k=1,23..)
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we have

fin+ e, =1 (n — oo).

Proaj. We have, by (5. 1),

' W
o<ty g+ 1 — e, < 3 L0t max LEED,
1

T U 1shkenq O@
Since ¢,,q/¢; 18 inereasing, ¢; ¢, ; decreases with increasing j in the
interval 1 =<j < In.
Let ¢ be an integer = a~, and assume n > dg. Then we have, when
g<j<in

‘“!cﬂ :éﬂw”n u{ ql‘[c*
+1

Hence we obtain, for ¢ fixed,

1] é_&;ﬂﬂ e ﬁﬂ,. mﬁj{&?'__lllﬂ{ﬂ—uu:l =0U}-mnx j‘{k-l—lﬁ‘

Lokt 4l L= Lok ik

Now the theorem eagily follows.

Theorems 13—17 seem to be comparatively weak. We shall, however,
give some examples which show that not very mueh more ean be obtained.

Example 1. f(n + 1)/f(n) need not tend to infinity if o /e, does not
tend to infinity. Define e, f(n) by (5.1) and by (n = 1.2, 3, ...)

Oipy =Tﬁ-{f§f[1ﬂ 7: ol = b Ganyy = Cug.
1
Clearly cy,)tsq — oo} hence we are in cage 1, We have, if n =2,
J2n+2) =y fEn 1) 43 e (2 + 2= ) + e f(2) + aa f(1) <
< ey (204 1) 4 6u, + 00, [(2) + 05 f(1) <
< f2n+ L) e+ 0 + A2+ 1}

Therefore (20 + 2)/f(2n + 1) = O(1). The sequence f(2n + 1)/f(2n) is
not bounded, of course (see (5. 5)).

Example 2. The expressions ¢,/f(n) and ¢,/f(n -+ 1), whose upper
limit was established in theorem 13, can have lower limit zero, even if
Cast/Cy — OO

Let {@(n)} be any positive sequence, then we can find a sequence
{ﬂn h satisfying .4/, — =0, snch that
(5. 24) finy = glw) e, fin) = g(n) 6,y infinitely often.

To this end we lake

= {ypilyjer® (@Wiga < k=123 ..)
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where (k) is the maximum of p(n) in the range 4%-! < »n < 4% We may
assume, of course, that ¢(n) — oo,
For any %k we have, if m = 2. 41— ],

f(2m+1) =Hihaif{ﬂm+1 —§) = ey flm 1) >
and :
Ci = LR = egen W (R)-
Therefore
f(2m 1) > @ (2m 4 1) ey pq0
This proves the first part of (5. 24). The second part iz a direct consequence,

BINCE €,,4/6, —» o,

Example 3. If ¢, /e, tends to infinity monotonically, then (5. 24:_1
cannot be true if 5 log ¢(n) has a positive upper hmit (see 5, 23). But,
it y{n} is an arbitrary positive funection satisfying n(n) - O(n —= oo},
then a sequence {c¢, } can be found such that (e, ,/e,) 1 oo, and

(3. 23) f(m)e -y = €% for infinitely many values of n ).
Let, the sequence {1, } satisfy 1 <t <y << ...y lim {, = co: Let {¢,}
be defined by

b= L Eﬂi—lﬁrcu =i '{I‘ri': =N P'rl'+lt k=12, 3! +“}r

where the integers N, (1 = N} < No<= Ny = ...) will be chosen such
that (5. 25) holds infinitely often. To this end we prove: If Ny, ..., Ny
have heen fixed, then N ean be found such that (5. 25) holds for n = N .

Let { et} be defined by

el =1; el =4 (Nusne Nen b=1 0 K=2)
ehafen =1g—1 (0= Ng_y)
The sequence {¢f } belongs to case 2 (gee §2), and we have 2)
Rl=ilp .y, 0O<y <R, P)yr=>0 (0>0), (- B

It follows that lim (f*(n)/el )" = R/y = 1. Bince g(n) =0, we ean

find o number N = N, such that
f* () > e el (n = Ng).

Now Ny has been fixed, and obviouely e, = %, f(n) = [#(r) (0 < Ng).
Hence (5. 25) holds for # = N

Example 4. There exists n sequence ¢, with (r,.5/e,) T oo, such that

{-”n-l— 1 L o

fin) i

1 The ssme thing ean be obtained for f(e)le,, without much extra troubles,
5 [f*in)} s the seguemee sorresponding to {oF) by the analogue of (5 1)

lim in
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This shows that, in (5. 22), “lim sup” may not be replaced by “lim™,
An expmple ean be obtained along the same lines as above; we only

take care thal f,., /6 — o<

Turther, N, hos to be determined such that

P l+1) et < 2 (n)ct (n = Nyg+1),
Giffin+ ) < K1 (n = Ng + 1)
Then it is easily verified that
[in+1) eurf((n) o) < 2 {llxlte )" + K71} (n=Ng+1)

Example 5. The following example shows thaf, in theorem 17, the
condition e, /¢, 1 oo is essential. It shows that no funetion y(k) has the
property that e, /e, = y(k) implies f(n + 1)/c, —= 1. For take ¢, ¢ ...
such that o,.,le =plk) (k= 1, 2, 3, ...) and such that /e, =2 for
infinitely many . Then obviously for these m we have

fom 1) =S g f(2m L —B) > oy flmt 1) > 68 > B,
1

We finally remark that theorem 17 is best possible in the following
sense: T the increasing funebion y(k) has the property that

CE+1
Cx

T-m‘r."’:_:.;_t}qrtkj (k=1,2,..) imply f[{u+1)fe,—1,

then we have w(k) =0C4* for suitable poesitive constants ' and a. We
omit the proof.

§6. The fﬁ!ﬂd&‘ﬂ'ffﬂ recursion formula
Congider

@1 (=1 ) =3 iR n—E (=23 ),

whered, = 0fk= 1,23, ,..). Coneequently also f(n) =0{n=1,2,3,..).

Putting df (k) = ¢, we have ¢, =0 (E= 1, 2, ...). Therefore, we ean
use the results and the division into 5 cases introduged in § 2,

In the first place it follows that {fln) } 2 alwavs tends to a finite
limit a8 n — =o. We have, however, no simple formula which relates
its value 3 to the numbers d,.

If dy — oo, then we huye v = 0 (euse 1), For then, by f(n + 1) = e, =
=d, f(n), we have f(a + 1)/f(n) - co. On the other hand we have

Theorem 18, If d, =0(1}; then y =0,

Proof. 1t is sufficient to show that f{n) = O(F") for some P. Assume
d, = M for all n. Then the sequence { f(n) } is majorised by the sequence
{Lon) } satisfying

gily=1, gln) =M Z7" gk gn—k)  (n=2,3, ...},
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The unigue solution iz obtained from the generating funetion (/{x) which
satisfies

Glz) —x = M2(z), G =0,
whenee

G () = (2M) 71 {1 — (1 - AM2)1}, gln) = 5oy okt MY = O ({40},

2n—1 nln!

It follows that f(n) =0 { (4M)" }, and so y = (40)L

If lim inf d, = lim sup d, = o, then we may have either case 1, or
4, or 5 (see the examples in the beginning of § 4 and example 1, § 5).
If 0 < lim inf d, = lim sup d, < oo, then we are in case 5.For then we
have 3 =0 and Xf(n) 9" =0 (X ¢,y") < oo, which is only poasible in
case 6 (see (2.3)). An interesting example is obtained by taking
dhy=dy=...=a >0di=dy=...=0 >0 It ean be shown that
F2n 4+ 1)f(2n) = A =0, H{2n)/f(2n — 1) = B =0, where A== Bifa £b.

Theorem 19. Necessary and sufficient that we are in case 2 is that

(6. 2) lim sup (4 )"" < 1.

n==oo

Proof. In oase 2 we have (20 4), where § is such that (&) is regular
for (x| = 4. Therefare

lim sup (e 9" = &1, and g0 limsup ()0 < w8 < 1.

If, on the other hand, (6. 2} holds, then we know by theorem 18 that
the series F(x) has a positive radius of convergence, and further, by
(6. 2) and e, = d,f(n). that the radios of convergence of (&) is larger
than the one of F(x), which equals the least positive root of ') = 1
{eee (1.4}, I follows that we are in cass 2.

Theorem 20, Necessary amd sufficient that we are in case 3 is that
(6.3 S ad, < oo, limsup(d )" = 1.

Proof. In case 3 we have X ne" 1 < oo, and fi(n) " tends to a
positive limit. Henee X ad, <= co. Consequently, the lim sup in (8. 3)
cannot e = L It cannot be <= 1 either, becanse of theorem 19,

I on the other hand (i, 3) holds, then case 1 is excluded by theorem 18,
case 2 by theorem 19, and case 5 by thecrem 3§ 4). Furthermore, by
{2. 5) we infer O'(y) = L net ' < oo, which excludes ease 4.

W Xd, <oo, Eaid,=cc then we are in case 4 (the cases 1, 2, 3, 5
are excluded, respectively, by theorems 18, 18, 20, 3). Moreover we
find that f{n)/f(n + 1) —= yp (theorem 11).

W, =0, 2d, = sc then we are either in case & or In case 5,

If we have O < lim sup d, < oo, then we are again either in case 4,
or & (see the examples in the beginning of §4).
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We do not know whether the existence of lim d, is or is not sufficient
for the existence of lim j(n)/f(n + 1). A positive example is

Theorem 21. If 4 =0, 0 <<y <1 and d,= 4 + 0"}, then we
have f(n)/f(n 4+ 1) = y, and even

fin) ~ Bn~Yy=" (B> 0)

Proof.  We ean exclude cases 1, 2 and 3, by theorems 18, 19, 20. Putting
Ed,— A4) f(n)z" = @{x), we have
Flz)—z — { AF(x) + & (z) } Flx),
where AF{x) + @ () has non-negative coefficients. F(x) is regular for
|#| =< v, and has a singularity at z = 3, its coefficients being non-negative,
As < 1, @ () is regular for |z| = yp. Furthermore
{AF@E) + 0 (2) = 1P = 1 {D () — 1) 2— An.

Sinee & = v is a singularity of F(z). we infer that AF{y) + 1@ (y) = L
Further, AF{x) + 3 @ (&) = $4AF(z) + 1 { AF{x) + @ () | has non-
negative coefficients, and so |AF(z) + §P(z)| =& if [z| <y, 259
It also follows that the root of 4 F{x) + @{z) — 1 at & — 3 iz a single one.
Consequently F(x) has no further singularities on the circle x| = », and
wa- have

AF(z) + § P (x) = $— (y— )" Wlz),

whers Afx) iz regular for |[x] < ¥, and k{y) == 0, It can now be shown
{e.g. by Cauchy’'s theorem) that
A ) ~ fa- )y
We are in pase 5, sinpe
Cly) = AF(y) + ly) = 2{AF(y) + 1 P(y)} —AF(y) =1 —AF(y) < 1.

87, A generalisalion

We shall consider, in theorem 24, a more general quadratic recursion
formula, We first generalise the method of § 3, where we used the fact
that for any sub-additive function g(n) the limit of g(n)/n exists (it may
be — os,) We can prove a slightly better result:

Theorem 22, Let the sequence gin) (n = 1,2, ..} satisfy

(7.1} g(n + m) = g(n) + gim) whenever in < wm =< 2,
Then we have
(7. 2) %‘” o

for some L (— oo < L < o0), and
(7. 3) =D =150
Il Indagationes
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Proof. Pul gln)n = kin). Clearly we have
(7. 4) RZn) <h(n)  (R=1,28 . k=012 .)

Further it is easily proved hy induction that A(n) << k(1) for all u (every
integer w > 1 can be written as a + b, where la =2 b = 2a).

Let » and » be positive integers, and « =} ». Let the integer k he
determined by fu < 2%p < ju, Put 2*v = w, # — w = 2. Then we have
3 < zlw < 2, and o, by (7. 1) uhu) < zh(z) + w h{w).

By (7.4) we have h(w) < h{v); furthermore we have w=w—z, and
# =2 § . Therefore

(7. 5) h(u)—h(v) < = {h(x)—h)} < § {h(z)— h(v)}.

Bummarizing: if % = {wv, then there iz a number z (Ju ==z <-§u)
such that (7. 5) holds. By iteration of (7. 5) we obtain

(7. 6) h(ae) — B {w) = 8 (;?Tf)‘{mn —h(m} (w1,

where 4 = (log {}log 3).
From (7. 8) we infer lim sup hiu) = inf A(»), and the theorem follows,
It may be remarked that the inequality in (7. 1) cannot be replaced
by pin < m < pn for any pu <2,

Theorem 23. Let gif) be positive and imoreasing for ¢ =0, and
assume

=]
[altiE*dt <= oo,

]
Let the sequence {g(n) | satisfy
(7. 7) gln + m) = gln) + gim) — gl + m} {In =< m = 24}
Then g{n)in — L for some L [— co = L < oca).
Proof. Put

gn) +8n [ @Bt dt=Cm) (n=1,2,..)

Then, we have;, by (7. 7), if dn =m = 2n,

G+ m) — G ) — Glon) < g (30)+ e Bm) =30 | —3m | <
< q(n) [1=3n (=) | -+ ) 13m0 (2 — ) ).

The latter expression is = 0, since we have ln < m = 2n. Therefore,
theorem 22 ean be applied to the function (n). Finally we have obviously
{ G{n) — g(n) }/n — 0.
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Theorem 24, Let gt) satisfy the comditions mendioned in theorem 23,
andd let the numbers o, satisfy

(7. 8) ey =0 (1= k< m< ec), = e dn=k<in)
Let

@0 =1, () =T o (B e (n =230,

Then { (1)} ~¥* tends to a finite limit, The limit is positive if we add
the condition 6,, < M (1 <k < n < oc).

Proof. We have f(n) = ¢, {(k)f(n— k). Putting g(n) = —log f{n),
we have (7.7), and the result follows from theorem 23,

If ¢y, < M, then f(r) is majorized by the solution of the according
equation with ¢, = M, and theorem 18 gives p == 0.

WaieaT [5] diseussed an equation of the type (7. 8), viz. e, = (n— 1)}
em#=le g = 0), He proved that { f(n) }7* lends very slowly to infinity,
and more precisely, that — n=? log f(n) is of the order of j(1), where j(t)
is defined by

=0 (1<<t<eljlt)=7jllogt)+1 (¢ =e)

In fact his equation just escapes our theorem 24, since g(f) 18 of the
order of ¢, and [ 7 dt = oo,
Coorer [2] considers, among others, the formnla

wr i) ="S k= f(k) fon—k) (>0, a> 0).
1

He showed that {f(n) }¥* oscillates between finite positive limits.
From our theorem 24 we immediately deduce itz eonvergence,
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