
P. ERDÖS and P. TURÁN: On a problem in the theory of uniform distri-
bution . I .

(Communicated at the meeting of September 25, 1948.)

1 . In a forthcoming paper 1) we prove the following
Theorem 1. If

n
f(z)= a0+ . . .+a.Z"=an 17(Z-Z,.) . . .

	

(1 . 1)
V=1

and
max I f (z) I -M	(1 .2)
Izl=1

then for arbitrary fixed *0 S_ a < / < 2 az we have

at <arcz Ypmod2ar1-
#2~an'<16 iInlog~laMn1 . .

	

( 1.3)

Here - and throughout the paper - the expression a < arc z mod 2 n
means that the image of z on the complex plane lies in the angle formed
by arc z = a and arc z = fl.
The meaning of Theorem I is obviously that given a sequence of

polynomials (the n-th of degree n) having the maximum modulus Mn on

the unit circle and such that	Mn

	

increases "not too rapidly" (e.g .
~~ao an l

Mn 	log n	< e ) then the roots of the n-th polynomial are uniformly
hlaoan~
distributed in the different angles even if the size of the angle tends to 0
with l /n "not too rapidly" .

2 . It is natural to ask whether restricting only

}~Iao an l
~If(z)i-y[Rl

	

. . . . (2.1)

with fixed 0 (0 < 0 < 1) a similar equidistribution theorem can be deduced,
It is easy to see that this is not the case . Indeed let

2

	

n
q~ 1 (z) =1 + Z + z + " ' + n l

n

	

. (2.2)

f(Z) zn9,1 ~I
Z l) =1 + . . .+Z".

1 ) Submitted to the Annals of Mathematics .
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If z is on the circle I z I =
2e

then from STIRLING'S formula we have

n
_ j/n!W I i > 2n

z

W
n w n l

	

wi .e. the terms
n l

	

(n-1)1 , • . . ,, 1

	

I decrease more rapidly then a

geometric progression with quotient 1/2 . Thus
n

2

	

n
97 ~z l < Inl

	

IZl n

i.e . for
I z

	

Y-e

Jf(2e)
<2

f(z) (M5 2	 I	
a1 an

	 I I max 1 f (z) Mf 2 .
2e

On the other hand, as SZEGÖ 2) showed, we have for the number N 1 resp .
N2 of roots of q9 1 (z) (i .e . also of f (z) ) lying in the half plane Rz < 0 resp .
~ 0 the relations

lira - - 1 +1 , lim N2 - 1 - 1 ,
n-I ,o n

	

2

	

e n

	

n-*w n

	

2

	

e n

i.e. the roots of [(z) are not uniformly distributed in the different angles .

Hence the polynomials (2 .2) give the required counter-example for # : Ze .
Choosing instead of the partial-sums of the exponential series the partial
sums of certain MITTAG-LEFFLER functions 3) we see that even if a
sequence of polynomials (the n-th of degree n) divided by Y I ao an I
remains uniformly bounded in n over a prescribed circle I z 1 5 s with
0 < 0 < 1, the roots of the n-th polynomial are not necessarily uniformly
distributed in the different angles . No doubt, this fact throws a new light
on the theorem stated in 1 . and enhances its interest considerably .

3 . So without imposing any further conditions on i / M

	

(2. 1) can
f I a0 an_L

not lead to an equidistribution theorem similar to that of 1 . However we

2 ) G. SZEGÖ . Über eine Eigenschaft der Exponential-reihe . Sitzungsber. der Berliner
Math. Ges. 50-64 (1924) .

s) The distribution of roots of these partial-sums and even of the partial-sums of a
general class of integral functions of finite positive order has been determined by
P. ROSENBLOOM (to appear in the Transactions of Amer. Math. Soc.) .
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shall show that a simple additional condition can save the situation. We
shall prove the following

Theorem II. If all the roots of a polynomial

f(z)=ao-}- atz+ . . .-Fanzn

	

(3.1)

are outside the open unit circle, and for a fixed 0 < 0 < 1 we have for
I z I = 0 the inequality I [(z) I < Mo then writing (without loss of generality)

MO

	

n	 =
ao an

	

e9(n,i) . n= g (n, O)

	

2 . . . . (3.2)
~Il

we have for all 0 < a < <_ 2 a

&<arexy~;modz a
I #2a n t < C

log T log g (n .,O)'

	

(3.3)

where C denotes a numerical constant.
As we mentioned before while discussing Theorem I, if a given sequence

of polynomials

A (Z) = a (n ) + a(n) z -f - . . . + a(n) z n
o

	

t

	

n
n=1,2, . . .

has the property that their absolute maxima M( n ) on the unit circle satisfies
M(n)

lI
= e ° ( n ) , .

	

(3.4)
a ( n )a (n )0 n

then their roots are equidistributed in the different angles . Theorem II
reveals the surprising fact that the much weaker condition concerning
the absolute maxima Min) on the circle I z I = 0, (0 < 0 < 1 and fixed)

Min)
	 =e°(n) ,

	

(3.5)
aw

	 a(n)
0 n

can assure the equidistribution of the roots, if they are all >_ 1 in absolute
value .

In the case when
f

	 M'' is "not too large", e .g. when
Ia0anI

	 MO

	

jr

	

(3.6)
~Iaoan,

.=e

the error term (3 . 3) is of order n/log n . Curiously enough the same
holds if eyn- is replaced by n100 or even by a numerical constant say 10000 .
Though this error term is worse than that of Theorem I, DE BRUIJN 4)

In a letter wherein he conjectured essentially our theorem II .

5



+ e-")' < exp (ke-1) < exp (log e c (C log a-,))
=

9

- exp (log n . n ec) < 2 ' ~ I

	 ao
an l < 2ao

for n > n o = n o (0), and f (z) has roots of multiplicity > c log n -1 >
c n>
2

•
log n for n > n 1 = n1 (09), which evidently shows that the error term

in Theorem II is (with regard to n) the best possible . As a matter of
fact essentially DE BRUIJN'S example shows that Theorem II is for every
admissible g(n, 0) essentially best possible. Indeed put

1, _ [c log g (n • 0)]

	

k, _ [log c (n~ $)~
The polynomial

fl (z) = (1-z' ,)'C_

has a root of multiplicity

cn

	

c

	

n
> log g (n, T9) - > 2 log g (n, 0)

though on the circle I z = e-° _ 0 we have
	 cn

(

	

-c(~logg(n,i9)-1) logg(n, 0 )

	

cn
1 fl (z) =l1 + e

	

< exp log g (n, 0) g
(Cc

n, 0) <

< eXp g
if g(n, 49) is sufficiently large .

In our paper) we have not dealt with the question whether the error term
in Theorem I is best possible, with respect to n, but we can show by an

(1149)
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remarked that the order of the error term is best possible for every
0< 09 < 1 ; indeed

and

the polynomial

satisfies

$=e° , c>O

1=CIlogn]

	

k=[log
	 cnn

]
,

f (z) _ (1 - z')"
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example that it is essentially best possible . we do not discuss here the details .
For some further remarks about the relation of Theorem I and If see 10 .

4. In & we shall see using a method due to I . SCHUR 5), how the
general case of Theorem II can be reduced to the case when all the roots
of f (z) lie on the unit circle. In 9. we easily deduce Theorem II thus
specialised from the following
Theorem III. If 9P1, 922, . . ., op, are real and

sk(_
Z ekirr, ` p(k)

	

k= 1, 2	m .

	

(4.1)
V=1

m = m (n) - 1	(4.2)
then for arbitrary 0 :~ a < i4 :!~ 2 a we have

T,

	

1-
a2

n
n

a=?,:5,9 mod 2~

with a numerical constant C .

<C(_n_
+ m

w(k)~
, m+1 k_1 k

5 . Theorem III is obviously a "finite" form of the classical theorem of
H. WEYL 6) according to which if W1 , 992, . . . is an infinite sequence of
real numbers satisfying for every integer k the relation

n
lim - I eki7r = 0
n-+ ao n v= t

then for every 0 < a < f ::~ 2 a we have

lim 1

	

fr 1
n-rao n a= 1+r <pmod2n

v_<n

Another "finite" form of this theorem one can find on p . 101 of
KOKSMA'S well-known book 7), where a sketch of the proof is also given .
Theorem of VAN DER CORPUT and KOKSMA (in a slightly modified and
restricted form) . If there is a 6 with 0 < a 1 such that (4 . 1) holds for

z
k =5 IT T

K
log

3 (log log
b

- No ,

K being a suitable numerical constant, then with the same K we have for
all 0<a<f :~ 2 t

Z 1- fl-a n <Kdn+2K I w(k) +
cc<~ r<ftmod2a n

	

1<k< a
k

	

ka

+2K	 ( ) e 8910ekd
o <k<N, k

a)
s)

I. SCHUR, Sitzungsber. Berliner Akad. 403-428 (1933) .
H. WEYL, Über die Gleichverteilung von Zahlen mod Eins . Math. Ann.. 77,

313-352 (1916) .
7) J. F. KOKSMA, Diophantische Approximationen. Ergebn . der Math. and ihrer

Grenzgebiete (1936) .
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Choosing 6 m + 1 we see that in order to obtain the same error term

as in (4.2) we have to restrict more of the s k 's, i .e. Theorem III is sharper
than the theorem of VAN DER CORPUT-KOKSMA . As a matter of fact one
can not deduce Theorem II from it (whereas it can be deduced from
Theorem III) . This improvement was obtained roughly speaking by using
"DUNHAM JACKSON Means" of the FOURIER series of the periodic dis-
continuous function f2(x) defined by

f2(x)=1

	

for 0~x<a
f2 (x)=0

	

for

	

a:x<2ac
instead of the partial sums of the continuous function f3(x) defined by

f3 (x) = 1 for

	

tj x'E a-27
A (x) = 0 for a c x : 2 n,

and linear in the remaining intervals .

6 . We consider Theorem III in the special case

13k 1
c kz , 2 > 1 and fixed

for all k :5 n 11z,
Then the error term in (4 . 2), if m _< n 1 11 , is

<C( m +mz )

i .e. choosing m = [ n'I(z}1 )] we obtain the following
Corollary . If Bp i , . . ., Tp. are real, A>.= I and

n
eki? ,

vc1

then for all 0 S_ a < i1 <_ 2 a we have

_a

	

z
E, .

	

1-
2~

n < Cnz+l . . . . (6.2)
a S ,,<S mod 2a

with a numerical constant C .
The interesting question whether the estimation (6 . 2) is best possible

or not, remains open .

7 . L. KALMÁR 8) made the remarkable discovery that if the roots of the

8 ) L. KALMÁR, Az interpolatióról (hungarian). Matematikai és Fizikai Lapok 1926,
p. 120-149. The expression TI(z) in (7 .3) denotes the classical CEBICSEF -polynomial

To

	

+ V
22-1 ) n +(z	 ~22-1 )n

.

He actually proved a more general theorem when the roots of polynomials to n (z) lie on a
prescribed closed JORDAN-curve .

0<tj< 2

(6.1)



376

	

(1152)

polynomials

(0n (z) _ (z- .41)) (z-xiZ )) . . . (z--XI )) -

satisfy for all n - 1, 2, . . . the inequalities

. . (7.1)

. . (7.2)

and if the polynomials co„ (z) have the asymptotic representation (with the
obvious meaning of the n-th root)

urn f /Tn (i
;i~ = 1

	

(7.3)

on the complex z = x + i . y-plane, cut along the segment - I :!~ x :!5 1,
then the roots x (n) are uniformly distributed in FEJÉR'S sense 9) in [-1, + 1 ]
i.e. writing

xyn)=cosh").v-1 .2	n.n=1 .2	0 t9 1

	

2)~~Zn)~ . . .~~9rtn)`~t (7.4)

we have for every 0 :_5 a < / S 2 z

lim I ~ro 1 = #-a . .

	

(7.5)n-+ n a <~~n)<~

It is easy to see from (7 . 3) that the polynomial

W -}- I
2n Wn wn	2

w = Fn (w)

has all its roots on the unit-circle and for I w I < 1
n	

lim }1F. (w) =I	(7.6)

o

9 ) L. FEJÉR, Interpolation and konforme Abbildung . Gött. Nachr. 1918, p. 319-331 .
Generally if t is a given JORDAN-curve and the points z(n), zf2), . ..,zrsn) (n = 1,, Z, . ..) are
on 1, he calls the points z(n) uniformly distributed over 1 If mapping conformally the
outside of 1 onto the outside of I w I = and continuously on the boundary, the maps

w(n) = eiijnl	wnn)= afi ne)

are uniformly distributed over the unit-circle in WEYL'S sense i .e. for every 0 :~ a < P ;5 2 n

lim I ,;. 1 = #-aa
n-+ w n a<~ron)<~

	

2n

In the case when I degenerates into a doubly-covered segment -1 S_ x :5 + 1 then the

mapping function is z = } ~w + i l and we get the definition (7 .4)--(7 .5) . This definition
w

of equidistribution fits in with various function-theoretical problems even in the case of
segments.

9
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It is natural to ask for the "finite" analogon of KALMÁR'S theorem. Making
the following weaker assumption that the roots of the polynomial

f (z) = a o + . . . + zn	 ( 7.7)

lie in I z I >_ 1 and on a fixed circle I z I= t . 0<0<1 we have

f (z) I c 1 + E	 ( 7.8)

we may expect that the error term in the distribution of arc zY is much
smaller if E is "small". But the example of DE BRUIJN

A (z)=(1-z'8)"'

12= [w log n],

	

k2 = 1	 n
[ w log n

with sufficiently large w > coo (v9) shows as before that even under the
assumptions (7. 7) and (7. 8) we can not get a better error term than

0 (
n

log n
As was conjectured by DE BRUIJN, we can prove that the error term is

0 (
loge

)

, only if we assume that the sequence fn (z) of polynomials (7 . 7)
n

satisfies lim max I f n (z) I = 1 for every positive $ < 1 .
n-+ co I z I=t

8 . As mentioned in 4 . we start with the following remark of I . SCHUR .
Let z = re'P be a fixed point on the complex-plane, and = oe'7 move
along the line arc = y (y fixed) . Then

Iz-4'I 2 =r2 +e2 -2recos(p-a)
_ 2 r 2

I

z

i~I~

	 _e +e-2rcos(g7-a).

If e moves from + oo to e - r the expression on the right decreases
monotonically; hence if C - Co = oo eiyo, oo > 1 and I z I = r S_ 1 then

Iz-CO I2 , I z-ejr612.
I COT

This is the remark we need .
Let

I

	

n

f (z) = ao + . . . + a n zn=an H (z-zv)= an H (z-ev elf ,) (8.2)
V=1

	

V=1

be the polynomial of Theorem 11 ; let

I zv

	

v

	

1, 2, . . . , n	(8.3)

and the # of this Theorem be fixed. Let z be on the circumference of the
10
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circle I z 1 = 0 and CO be any of the roots zv. Then the remark (8. 1) gives

1z- Zv12 ='1z-e 1 Qv1 2 ,

	

v=1,2, . . .,n .
1z, I

Multiplying all these inequalities we obtain on the whole I z 1 = 6 the
inequality

i .e. a fortiori

V
(Z) 1 2 rI (z-eit,-)

V=1

W = max I w (z) I = max , I f(Z)I	M$ 	
. (8.5)

IzI=$

	

IzI=e / iaoanl

	

}'IaoanI
	 .

The distribution of the roots of p(z) in the different angles is identical
with that of J (z) . Now assume that Theorem II is proved in the case
when all the roots lie on the unit circle; then

p(z)=1+b1z+ . . .+bnzn,

	

Ibni= 1 . .

	

(8.6)

and with
n

max I' (z) l = M$ = e g*(n,M)
IzI=g

we have for all 0 < a < f < 2 a

a<p

	

mod2aL- P2a n < C log 0 • log	a (n,10) . . (8.7)
Then using (8. 5) we have

eg*(n,0)= Ma 'c M$ _ eg(R e), i . e. log g (n, 0) log g* (n . 0)
1~Isoanl

i .e. from (8. 7) a fortiori

fl - a

	

4

	

n
a<_ p, ,8 mod 2a

1- 2~r n < C log
0 • log g (n, 0)'

Hence Theorem II will indeed be entirely established once we prove it in
the special case when all the roots lie on the unit circle .

1I

2	 I f(Z)12

	

(8.4)
- Iao a,,I
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