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§ 5. Case 1

Throughout this section we assume that we are in case 1, that is
n-I

(5 .1)

	

f(1)=l ;

	

f(n)=~ckf(n-k)

	

(n=2,3, . . .)
k=1

(5.2)

	

c k >0

	

(Ic=1,2,3, . . .),

(5. 3)

	

Jim sup ckIk = co
k-oo

For, (5. 3) is equivalent to the condition that c 1x + C2 X2 + . . . diverges
when I x I > 0 .

It was proved in § 3 that
(5 .4)

	

lim (/(n))'/" = Oo ;
n-00

but apart from this the preceding sections give little information about
the behaviour of /(n) in case 1 .

(5. 4) implies that

(5.5)

	

a = lim inf f (n (+ 1) = 0,

but on the other hand

(5. 6)

	

fi = lim sup f (n)f(n+1)
can be positive (see example 1 below) . Anyway /3 is finite, by (2 . 6) .
(P < el 1 ) •

Theorem 13 . We have, if n ->oo,

(5.7)

	

lim sup c n If (n) _ 00,
(5.8)

	

lim sup c,,//(n + 1) = 1 .

1 ) The first part appeared in this journal : Kon. Ned. Akad. v. Wetensch. (A)
54, 374-382 (1951) = Indagationes Mathematicae 13, 374-382 (1951) .
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Proof. (5 . 7) follows from theorem 18 (§ 6) . For assume cn < Mf (n), M
not depending on n ; then theorem 1S gives f (n) = 0 {(4M) ,, }, which
contradicts (5. 4) .
In order to prove (5 . 8), we first remark that f (n + 1) > c n for all

n > 1 (see (5 . 1) ) . So if (5 . 8) were false, then there would exist a constant
2 (0 < 2 < 1) such that

(5.9)

	

cn <2f(n+1)

	

(n=2,3, . . .) .

It follows, by (5 . 1), that

(5 . 10)

	

(1- 2) f(n + 1) < f(2) f(n) + f(3) f(n -1) + . . . +

+ f(n) f(2)

	

(n = 2, 3, . . .) .

The sequence { Pn }, defined by
1

	

1
(n + 1) 2 { 22 n2 + 32 (n-1)2 + . . . + n2

1
. 22 }

	

(n = 2, 3, . . . )

is convergent ; hence a constant C exists such that O,, < C (n = 2, 3, . . . ) .
It is now easily deduced from. (5 . 10) that

1(2)

	

4'(2, C n-2
f (n) ` ,. 2 (1-~ )

	

(n - 2, 3, . . .) .

This contradicts (5 . 4), and so (5 . 8) is proved .
The set of equations (5 . 1) can be solved explicitly :

(5.11)

where, in the second sum, the summation variables i(1), . . ., i(h) are
subjected to the conditions

i(1)>0, . . .,i(h)>0 ;

	

i(1)+ . . .+i(h)=n-1 .

We can obtain (5 . 11) from the formal expansion (see (1 . 4))
00

F(x) = x + ~ (C(x))h .
h=1

The summands of (5 . 11) correspond one-to-one to the ordered partitions
of n - 1 ; hence the total number of terms equals 2n-2 .

Let I,,, denote the largest one of these 2n-2 summands. Then clearly
(5 . 12)

	

1 < { f (n)/I.}'In < 2

	

(n = 2, 3, . . .) .

We can even show

Theorem 14 . lim { /(n)/I.) I'll - 1 .
n-,cc

Proof . Let s be a positive number, and N an integer > 1 . Write

f(n)=21+E2,

n-1
f (n) _

	

CO) Cz(2) . . . Ci(h)
h=1

(n=2,3, . . .)
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where 12 is the sum of all summands c,, (1) . . . COO which satisfy
(5.13)

	

S

	

2(j) < en .
15 j5h, i(j) <N

If e and N are fixed, then 12 can be roughly described as corresponding
to those ordered partitions of n - 1 where the contribution of the small
integers is small. We shall show that the number of summands in -'2 is
relatively small, if e and N-1 are small but fixed. If a partition n - 1 =
= i(1) + . . . + i(h) satisfies (5 . 13) then we have

(5 . 14)

	

h,-1in

	

(17=e+N-1).

For, the number of is < N is at most en, since each i is > 1 . And, the
number of is > N is at most N-1n, their sum being < n - 1 .

The number of partitions satisfying (5 . 14) equals

(5.15)

	

1,) rn(h-1)<exp{n(q - rj log~)} .

For we have generally, if 0 < u < 1, n - 1 > m > 0,

n'n

	

( h 1) < ~ nh vnh
1\

	

(1 + u)n .
h<m

	

h

	

lm
Taking m = [ n], u = )I we obtain (5. 15) .

We can show that, if n is large, the largest summand 1,,, of (5 . 11)
occurs in 12 , and we even have I,. > 1,. To this end we prove that to
each summand t of 11 a second summand t' (of either 21 or 12 ) can be
found such that t' > 211 t .

In virtue of (5 . 3) we can choose k = k(N, e) such that
(5 . 16)

	

Ckl k > C1, COO > 41 1E ci 1 ,u 2

	

(,u = max c,~j) .
1_<j<N

We put no = n o (N, e) = 2ke -1 ; henceforth assume n > no .
Let the term t of 11 correspond to the partition n - 1 = i(1) + . . . + i(h),

then we have, say,
i(1) + . . . + i(r) = s > en, i(1) < N, . . ., i(r) < N.

Now we obtain t' from t by replacing the factors

Ce(1) . . . C1 (r)

	

by

	

CksIkl cs-kfs/7c7

Then we have
G t' = ( Ck/C1) sIki CI it-s

We have s > s n > 2k and so [s/k] > 12 s/k . Therefore, by (5 . 16),

(cxlci)l`,,k> >
(Ck

•l ci)'s/k > 4 1 "18C-1 s . C~ 1s ~s

and so
t l t > 281e > 2n .



This shows that each term of Z, is less than 2-n I.,, ; therefore E1 < In .
The number of terms of 22 is bounded above by the right-hand-side of
(5. 15) ; hence

Z2/I n < exp { n (,q - 71 log n) } .
It now follows from f (n) _ -'1 + Z2 that

lim sup { f (n)/In } 1In < exp (),j -n log j) .
n-~

As ij = e + N -1 , the theorem now follows by making s > 0, N -
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-> oo .

The following theorem was already announced in § 4 (theorem 9) .
Theorem 15 . If c,,+1/c,, > co, then f (n + 1)/J(n) -> -oo .

Proof . We first prove : if A > 0, there exists a number B - B(A) > 0,
such that f (n + 1) > B f (n) implies f (n + 2) > A f (n + 1) .

Let K be such that c1.+1 > A ck for all k > K, and take

B = A { 1 + c2 C1
2
+ C3 C1 3

	

. . .

	

C'C C1

Now assume f (n + 1) > B f (n), and put L = min (n, K - 1) . Then
we have (empty sums are zero)

/(n+1)=clf(n)+c2f(n-1)+ . . .+CL/(n+1 -L)+ ~ ck f(n+1-k),
k=L+1

n
/(n+ 2) > cl / (n + 1) + ~ ck. +i f (n + 1-1o) .

k=L+1

We have / (m + 1) > c l f (m) for all m, and so

clf(n)+ . . .+cL/(n+1-L)<f(n){C1+c2cl1+ . . .+CLCi-L}<

< c1 f (n) B/A < c, f (n + 1)/A .

It follows that f (n + 2) > A /(n + 1) .
By iteration of this result we find : If A > 0, Ic > 0, there exists a

positive number QA, k) such that
(5.17)

	

/(n + 1) >C(A, k) /(n)

implies
(5. 18)

	

/(n+j+1)>Af(n+j)

	

(j=0,1, . . ., k) .

We can now show that /(n + 1)//(n) > oo. Let A be an arbitrary
positive number, and choose K such that C k + 1 > A C k for all Ic > K.

We have lim sup f (n + 1)//(n) = oo (see (5 . 5)) ; therefore we can take
N such that N > K, f (N + 1) > C(A, K) / (N) . We can show that

(5. 19)

	

/(IV + j + 1 ) > A I (N + j)

	

(j = 0, 1, 2, . . . ) .

By (5. 17) and (5. 18) we know that (5. 19) holds if j = 0, 1, . . ., K .



We proceed by induction. Assume (5. 19) to be true for j < K + in,
where -m is a positive integer. Then we have

K

	

ti +K+m-1

f(N+K+m+l) < c ; f(N+K+m+1-j) +

	

c,+1 f(N+K+m-j) >
=1

	

7=K+1

K

	

N+K+ -1
> A c; f(N+K+m-j) +A

	

c; f(N+K+m-j) = A f(N+K+m) .
7=1

	

9=K

This proves (5. 19) . Since A is arbitrary, we obtain

Lemma. For n = 1,2,3, . . . we have
(n+ < c I + max c,}1
f (n)

	

1< ;<n C,
Proof . Denoting the right-hand-side by c l +y, we have

n-1

	

n-1
f(n + 1) = c1 f(n) + S c,,.+1 /(n- k) < c1 f(n) + It "~ ck f(n- k) = (c 1 +p) f(n) .

1

	

1

Theorem 16 . If

(5.20)

a;=1

Proof . For (5 . 21) see the proof of theorem 12, § 4 .

As to (5. 22), the lemma shows that the lim sup is at most 1 . For,
(5 . 3) and (5. 20) imply that c./c,, 1

	

cc. On the other hand, the lim
sup cannot be less than 1, since

~ f(f'+1) ek_~ _ f(n+1) C :L

	

c11

	

f (k)

	

Ck

	

Cn

	

1 i 1

Finally, (5. 23) follows from (5 . 22) and from the fact that f (n + 1) > en
for all n .

We can deduce (5. 23) from theorem 14 also : Without loss of generality
we may assume c 1 = 1 (see the transformation (1 . 5) ) . Then (5. 20)
implies that { C, Ilk } is a non-decreasing sequence, whence 'n = C.-1 for
all n .

Theorem 17 . Let C and a be positive constants, and V(k) = C V .
Then if

Ck+1
T

	

Ck±1. >
1V (k)

	

(k = 1, 2, 3, . . .),Ck

	

Ck
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1

CZ < C3 < C3 < . . .
C 1

	

C2

	

C3

f (m + 1)/f (m) - -.

then we have

(5.21) f(2) f(3) /(4) <
. . .

f(1) f(2) f(3)

lim

	

f (n + 1) Cn-1 1(5.22) sup

	

.
n_co

	

f (n)
en =

(5 .23) lim { f (n)/c n _1}lln = 1 .
n- ,x



we have
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f (n + 1)/Cn --~- 1

	

(n ->- oc) .

Proof . We have, by (5. 1),
n

	

m.
0<f(n+1)-1=~C,f (n+1-9)fc-n<Ic'

on max f(k+1)
Cn

	

1

	

I

	

Cn 1-<k<n

	

Ck

Since C k+I/C,, is increasing, c ; c,,_ ; decreases with increasing j in the
interval 1 < j < 2n .

Let q be an integer > a -1 , and assume n > 3q . Then we have, when
q<j<2n, n-1

cjC.n_j < cgCn_q < C ~ Cl,

Cn

	

11 Ck+1C n

Hence we obtain, for q fixed,

0 <
f (n+1) 1 < s n • max t(k + 1) 0 (n- a~) = o (1) max f (k + 1)

ca

	

1<o<n

	

Ck

	

1_<k<n

	

Ck

Now the theorem easily follows .

Theorems 13-17 seem to be comparatively weak . We shall, however,
give some examples which show that not very much more can be obtained .

Example 1. f (n + 1)/f (n) need not tend to infinity if c,n+ I/c,, does not
tend to infinity . Define cn , f (n) by (5 . 1) and by (n = L 2, 3, . . . )

2n

	

2n-I
C.~n = n (~ f (j° ))

	

(

	

Ck),

	

C- = 1,

	

C.-n+1 = C
1

	

1

Clearly C2, /c2n--1 > oc ; hence we are in case 1 . We have, if n > 2,
2n-1

f(2n--2)=e f(2n+1)+ s c,;t(2)?. +2-k)+c.,nf(2)-r-c2n+1 /(1)<

< c 1 f(2n+1)+C2,a+c2nf(2)+C2nf(1) <

< f(2n+1) {c1+1+f(2)+ f(1)} .

Therefore f (2n + 2)/f (2n + 1) = 0(1) . The sequence f (2n + 1)/f (2n) is
not bounded, of course (see (5 . 5) ) .

Example 2 . The expressions c,,// (n) and c,,11 (n + 1), whose upper
limit was established in theorem 13, can have lower limit zero, even if
Cn+1/Cn } oc .

Let { cp(n) } be any positive sequence, then we can find a sequence
{- en } satisfying C„+1 /c7z -* oo, . such that

(5.24)

	

f (n) > T (n) en, f (n) > cp (n) cn_1 infinitely often .

To this end we take
e = },~e(k)}n+2

	

(47-1 < n < 4'L Ic = 1, 2, . . .



and

Therefore
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where V(k) is the maximum of cp(n) in the range 4 7c-1 < n < 411 . We may
assume, of course, . that p(n) > cc .
For any k we have, if m = 2. 4k' -1 - 1 ;

2-
(2m

	

/+1) = c,/(2m+1-7) > Cm/ (m+ 1 ) > Cm1

C1)2, = { y (Ic)}im+4 = C?m+1 y)(1) .

/(2m+1) > T (2m+1)c.m+1 •

This proves the first part of (5. 24) . The second part is a direct consequence,
since cn+1/cn

	

00 .

Example 3 . If c, +1/cn tends to infinity monotonically, then (5. 24)
cannot be true if n-1 log T (n) has a positive upper limit (see 5 . 23) . But,
if 7t(n) is an arbitrary positive function satisfying i(n) -- 0(n - cc),
then a sequence { cn } can be found such that (cn+1/cn) ' oo, and

(5.25)

	

l(n)/cn_1 > C'' n for infinitely many values of n 1 ) .

Let the sequence { t } satisfy 1 < t1 < t 2 < . . ., lira t,, = oo . Let { cn }
be defined by

c1 =1 ; c a,

	

c~r, =tlc (NIs < n < N7 . +Uk+1

	

~

	

~

	

= 1, 2, 3, . . . ),

where the integers N (1 = iN1 < N 2 < N3 < . . .) will be chosen such
that (5 . 25) holds infinitely often . To this end we prove : If N1, , Nh+1
have been fixed, then N, can be found such that (5 . 25) holds for n = Nom .

Let { c* } be defined by

ci = 1 ; cn+1/cn = t7c (Nk < n < -Y,. + ,, Ic = 1, . . ., K- 2),

Cn+1/ C n = tS-1 (n

	

N%-1)

The sequence { c* } belongs to case 2 (see § 2), and we have 2 )
R -1 = t% _I , 0 < y < R, f*(n) yn - C (C > 0), (cn)lin R-1 .

It follows that lira (l*(n)/c*_1)1I'n = R/y > 1 . Since i(n) -> 0, we can
find a number NK > NP_ 1 such that

/* (n ) > e ,,, ° c_1

	

(n = NK ) .2

Now iNx has been fixed, and obviously c2 = cn, / ( n) _ /*(n) (n < Ny ) .
Hence (5. 25) holds forr n = NK .

Example 4 . There exists a sequence c n with ( cn+1/cn) T co, such that

liminft(n+l) cn-1 =0
f(n)

	

en

1 ) The same thing can be obtained for f (YL)lcn, without much extra trouble .
2 ) { f*(rz)} is the sequence corresponding to {c * } by the analogue of (5 . 1) .
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This shows that, in (5. 22), "Jim sup" may not be replaced by 'Jim" .
An example can be obtained along the same lines as above ; we only

take care that t,,+1/t, ; oc .
Further, N,i has to be determined such that

f* (n + 1 ) c*-, < 2 /* (n) c*

	

(n = Ng + 1),
c*/f*(n +1)<K-1

	

(n=N,~+1) .

Then it is easily verified that

/(n + 1 ) cm.-1/(f(n) cn) < 2 {(tK/ta-1)-1 + K-1}

	

(n = Ng + 1 ) .

Example 5 . The following example shows that, in theorem 17, the
condition c,,+1 /c,, ' oo is essential . It shows that no function V(k) has the
property that c,, +i /c,c > V (1c) implies J (n + 1)/cn -* 1 . For take c1, c2 , . . -
such that c,,+1 /c 1. > V (k) (k = 1, 2, 3, . . .) and such that C,'-,/C2. > 2 for
infinitely many m . Then obviously for these m we have

2-
(2m

	

f+1)=~c, f(2m+1-k)>CMf(m+1)>cn>2ena .
1

We finally remark that theorem 17 is best possible in the following
sense : If the increasing function V(1c) has the property that

ek±,

	

cr-±1
ti (k) (k = 1, 2, . . .) imply f(n + 1)/c,, ---> 1,

C7,

	

Ck

then we have y(k) > Cka for suitable positive constants C and a. We
omit the proof.

§ 6 . The quadratic recursion formula

Consider
n-1

(6 . 1)

	

f( 1) = 1,

	

f(n) _ :~ dicf(k) f(n-k)

	

(n = 2, 3, . . .),
is=1

where dl„ > 0 (k = 1, 2, 3, . . . ) . Consequently also f (n) > 0 (n = 1, 2, 3, . . ) .
Putting (1,1(k) = c,,, we have c,, > 0 (k = 1, 2, . . . ) . Therefore, we can

use the results and the division into 5 cases introduced in § 2 .
In the first place it follows that { f (n) } -1I" always tends to a finite

limit as n - oo . We have, however, no simple formula which relates
its value y to the numbers dx , .

If dk --> oc, then we have y = 0 (case 1). For then, by f (n + 1) > cn =
=dnf (n), we have /(n + 1)//(n) -> oo . On the other hand we have

Theorem 18 . If d,c = 0(1), then y >0 .

Proof . It is sufficient to show that /(n) = 0(P") for some P. Assume
do < M for all n . Then the sequence { f (n) } is majorised by the sequence
{ g(n) } satisfying

g( 1 ) = 1, g(n) = M :En- I g(lc) g(n-k)

	

(n = 2, 3, . . .) .



The unique solution is obtained from the generating function G(x) which
satisfies

G (x) - x = M G 2 (x),

	

G (0) = 0,
whence

G (x) _ (2M) -1 { 1 - (1 - 4Mx)' }, g(n) = 2n-1 n2n! Mn = Of (4M)n} .

It follows that f (n) = 0 { (4M)' }, and so y >~ (4M) -1 .

If lim inf dk < lim sup dk = cc, then we may have either case 1, or
4, or 5 (see the examples in the beginning of § 4 and example 1, § 5) .
If 0 < lim inf dk < lim sup dk < oc, then we are in case 5 .For then we
have y > 0 and f f (n) yn = 0 (Z c„y n ) < co, which is only possible in
case 5 (see (2. 3) ) . An interesting example is obtained by taking
dl = d3 = . . . = a > 0, d 2 = d4 = . . . = b > 0 . It can be shown that
f (2n + 1)// (2n) > A > 0, f (2n)/f (2n - 1) -~- B > 0, where A# B if a # b .

Theorem 19 . Necessary and sufficient that we are in case 2 is that

(6 .2)

	

Jim sup (dn,)'!' < 1 .
n-O

Proof . In case 2 we have (2 . 4), where 6 is such that 0(x) is regular
for Ix j < 0 . Therefore

lim sup (c„) 1I''1 < b-1, and so lim sup (d,n,) 1fn < y/6 < l .

If, on the other hand, (6 . 2) holds, then we know by theorem 18 that
the series F(x) has a positive radius of convergence, and further, by
(6. 2) and c,, = d,, f (n), that the radius of convergence . of C(x) is larger
than the one of F(x), which equals the least positive root of C(x) = 1
(see (1 . 4) ) . It follows that we are in case 2 .

Theorem 20 . Necessary and sufficient that we are in case 3 is that

(6.3)

	

:E nd,,, < oo, lim sup (dj1/n = 1 .

Proof. In case 3 we have f nc„y" -1 < oo, and f (n) yn tends to a
positive limit . Hence Z nd,, < oo . Consequently, the lim sup in (6 . 3)
cannot he > 1 . It cannot be < 1 either, because of theorem 19 .

If on the other hand (6 . 3) holds, then case 1 is excluded by theorem 18 .
case 2 by theorem 19, and case 5 by theorem 3(~ 4) . Furthermore, by
(2 . 5) we infer C'(y) = Z nc,,,y" -1 < 00, which excludes case 4 .

If Z do < cc, Z n d" = co then we are in. case 4 (the cases l ., 2, 3, 5
are excluded, respectively, by theorems 18, 19 ; 20, 3) . Moreover we
find that f (n) // (n + 1) -* y (theorem 11) .

If d,

	

0, Z d,, = oc then we are either in case 4 or in case 5 .
If we have 0 < Jim sup d,,, < oo, then we are again either in case 4,

or 5 (see the examples in the beginning of § 4) .
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We do not know whether the existence of Jim do is or is not sufficient
for the existence of lim /(n)//(n + 1) . A positive example is

Theorem 21 . If A > 0. 0 < ?I < 1 and do = A + O(rln), then we
have f (n)/f (n + 1) - y, and even

f (n) ti Bn- "lay- n

	

(B > 0) .

Proof . We can exclude cases 1, 2 and 3, by theorems 18, 19, 20 . Putting
Z (d,, - A) f (n)xn = 0(x), we have

F(x) - x = { AF(x) + 0 (x) } F(x),
where AF(x) + 0 (x) has non-negative coefficients . F(x) is regular for
l x I < y, and has a singularity at x = y, its coefficients being non-negative .
As mi < 1 . 0 (x) is regular for ~xj < ,y . Furthermore

{ AF(x) + 20 (x) - 212 = 4 fo(x)- 112 - Ax.

Since x -- y is a singularity of F(x), we infer that AF(y) + 2 0 (y) = 2.
Further, AF(x) -b 2 0 (x) = 2AF(x) + 2 1--{AF(x) + P (x) } has non-
negative coefficients, and so AF(x) + 2 0 (x) I < 2 if Ix I < y, x L y .
It also follows that the root of AF(x) + O(x) - 2 at x = y is a single one .
Consequently F(x) has no further singularities on the circle ~xj = y, and
we have

AF(x) + 2 0 (x) = 2 - (Y - x)# h(x),
where h(x) is regular for ~xj < y, and h(y) ~ 0 . It can now be shown
(e.g . by Cauchy's theorem) that

A f (n ) e 1. n-1z n- 1 h (Y) y- n+'1%

We are in case 5, since

C(y) = AF(y) + 0(Y) = 2{AF(Y) +21 O(y)} - AF(Y) = 1 - AF(Y) < 1 .

§ 7 . A generalisation
We shall consider, in theorem 24, a more general quadratic recursion

formula . We first generalise the method of § 3, where we used the fact
that for any sub-additive function g(n) the limit of g(n)/n exists (it may
be- oc.) We can prove a slightly better result :

Theorem 22 . Let the sequence g(n) (n = 1, 2, . . .) satisfy

(7.1)

	

g(n + m) < g(n) + g(m) whenever 2n < m < 2n .

Then we have

(7 .2)

for some L (- oc < L < oo), and

(7. 3)

11 Indagationes

16 1

g(n) -> L
n

g (n) > L

	

) .n



Proof . Put g(n)/n = h(n) . Clearly we have

(7.4)

	

h (2k n) < h (n)

	

(n = 1, 2, 3, . . . ; k. = 0, 1, 2, . . . ) .

Further it is easily proved by induction that h(n) < h(1) for all n (every
integer n > 1 can be written as a -- b, where 2a < b < 2a) .

Let u and v be positive integers, and u > z v . Let the integer k be
determined by 3 u < 2'' v < 3 u . Put 2', v = w, u - w = z. Then we have
2 < z/w < 2, and so, by (7 . 1) u h(u) < z h(z) + w h(w) .
By (7 . 4) we have h(w) < h(v) ; furthermore we have w = u- z, and
z < 3 u. Therefore

(7 .5)

	

h (u) - h (v) < u {h (z) - h (v) } < 3 { h (z)- h (v) } .

Summarizing : if u > v, then there is a number z ( u < z <- 1 u)

such that (7 . 5) holds . By iteration of (7 . 5) we obtain
a

(7.6)

	

h(u) -h(v) < ~, (2~) {h(1) -h(v)}

	

(u > 3v),

where 2L _ (log )/log 3) .
From (7 . 6) we infer lim sup h(u) < inf h(v), and the theorern follows .
It may be remarked that the inequality in (7 . 1) cannot be replaced

by ,cs-1 n < m < ,u n for any ,u < 2 .

Theorem 23 . Let T(t) be positive and increasing for t > 0, and
assume

00

f p(t) t-2 dt < cc .
1

Let the sequence { g(n) } satisfy

(7 . 7)

	

g(n + m) < g(n) + g(m) + 9'(n + m)

	

(In < m < 2n)

Then g(n)/n -± L for some .L (- oo < L < oo) .

Proof . Put
cb

g(n) + 3n f q2(3t) t - 2 dt = G(n)

	

(n =1, 2, . . .) .
n

Then, we have, by (7. 7), if 2n < m < 2n,
n+m

	

n+m
G (n + m) -G (n) - G (m) < 9' (3n) + T (3m) - 3n f - 3m f <

n

	

m

<9)(3n){1-3n (n -n m)} +9,(3m)~11-3m (n-~ +m) 1J .

The latter expression is < 0, since we have 2n < m < 2n . Therefore,
theorem 22 can be applied to the function G(n) . Finally we have obviously
{ G(n) - g(n) }/n - 0.

162



163

Theorem 24 . Let T(t) satisfy the conditions mentioned in theorem 23,
and let the numbers c,, satisfy

(7 . 8)

	

c,,, ,, > 0 (1

	

k < n < U7 ), cl,n > e-fin (3n < k < 2n)

Let
n-1

(7 . 9)

	

f( 1 ) = 1, f(n) _ '57 cx,nf(k) f(n-k).

	

(n = 2, 3, . . .) .

Then { f (n) } -1 /', tends to a finite limit . The limit is positive if we add
the condition c,,,,n < M (1 < k < n < oo) .

Proof . We have f (n) > c,,.,7 , f (k)f (n - k) . Putting g(n) _ - log f (n),
we have (7 . 7), and the result follows from theorem 23 .

If c,,, < M, then /(n) is majorized by the solution of the according
equation with c ,,n . _ , and theorem 18 gives y > 0 .

WRIGHT [5] discussed an equation of the type (7 . 9), viz . = (n- 1)-i
e-11-1 >° (a > 0) . He proved that { f (n) } -11 n tends very slowly to infinity,
and more precisely, that - n-1 log J (n) is of the order of j(tt), where j(t)
is defined by

j(t) - 0

	

(1. < t < e), j(t) = j(log t)

	

1

	

(t > e) .

In fact his equation just escapes our theorem 24, since T(t) is of the
order of t, and f° t -1 dt = oo .

COOPER [2] considers, among others, the formula
1

nr f ('n)

	

i ° f (k) f (n - 1c)

	

(r > 0, a > 0) .

.He showed that { f (n) } 1/n oscillates between finite positive limits .
From our theorem 24 we immediately deduce its convergence .
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