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ON SOME PROBLEMS OF BELLMAN AND A THEOREM
OF ROMANOFF

By I'. Eands

University of dberdeen
Denote
opln) = 3, d*
f i
Bellman® proved that if f(r) is any polynomial with integer coeflicients
and s > 0 then (¢, depends on f)

L Bellman, Doke Math, Teavoal 17 (19503, 149168,
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}; g Fin)) =y kolx)

=1

[ proved® that if f(n) is irreducible then (g, (1) =d (n) =number of
divisors of n)

caxlopx < 2: d{fin)) <eszlogz.

=]

Bellman' also raised the problem of investigating sums of the form

i o, (a" 4 1) and i dia® 4 1,

rema) =]

In the present papar we prove that

() 3 ons(f @) =ar 4ol

and that for s small enough |

] -—E T_gla" —1)—> en

By a slightly more complicated argument we could also prove that

ety
(3) '_l IT-.'L-I‘E"-!- 1) —— o=,
E e
We suppress the proof of (3). It seems likely that for any s < 1 and any
polynomial f(z)
E Oy [ fla") J— .
=L
Romanoff® proved that the density of integers of the form p+a® is
pusitiva. In this note we outline a proot of the result that the {Iensil.}r of

% London Math. Soo. Journal (1951,
5. Math. Aooalen | 195%).




No. 4 ON SOME PRUBLEMS OF BELLMAN AND 4 THEOREM 411

integers of the formn p+ f{a") is positive.  One of his main lemmas was
That the series

=

' 1

& 2 AL
converges, where [, (K) denotes the exponent of a (mod K) i.e. the small-
est integer ¢ so that & =1 (mod K). Romanofi’s original proof was com-
plicated. Later Turan and I* found a much simpler proof. In the
present paper I give a perhaps still simpler proof and also prove several
generalisations.

Taworem 1. Let b, < b, < -+ be a sequence of integers satisfy-
ing
2 ]_ugl_ug_ba_f__.._ ol
Z R

Denote by L{d) the smallest index ¢ so that by=0(mod d). If no b
is a multiple of d then | (d)=

Then E "Fi'flT;E}" converges.  In fact

el o loglog by
5 ¥ = —e_ntE 4
® 5wl < & S+

Define
1 &
G By = e e
(6) ET P f |E-: T
difby 15l F

By a well known result

1
{7 g1 {y) = Z = < gy loglogy.
i
Thus
(8) th < 0y (Bybo  « By) < ¢ (loglog bF) = ¢ (loglog by + log &),

4. Bull de TTnst, Math, ot Még, a Tniv Tunask (1958) p, 101-104,



$13 B, BrDOS Val. 1

Thus by changing the order of summation by partial summation® and

by (8)

o 1wt th . = loplag b, S logk
® 2o —Em'm"'nz*ﬁpﬁ“ﬁﬁ—g" '

=1 F E=1

which proves Theorem 1.

The convergence of (4) follows from Theorem 1 by putting b, =a®*—1.
From (5) we obtain further that, for a > 2.

=

1
{10} Ej 'ﬂ;{‘ﬂ = ¢ loglog a,
(10) is a sharpening of a result of Landan® end was previously proved by
Turan and myself” by a different method. Tt isnot harvd in fact to deduce
from (9) a further sharpening of (10)

1 - 1 1
11 max -— £ max ——— € IMAX — = .
i lﬁﬂﬁré d ==~=§:+1,§1 fely 1K) @mE F ek

The first inequality of (11) is trivial. The second follows easily from (9)
and the well known inequality

1 i |
max —— — AX — =colog k.
1;@% 4 ’WE g raT

[t is possible that the right side of (11) can be replaced by max E —:— +
ISaSe o
o (1), but this [ can not prove. -

Theorem1 is the best possible in the following sense: if b, < b, <+ -+

6. The partin]l summation is permitted here E EQE—IH—M— < e clearly implies
=

lim inf log -':gl'k =0 (in faet it implies lim E'E.I?E_E'." =0, Originally in Theorem 1. I

had the extry condition lim w =, The fuct that this condition is UNNECRESATY Wad

pointed out to me by de Bruijn.
Acta Arithmetica Vol. 1.
T & ibid (1953, 194147,

Tl
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fails to satisfy the relation % "’gi'}f-f'* < oo, there exists a sequence
]

B, < B, <+ for which 8, = b, and Z m = co. Tosee this put

m= Il 7

l"-Uvi'n-

P

From the well knﬂwn result [l pP< 4 it follows that B, <b.é& end
Pﬁ:r
have the same meaning as in (6) with B, replacing &, We evidently
have.
(12) = |l [1 + l} = ¢y loglog by,
Logdy F
e

Tf E _I';E.IL"‘.LEL = oo we obtain by partial summation, and (12)
T

h Ex - Inglagh _
21 i e el D~ 2 i W

x-!. L F=1 =1

-4

Put by=a*—1. Several problems can be raised about the order of
magnitude of &, It seems likely that limsup & = = but that £ tends to
o as r tends to infinity fairly fast (possibly almost as fast as 1/r).

I can prove that 2 Tf_::'l?‘f has a distribution function, in other words:
oo

For every ¢ > 0 the density of integers a for which 3 Tﬁﬁ =~ O exists
=1 "

and tends to 0 as C— co and tends to 1 as C— 0. The proof is not easy
and we do not, give it here,

THEOREM 2. FLet b, < b, < --- be a sequence of integers satisfy-
ing
(13) loglog by < ey log &, =142 e
Let f(d) be any increasing function for which ;: 5 fL 4 converges. Then

;l W also converges. In fact
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Theorem 2 clearly applies for b =ga"—1.

i

1 ;
:E_. E i'_llilg [‘fﬁ‘tk.ll [ U)ﬂvgrgl?h.

Thus Theorem 2 imp]ieﬁ that

{15) and {7) implies that

5 !
(15 tr= ¥ — <eglogr.
T T )

Thus by chanping the order of sammation, by partial summation
and by (15) we have

31w s s & fat)—fl)
(16) o dF 1)) ?:I Fie) 2 fr” ST 4+1)

o oz fiz + 1) — flr)

s Py FlE 1)

the partial summation can be used only if lim +./f(7)=0. But this is satis-

fied, since by (15) ¢, < ¢,, oz 7 and the convergence of ,'E: 375@_’ fd)

increasing implies log ¥/f(v)— 0. This last statement is well known

and can be seen as follows: The convergence of ¥ < f1| 4~ implies that
=1 i

1 e )
aFaT tends to 0 asTtends to =0, But

F Rl

log

i

—a goeod.

UI|'-
a__,'5|

; ¥ 4
- o
'r’i' 'ijl.fﬂ .r'rl-. id

Now we prove the following.

Lemma 1. _dssume that f(d) is increasing and that 2 ~ f o) cari-

I'J""

verges. LThen

=

logw x4 1)—f(7) < |
=25 FEF P Lure
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(16} andl Lemma 1 clearly implies Theorem 2. To prove the lemma
put

= ‘1E“E_ff':f+1'}-‘f[}
Z i I T S b I

',_

First we estimate 2. Put =¢*" and denote by r, the smallest ¥ for
which fi(r;) = 2 f(¥,_;). Let j—1 be the greatest index for which

ak1
Ty 80,

Clearly = | but j can be 2. Put r}.—m"'“t. Then cleariy

=1 Vi

| - Hlogr £ (r 4+ 1) = f(2)
(7) 2=% X 7o a0
Now
4'=_|] —1
logw e+ 1)— fr} . ]np'_fr f[-r+1 — fi7)
(3] s q?ﬂf flir41) ’ﬂ E S+
o 108 Ty it
T fE) TS
Thus from (17) and (18)
2}‘”
S T <2 F <
Now
o e 71 = o 1 2 +I.-.1 i 1 XY
20 = =
Lo ;l:fv_z—:ﬂ § t-ﬂf-lf':l ‘r Hg

Hence from (19) and (20)

=B ()< < E

Tl

which proves our lemma. Thus the proof of Theorem 2 is complete.

THEOREM 3. Let f(7) be a polynomial with integer coefficients. We
have



+E Fi ERBOS Vol 1

=

3, 01 (fla) = A+ o(a),

Without loss of generality we can assume that the coefficients of
flx) have no common factor. For simplicity we further assume that the
constant term of f(z) is relatively prime to a. Tt will be clear from the

prool that it would be easy to omit these assurn ptions,

Denote by g, (d) the number of solutions of the congruence
FlaM=0{mod &), 0 <k = x.

By interchianging the order of summation we have

(21) > aa(fa) =3, 24 -3 43
=1 =1
where in 2, I, (d) = a, and in 2, I (d) > =, (I,(d) is ‘the exponent of
a (mod d)).

Denote by »(d) the number of distinct prime factors of d. A well

known theorem of Nagell® states that the number of solutions of
Firi=0{mod d), 0 <k=4d

is less than 5" where s is a constant depending only on the polynomial

f(z). Therefore the number of solutions of
(22) Sla¥)=0 (mod d), 0 < &k = 1, (d)

is at wost s (the numbers ', 0 <i= [ (d) are all incongruent (mod

(d). Therefore for the d in 2, g_(d) < s Thus

8. Journal de - Bath. Secemd serics, Vel 4 (1921). See plen LEFoe, Jourmal of the Lenden
Minth, Soo. (19387




N, 4 ON SOME PROEIFEMS OF BELLMAN AND A THEOREM 17

wd} (e
@ s, eF T-<I (1+i-+§,+---)
i"ﬁ!fi‘J WL (k)
=1 ifl

2
=Ml (t+527) <o (X 7)) <Copzre=ol)
diui-lg”“hj pﬁjrmh

The last stop ol (23) is based on the well known inequality
1
(24) z = < 5 logloglog ».
py P

Thus it is enongh to consider =,.  The sequence a* is periodic modd
(its period is [, (d)). Thus for fixed d lim g, (d)/x exists.
Further by (22) for the d in 3, (ie. I, (d) = z).

i)

(25) gld)<x :E;'} +ol =g er L)

Thus in view of (24) andttmexiﬁtenmnflimg‘i—d}wnnhmin

So= Axtol@) 4= 3 ™, where ng=lim 49

el ] x

il we can prove that
S i)
(26) 5 d..!,{d}f'“'

Instead of (26) we proye the following more general

LEMMA 2. Le b, < b, < +-- satisfy for every €20
log log by,=0 (K). Then for every s

3T rh
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The proof of Lemmna 2 is alinest identical with that of Theorem 1. We
Dn]}' oulline the proof.  Puot

\ i""‘ﬂ'
gl — E: i E 14,
i o |
aafisier

By (24) we easily obtain ¢ < ¢, (log log b)¥ =0 (k). Thus

= P ‘ _ % I.!I
E d1(d) 2, 2* i v

¥l

Thus the proof of Theorem 3 is complete.

THEOREM 4. The density of the integers of the form p4 f(a") is
posttive’. .

We are only going to indicate the proof, since it follows very closely
the ideas of Romanoff, except that a result like Theorem 5 is needed.

We want to estimate the number of distinet integers H(z) not
exceeding X of the fom p+ f(e"). Let k< ¢, logX where ¢, is a
sufficiently small pesitive censtant.  Then clearly f(a*) < x/2. Denote
now by &t (x, X) the number of integers of the form

p+fla¥), p< ;

which are not of the form p+ f(a"), 7 < k. p < 2/2. It follows from the
results of Schnirelmann®® that the number of solutions of

prf@)=p+fla) p<

is less than
1

I 6 +F)

't,.rm*:—ﬂ:in

(27) W on 2]

9, This theorem wad suggested to me in o lelter of Shapiro,
10, See e, g, Landun, Neousre Ergebnisse der Additiven Zahlentheorie,
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Thus from (27) we have

o
@ rebce() gy I (1+5)>

gl F {at J (il

=1 1
T . x I ket
Hlogw UUE#‘J‘E! P|[_ﬁ:sl],l;-[-ftlll'.i'( P}

since w (z/2) > x/Vlogx. Now we prove the following

Lenmmna 5.
=1

: Il <esk
= i —r it

Assume that the lemama is already proved. Then we have from
k < e, logzx our lemma and (28)

=1 kx X
(29) hiz k) > Flogs — 1 (iog > Tz

if ¢y, 1s sufficiently small.
From (29) we have

£
Hiz= kiz.k) > ¢ »
which proves Theorem *+.

Thus we only have to prove the lemma. But we can suppress the
proof of the lemma since it is identical with that of Theorem 3.

In a recent paper'' | proved the following theorem:

Let a, < a, <+ ++, a1y, be an infinite sequence of integers. The
necessary and sufficient condition that p+a, should have positive density
is that the following two conditions should hold

(30) a<d 3 <o
I_n*

1L, Sumra Brasilicosss Math, (1951},
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By similar methods as used in Theorem 5 and in the above paper I
can prove that if (50) holds then p+ f(a,) bas positive density.
THEOREM 5. Let s > 0 be sufficiently small. Then

1 T
iy == T ke )= 08,
it Mg

We have by interchanging the order of summation

&

2 T-et—1)= :é_i ] 5

Thus wo prove Theorem 4 it will suffice o show that lor & simall
enough .

= G
(31) 5 FLE ="

(31) will be an inmmediate consequence of the following

LEmMMA 4. There vrists a censtant ¢,, so that for cvery & and
sufficiently large X the number of integers d S x satisfying | (d) < & is
greater than X=!

Assume that the lemma is already proved. Then a simple argument
shows that (31) diverges for overy s < ¢,. Thus we only have 1o prove
the lemma. We need two further lemmas. Let X be sufliciently
large.

LEmMa 5. The number of squarefree integers not exceeding x
composed of Gy, (log x)" = [log log x arbitrarily given primes not exceeding
(log x)'"u is greater than s where ¢,y depends only on ¢y,

This is lemma 5 of my paper “On the normal number of prime
factors etc” Quarterly Journal of Math, Vol 6. (1935) p. 212.

LemMa 6. Let ¢,y be sufficiontly small., Then the number of primes
p < (logx)'*s for which all prime factors of p—1 are less than
(log x)'"u is greater than ¢y, (log £)' s .
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This is lemma + of the above paper (p. 212). (In the lemma replace
logz by (logz)'~ and 1 30 by 1+c.,/(1 —c.,).

Denote now by py, py, - - - the primes of Lemma 6 and by 4, <d,
< vee L d, S x the squarefree integers not exceading x composed of the
p s By lemma 5 r > 2w Further if £ is squarefree /, () is clearly not
greater than the least common multiple of all p,—1,p, / k. Thus finally
since all the p,—1 with p, / d have all their prime factors not exceeding
(log x)* s and each p, | @ is loss than (logx)' @, we have

Lid) < [.U"E #)Heg ]-ul.nu;l-cm ] < (log )t ehaatton s)t-ea of=").

This ogether with » > 2% proves Lemma 4, and thus the proof of
Theorem 4 is complete,
Tt seoms doubtful whether }': d{a" % 1) has a satisfactory asymp

totic expression. A theorem of Bang slates that except whena=2, n=0
there always exists a prime pla"—1,pta™—1,1 =m<n. Thus

Pla® —1)22*™ = 2 (v(y) denoles the number of distinet prime factors
of y). Thus

) 1

2) (a% — 1)y = ..g=im
(32) dia"—1)= .2
Now it easily ollows from the prime number theorem that
53 " {1 — log 2 Moglog =
(53) :m“ vin) > 1 —&) ing
Thus from (32) and (33}
(34) § d(a" — 1) > Bg{l-lJln,u: e inglog = > yd

for every A if x is sufficiontly large. (54) can be shown in the same way

x

for Z dia* 4 1).

(Brecived Aus, 25, 1951)
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