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9. After this first reduction of our problem we transform it in the
following way. Let for the polynomial V(z) defined in (8.4)
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Owing to the trivial inequality I sk I < n the inequality (9.4) is restrictive
only for those k's for which

kC log g` (n, 0) .
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Hence the proof of Theorem 11 is reduced to the question whether or not
the inequalities (9.4) with the restriction (9.5) involve equidistribution
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we obtain - anticipating Theorem III - that for every 0 <_ a < 0 < 2-a
we have

z 1-
a
n

a'P,:5#mod2n

	

2n

i .e. Theorem II will be proved .

10. Before turning to the proof of Theorem III we sketch the corres-
ponding reasoning for Theorem I . In this case - as we remarked in i) -
the general case can be reduced to the case when all the roots lie on the
unit circle. Then in (9.2) M.*o is replaced by maxIV(z) f = 14I. Applying

jzj-t
the theorem of HADAMARD-BOREL-CARATHEODORY to the interior circle
z = o, where we determine o suitable later, we obtain
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of the p,'s mod 2 n. In other words we reduced the proof of Theorem 11
to the proof of Theorem III with

(k) =
9* (n~~) (4)k , m = logg* (n , O)

	

(9.6)
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This gives according to the corollary of Theorem III an error term 0(0s)
only. Hence Theorem I seems to be much deeper . This seems to justify
the use of more difficult analytical tools in the proof of 1) .

I1 . For the proof of theorem III we need some simple auxiliary con-
siderations .
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where cl and later c2, . . . denote numerical constants . Further
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12. Let a be a parameter subjected only to the restriction
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and let

We have also
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and since the integrand of (12 .2) is an even function of t
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we obtain at once that the integrand of (12 . 2), i .e . ;Tm (x, a) itself, is a
trigonometric polynomial of order S_ m

;rm (x, a) = ao (a) -}- X (a„ (a) cos v x -}- b, (a) sin v x) .

	

(12.5)
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13 . We need some information about the coefficients in (12.5) .
Evidently; using (12.3),
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Further using (12.2)
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14 . We need also some information about the shape of the graph of
nm (x, a) . The definition of R and representation (12 . 2) give immediately
for every real x

F

(this has a meaning owing to (12 . 1) ) . Using the representation
and the estimation (11 . 3) we have in the range (14 . 2)
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0 { nm (x, a)` 1 .
We consider am (x, a) in the interval
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Further, for a < x < I a we have, using the estimation (11.2) and
the representation (12.4)
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15. Now we are going to prove the following
Lemma . Assuming (4 .1) and (4.2) we have for the number N of

the gw's lying in an arbitrary interval of length m	 01 with m > 20 the
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Proof . Without loss of generality we may suppose that our interval is

M+1=x-m+1
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(15.2)

We consider the polynomial am (x, y) where
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Replacing x in
m

nm (x, y)= ao (y) +. E (a, (Y) cos v x + k (y) sin v x)
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In the interval (15.2) condition (14 .2) is satisfied i.e. from (14.3) and
the non-negativity of am (x, y) we have
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Applying (4. 1) , (13.2) and (13 .3) we obtain further
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Q.e.d.

16 . Now we turn to the proof of theorem 111. Let d be given satisfying
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Arguing as before we obtain
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Now denoting the number of qw's in 0 < x < d by N (d), the contribution
of these rp,'s is, owing to am (x, d) :5 1,

N (d)	(16.3)

To obtain an upper estimation for the contribution of the other T,'s we

construct successive contiguous intervals of length m01 each starting from

x = d and covering the interval d x In. The contributions of the
g', in the interval
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is owing to the lemma
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The contribution of the gw lying in the remaining interval	 2 a we

can estimate similarly. Combining (16. 2), (16.3) and (16. 4) we obtain
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Obviously the same estimation holds for the number N(c, c + d) of the
qw's for which c < gw <_ c + d mod 2 a. The restriction d < a is obviously
unnecessary, if we replace cll by 2c11 = C12-

To obtain the upper estimation of N(c, c + d) -2 n we have, due

to

N (c, c + d) = n -N (0, c) - N (c + d, 2 a)

	

Q. e . d .

merely to apply (16. 5) twice .
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