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ON SOME PROBLEMS OF BELLMAN AND A THEOREM

OF ROMANOFF

BY P. ERDÖS

University of Aberdeen
Denote

u, (n) =

409

air

Bellman1 proved that if f (n) is any polynomial with integer coefficients
and s > 0 then (c1 depends on f )

1. BeIlman, Duke Math, Jounial 17 (1950), 159-165 .

S



410

(1)

(3)

P. ERDOS

	

Vol. 1

X

cT_s(f(n))=cjx+o(x) .
n=1

I proved that if f (n) is irreducible then (6 0 (n) = d (n) =number
divisors of n)

x
x log x <

	

d (f(n)) < c3 x log x .
it=1

Bellman1 also raised the problem of investigating sums of the form

-,(a", + 1) and

	

d (an 4- 1) .
n=I

In the present paper we prove that

x
0'-1 (f (a n)) = C3 X + O(X)-

n=1

2. London Math . Soc . Journal (1951) .
3 . Math. Annalen (1934) .

and that for s small enough

x

(2 )

	

-s (an " 1)'~ oo
7Z=1

By a slightly more complicated argument we could also prove that

1 X,~

Y, o'-s (a n +

	

co.
X n=I

We suppress the proof of (3) . It seems likely that for any s < 1 and any
polynomial f (x)

1-

	

(Y, [f (an)

	

,
x n--1

Romanoff3 proved that the density of integers of the form p+an is
positive . In this note we outline a proof of the result that the density of

of

nmI

I
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integers of the form p + f (a") is positive . One of his main lemmas
that the series

(4 )

(5)

( 6 )

Define

d -I

By a well known result

(7)

Thus

k-1

converges, where Z,, (K) denotes the exponent of a (rnod K) i.e. the small-
est integer t so that at=1 (mod K) . Romanoff's original proof was com-
plicated . Later Turan and 14 found a much simpler proof. In the
present paper I give a perhaps still simpler proof and also prove several
generalisations .

THEOREM 1 . Let b1 < b 2 < . . . be a sequence of integers satisfy-
ing

Denote by Z (d) the smallest index i so that b i - 0 (mod d). If no b
is a multiple of d then 1 (d) --

Then	d	Z4,	 Z converges. In fact

1

k Za (k)

loglog bk <
k2

i < c	loglogbkd 1A(d)

	

+ c .5
dal

	

k=1

	

k2__

Fa =

	

d , tk
d1b z

d+z l,I_ i<T

1
o'-i (y) _

	

- < c6 loglogy.
d y d

(8)

	

tk < o-- 1 (bI b 2 . . . b1 ) < c6 (loglog b7l) = c6 (loglog bk + to k) .

4. Bull . de l'Inst . Math. et Mec . a l'Univ Tomask (1935) p. 101 .103 .

vv as
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Thus by changing the order of summation by partial summation s and
by (8)

d l (d)d=

EZ tk

	

< c

	

loglog bk + c

	

log k
k=

	

(li -t 1 )

	

6 k=

	

k`

	

6
k-I k2

which proves Theorem 1 .
The convergence of (4) follows from Theorem I by putting bk.=a k- 1 .

From (5) we obtain further that, for a > 2 .

(10)	 1 	< c7 logloga7k= k l a (k)

(10) is a sharpening- of a result of Landau6 and was previously proved by
Turan and myself' by a different method . It is not hard in fact to deduce
from (9) a further sharpening of (10)

(11)

	

max

	

1
< max	 1 < max

I=a<x d,a d

	

2<a<x+1 k=1 k 1a .( k)

	

1 .na_x=

The first inequality of (11) is trivial . The second follows easily from (9)
and the well known inequality

(9)

	

1

had the extra condition lim loglog bk
=0 . The fact that this condition is unnecessary was

pointed out to me by de Bruijn .
6. Acta Arithmetica Vol . 1.
7. 4. ibid (1935), 144-147.

max

	

-- - max

	

-- < c9 log k.
1=a~xk a d 1C-:9x dla d

iIt is

	

that the

	

be

	

bypossible

	

right side of (11) can

	

replaced

	

max I d +
1:a. ;~ix

o (1), but this I can not prove .
d1a

Theorem1 is the best possible in the following sense : if bI < b2 <
log lo g bk

	

- clearly implies5 . The'

	

summation is

	

here

I

partial

	

permitted

	

h,

	

y
k=

lim in£ log log
bk =0

	

fact it implies lim log log bh =0 . Originally in Theorem 1 .(in



No. 4

	

Ors SÖME PROBLEMS OF BELLMON AND A THEOREM

	

413

fails to satisfy the relation

B1 < B2 < . . . for which Bk < bk and I

If Yk=t
log log bk = COk2

-i

Bk p
log bkP< 2 --

From the well known result ]T p < Iy it follows that Bk < b7, . E, and tkpal
have the same meaning as in (6) with Bk replacing bk . We evidently
have .

tk = l t (1 + -1 ) > clo loglog bk .
{ log bk

	

p

< co, there exists a sequence

d l	 1
(d)

= 00 . To see this put

we obtain by partial summation, and (12)

1 _

	

Ez

	

tk

	

> clo

	

loglog bk = Co
d= d 11,

	

z=1 z

	

-1 k (k + 1)

	

k=1

	

k

loglog bk < c11 log k, k=1 1 21 . . .

q . e. d .

Put bk =ak -1 . Several problems can be raised about the order of
magnitude of 8 . It seems likely that limsup rer= oo but that ~, tends to
o as r tends to infinity fairly fast (possibly almost as fast as 1 /r) .

I can prove that	 kla (k) has a distribution function, in other words :

For every c > 0 the density of integers a for which Y k it k) > C exists
k=i

	

a
and tends to 0 as C-+ co and tends to 1 as C-* 0 . The proof is not easy
and we do not give it here .

THEOREM 2. Let b 1 < b2 < . . . be a sequence of integers satisfy-
ing
(13)

Let f (d) be any increasing function for which

	

df(d~ converges . Then
d-t

	1 	also converges. In factde1 df (kd))
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Theorem 2 clearly
1

k (/,,-	[l(1)	 converges
.

(15) and (7) implies that

tz <
lJbj" •

Thus by changing the order of summation, by partial summation
and by (15) we have

1

	

-

	

sr
d=1 df (Z (d))

	

f (z)

verges. Then

	 1		1
df (d) - f (z)1El

C13

P. ERDÖS

d f (1(d) )< C O ,~ d `(d)a=I

	

1

applies for bm=a-- 1 . Thus Theorem 2 implies that

1
d < c131og t

.

ti-

Log Z f (v ±- 1) -,f (2)
if (z)

	

f(z+ 1)

and can be seen as follows : The convergence of

1

	

tends to 0 as z tends to

	

But-

	

00 .d f (d)

t,E f(v+1)--f(z)<
f (s)

	

f (s + 1)

).1 IOgT
3 f~ )---0

	

9 • e . d .

log, T
i`(z)f_(z f(z+ 1)

	 (z) < 16 ~ ~f(2) .

Vol. 1

the partial summation can be used only,if lim t5/f (v)--0 . But this is satis-

fied, since by (15) tz < c13 log r and the convergence of (d)

increasing implies log z'/f(t)-* 0 . This last statement is well known
I

2-4 d (d) implies thatd-I

Now we prove the following .

LEMMA 1 . Assume that f (d) is increasing and that t d f (d) con-_
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(16) and Lemma 1 clearly implies Theorem 2 . To prove the lemma
put

-I1o-z'f('r+1)- f(T)

I f (T) f (T + 1)e

First we estimate 2k. Put' r,=e2k and denote by ri the smallest r for
which f (ri) > 2

	

Let, j - 1 be the greatest index for which

.,k+1
TI-I `e

Clearly j > 1 but j can be 2 . Put yj =e`''k+1 . Then clearly

1 'i+1-I .
T f (T + 1)f(T)IogI	- k-

	

f(~)

	

f(T+ 1)
(17)

Now
x i+1-1

°(20)	1
Tf (T)

Thus from (17) and (18)

1k < 2k+2

Now

Hence from (19) and (20)

=

		

--2r +3

	

16

	

1
() <k

	

f (e2T)

	

T- Tf(T)

which proves our lemma. Thus the proof of Theorem 2 is complete .
THEOREM 5 . Let f (x) be a polynomial with integer coefficients . We

have

r .1 -1
logTf(T±1)-f(T)<1ogTi+l z±1 f(r+1)-f(T)
f(T)

	

f(T+1)

	

= f(Ti)

	

f(r±1)

2 0' Ti+1 < 2k+2
f (Ti)

	

f (Lf)

7~1 1

	

2k+3
i- f (Tt) < f (elk)

2T+I
1

	

1

	

- 1

	

1
of (v)

	

zsof (e`T)

	

v > 2

	

f(e2z-o)e'
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6_I (f (ak) ) = A x + o (x) .
7,-

Without loss of generality we can assume that the coefficients of
f (x) have no common factor . For simplicity we further assume that the
constant term of f (x) is relatively prime to a . It will be clear from the
proof that it would be easy to omit these assumptions .

Denote by gx (d) the number of solutions of the congruence

f(ak)= 0 (mod d), 0 < k < x.

By interchanging the order of summation we have

(21)

	

6-I(f(ak)) _

	

~ 2dd) _ I +12
k-I

	

d=1

where in X17 l, (d) ~ x, and in G27 l a (d) > x, (l a (d) is 'the exponent of
a (mod d)) .

Denote by v (d) the number of distinct prime factors of d. A well
known theorem of Nagell 8 states that the number of solutions of

f (r) = 0 (mod d), 0< k< d

is less than st(i) where s is a constant depending only on the polynomial
f (x) . Therefore the number of solutions of

(22)

	

f (ak) -_ 0 (mod d), 0 < k < la (d)

is at most s" (d) (the numbers a', 0 < i < 1,,(d) are all Incongruent (mod

(d) . Therefore for the d in .2 2 gz (d) < s" (d). Thus

8 . Journal de - Math. Second series, Vol. 4 (1921) . See also L.K.Hu-, Journal of the Lenden
Math. Sec. (1938) .
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(23)

(25)

Y.° <
,v(d) ,v(d)

	

S

	

S
<Ir

	

(t+_

p
+

. 7

A+ . . .)
d if (ak)

	

Plnf (a k)
A-1

	

k=1

(1 + -j~
s t) < exp (

r

	

PS) < (log x)`L1 = o (x) .

d lIf (ak)

	

PJII_f (ak)
k=7

	

k=7

The last step ol" (25) is based on the well known inequality

(24)

	

-1 < c15logloglogy .
P!r P

Thus it is enough to consider 2i . The sequence a ir is periodic modd
(its period is i0 (d)) . Thus for fixed d Iim b°=(d)/x exists .

Further by (22) for the d in 251 (i .e . la (d)

	

x).

sv(d)

	

Sv(d)
.r (d) < x ?a(d) +

v( Zs < 2 x
z a(d)

Thus in view of (24) and the existence of lira g=( - we obtainx

I = A x+ o (x), A

if we can prove that

(26)

Instead of (26) we prove the following more general
LEMMA 2 . Let b i < b0 < . . . satisfy for every 8 > 0

log log bk = er (k) . Then for every s

S v (d )
< ~ .

d=I , la (d)

nd , where nd = lim gx(d) ,
X-- a

S v(d )
< Co .

d=I d Za (d)
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The proof of Lemma 2 is almost identical with that of Theorem 1, We
only outline the proof. Put

By (24) we easily obtain

is less than

(27)

d=

Sv(d)fsl =

	

t(s) =
k

	

11 (s) .d

	

,
d,

d'Ir, Ici<r

< I7 (log log b,.)°16.0 (k'). - Thus

F ( s)

	

t (s)

r

	

) 1 (k I t)k~1

Thus the proof of Theorem S is complete .
THEOREM 4 . The density of the integers of the form p + f (ak) is

positive s .
We are only going to indicate the proof, since it follows very closely

the ideas of Romanoff, except that a result like Theorem. 5 is needed .
We want to estimate the number of distinct integers H(x) not

exceeding X of the form p+f (a') . Let k < c17logX where c 17 is a
sufficiently small positive constant . Then clearly f (Cl') < x/2 . Denote
now by h (x, K) the number of integers of the form

P + f (all), P <
-2

which are not of the form p+f(a 1 ), l < k, p < x/2 . It follows from the
results of Schnirelmann I0 that the number of solutions of

r=1

x
P +f (a k ) = P+ f (a1 ), p<-

2

1}
C13	

x 	~7

	

P
-~(log

x)2 F !(f (a) -f(.Z))
+

9 . This theorem was suggested to me in a letter of Shapiro .
10, See e. g. Landan, Neuere Ergebnisse der Aciditiven Zahlcntheorie,
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Thus from (27) we have

1
(28)

	

<a (x, k) > 7C (

	

+ ->
lo
x
g xX2

	

(

	

) Z~I n~ (ak)-f (at))

	

P

x -
x k-I

	

1
1 -{- - ,

4 log x

	

(log x
t=1 P (f (ak) _ f (aZ))

	

P

since as' (x12) > x/4 log x. Now we prove the following
LEMMA 3 .

k-I

N

	

[

	

< cI9 k.
1-I P I (f (ak )-f (at))

Assume that the lemma is already proved . Then we have from
k < c 17 logx our lemma and (28)

(29)

	

h (x, k) >
4

	 xx - c19	(1	 g,>x
(logr

	

log x

if c 17 is sufficiently small .
From (29) we have

xH(x) ?

	

h (x, k) > c17 10
k<o17 toes

which proves Theorem 4 .
Thus we only have to prove the lemma . But we can suppress the

proof of the lemma since it is identical with that of Theorem 3.

In a recent paper" I proved the following theorem :
Let a, < a„ < . . ., a k 1 ak+l be an infinite sequence of integers . The

necessary and sufficient condition that p + a, should have positive density
is that the following two conditions should hold

(30)

	

ak < ck ,20

11, Summa Brasiliensis Math . (1951) .

I
1

d d__ < c

20 .
djak

419
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By similar methods as used in Theorem 3 and in the above paper I
can prove that if (50) holds then p +f(ak ) has positive density .

THEOREM 5. Let s > 0 be sufficiently small . Then

1 x
urn --

	

(1_ S (ak -
X - X k=1

We have by interchanging the order of summation

2

	

X

I a-, (ak - 1) >
I

k=1

	

d-1

Thus to prove Theorem 4 it will suffice
enough

ds la(d) -

x 1 1

Za (d) I ds

to show that for s small

(31) will be an immediate consequence of the following
LEMMA 4. There exists a ccnstant c21 so that for every cc and

sufficiently large X the number of integers d < x satisfying I, (d) < d` is
greater than X" , 1

Assume that the lemma is already proved . Then a simple argument
shows that (31) diverges for every s < c 21 . Thus we only have to prove
the lemma. We need two further lemmas . Let X be sufficiently
large .

LEMMA 5. The number of squarefree integers not exceeding x
composed of c22 (log x) 1 i" C23 /log log x arbitrarily given primes not exceeding
(log x)1+023 is greater than xc2 L where c21 depends only on c23 .

This is lemma 3 of my paper "On the normal number of prime
factors etc" Quarterly Journal of Math. Vol 6. (1935) p. 212 .

LEMMA 6. Let c23 be sufficiently small . Then the number o f primes
p < (log x) I+c„3 for which all prime factors of p - 1 are less than

(log x) 1-"13 is greater than c 2 ,, (log x) 1+ °21
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This is lemma 4 of the above paper (p. 212). (In the lemma replace
logx by (log)-x)1-`23 and 1 +Q by 1 +c, z/(1 -c,,,) .

Denote now by p1, p2, • .. the primes of Lemma 6 and by d1 < d2

< . . . < d,, ~ x the squarefree integers not exceeding x composed of the
s. By lemma 5 r > x`21 Further if k is squarefree i ( k) is clearly not

greater than the least common multiple of all pi - 1, p1 / k . Thus finally
since all the pi - I with pi / d have all their :prince factors not exceeding
(log x) 1- °23 and each pi I d is less than (log x)1+023 , we have

Z d ` < 10"X 1}023
'c[(1-9x)1-`"3 <

lo,r :r (1-1-C)23(1(' x)'-'23 = O x13

a( J

	

~(

	

)

	

]

	

( s )

	

( ) .

'] .'his together with r > x°2i proves Lemma 4, and thus the proof of
Theorem 4 is complete .

It seems doubtful whether

	

d(an t 1) has a satisfactory asymp

totic expression . A theorem of Bang states that except when a = 2, n = 6
there always exists a prime p a"- 1,p+ a 71 - 1, 1 < 7n < n . Thus
V(an -1)?2" ( ") - 2 (v (y) denotes the number of distinct prime factors
of y) . Thus

(32)

	

d (a" -- 1) >
1 2 ~
4

Now it easily follows from the prime number theorem that

(3 3)

Thus from (52) and (35)

x

(34)

	

~~ d(an - 1) > 22(1-r)logx/1og1ogx >

n=1

for every A if x is sufficiontly large . (51) can be shown in the same way
x

for

	

d (a" 4 1)

max v (71) > (1 - E )lot; x/loglog x
ISn-x

(Received Aug. 25, 1951)
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