P. ErD0s and P, TURAN: On a problem in the theory of uniform distri-
bution. 1.

(Communicated at the meeting of September 25, 1948.)

1. In a forthcoming paper 1) we prove the following
Theorem I, If

flz2)=ay+.. —!—a,.z“""anﬂ'(z—zw) P I )
and
tliala_xl|f(z)|=M'. “ s ow s oa v ow (Bd)

then for arbitrary fixed 0 < ¢ < f <2 a we have

ﬁ—a l/ M
. _B—a M as
R n|<16 nlogﬂaﬂanl (1.3)

Here — and throughout the paper — the expression e S arcz < fmod 2 n
means that the image of z on the complex plane lies in the angle formed
by arcz = a and arcz = .

The meaning of Theorem I is obviously that given a sequence of
polynomials (the n-th of degree n) having the maximum modulus M. on

the unit circle and such that

increases “‘not too rapidly” (e.g.

}, |ao an|
M,
V]acan
dxstnbuted in the different angles even if the size of the angle tends to 0
with 1/n “not too rapidly”.

<e1°°") then the roots of the n-th polynomial are uniformly

2. It is natural to ask whether restricting only

1 M
——max|fR) === . . . . . (21)
VTao an] I2izs ag an|
with fixed ¢ (0 <& <1) a similar equidistribution theorem can be deduced.
It is easy to see that this is not the case. Indeed let

2
(p;(z)=1+{—,+%+...+§—,
- (2.2)
(Vnl

fle)=z"¢, (—z‘—)=1+...+z”.

1) Submitted to the Annals of Mathematics,
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If z is on the circle |z| = L then from STIRLING's formula we have

2e
= ﬁ >2n
lwla wlu—l 1'
nl ' (n=-1)]""""" 1
geometric progression with quotient 1/2. Thus

i.e. the terms , 1 decrease more rapidly then a

n
VI’) w2
l?’l(? & STk
e!ﬂ
f(ﬂ) <2

; 1
ie. fcu:|zl$§

max |f(z)|=2.

|20 an| |z|=$

f@=2

On the other hand, as SZEGO 2) showed, we have for the number Ny resp.
N, of roots of ¢;(2) (i.e. also of f(z)) lying in the half plane Rz < 0 resp.
2 0 the relations

N1, 1 N1 1
nl-i,"ln'_z’{_ aw ' nljrn:on_z emn’

i.e. the roots of f(z) are not uniformly distributed in the different angles.
Hence the polynomials (2.2) give the required counter-example for & < %

Choosing instead of the partial-sums of the exponential series the partial
sums of certain MITTAG-LEFFLER functions3) we see that even if a
sequence of polynomials (the n-th of degree n) divided by y|apax|
remains uniformly bounded in n over a prescribed circle |z| <@ with
0 <# <1, the roots of the n-th polynomial are not necessarily uniformly
distributed in the different angles. No doubt, this fact throws a new light
on the theorem stated in 1. and enhances its interest considerably,

3. So without imposing any further conditions on (2.1) can

I%aﬂ
not lead to an equidistribution theorem similar to that of 1. However we

2) G. Szead, Uber eine Eigenschaft der Exponential-reihe, Sitzungsber. der Berliner
Math, Ges. 50—64 (1924),

2) The distribution of roots of these partial-sums and even of the partial-sums of a
general class of integral functions of finite positive order has been determined by
P, ROSENBLOOM (to appear in the Transactions of Amer. Math. Soc.).

4
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shall show that a simple additional condition can save the situation. We
shall prove the following

Theorem II. If all the roots of a polynomial
f(z)=ag+az+...4+a2z" . . . . . (31)
are outside the open unit circle, and for a fixed 0 <& <1 we have for

| z| = ¢ the inequality | f(z)| < M, then writing (without loss of generality)

n

M, =ef? | n=gh,H=2. . . . (3.2

ﬂﬂoﬂnl
we have forall 0Sa<f<2a

l—E;nn < Cl

. n
id el __‘ * 3. 3
aSarez, =fAmod2 # 2n °8% log g (n, 9) (3:3)

where C denotes a numerical constant.
As we mentioned before while discussing Theorem I, if a given sequence
of polynomials

filz)=al +aPz+...+ a2

n=1,2,...
has the property that their absolute maxima M(*) on the unit circle satisfies
()
M—_._—_‘——zea‘m,. D (3. 4)
V]aPal].

then their roots are equidistributed in the different angles. Theorem II
reveals the surprising fact that the much weaker condition concerning
the absolute maxima M@ on the circle [z| =@, (0<# <1 and fixed)
l?u}
pr———————— -——Joe BO{H) S T (3. 5)
]/! aln agn,

can assure the equidistribution of the roots, if they are all 21 in absolute
value.

In the case when

is “not too large”, e.g. when
]/laoa,,l
M,

=.ln
Va0 @]

N ¢ X2

the error term (3.3) is of order n/log n. Curiously enough the same

holds if e¥7 is replaced by n190 or even by a numerical constant say 10000.
Though this error term is worse than that of Theorem I, DE BRUIN 4)

4) In a letter wherein he conjectured essentially our theorem II,
5
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remarked that the order of the error term is best possible for every
0 <9 <1; indeed

Bf—=e* , >0

=[] o]

fla)=(1—2')

and

the polynomial

satisfies

Ms=(1 + e~h* < exp (ke—*!) < exp (] = e c( loqn—l))
1 M

- I ks i,
"exp(logn ne‘)<2 4 Vlﬂoﬂu|<2

—-1>

for n>ng = ny (¥#), and f(z) has roots of multiplicity > ¢ lo:
> 3 1 for n>n; = ny(9), which evidently shows that the error term

in Theorem II is (with regard to n) the best possible, As a matter of
fact essentially DE BRUIJN's example shows that Theorem II is for every
admissible g(n, &) essentially best possible. Indeed put

I =[—‘1:— log g (n, ﬂ)] . k= I:F;?m]

The polynomial
fi(2) =(1—2zh)k

has a root of multiplicity

cn c n
>logg(n.t9)—1 >?' log g (n, 9)
though on the circle |z| = e-¢ = & we have

- il (% log g(n,8)~1 lnq::u,*) ( cn e )
|fl(3)|=(1+e )) < exp logg (n,9) g(n. ) <

< exp (m) "

if g(n, &) is sufficiently large.
In our paper1) we have not dealt with the question whether the error term
in Theorem I is best possible, with respect to n, but we can show by an

6
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example that it is essentially best possible: we do not discuss here the details,
For some further remarks about the relation of Theorem I and II see 10.

4. In 8 we shall see using a method due to I. SCHURS), how the
general case of Theorem II can be reduced to the case when all the roots
of f(z) lie on the unit circle. In 9. we easily deduce Theorem 1l thus
specialised from the following

Theorem IIL. If ¢y, @s, ..., @n are real and
{s,‘[glzule“i’v =yik) k=12,....m. . . 4&.1)
m=mn)=1 . . . . . . . . (42
then for arbitrary 0 Sa <f <2 n we have
T v (k)
- T)

_B—=a
Z ) 2n |<C(ﬂ!+ k=1

a=yp,=pmod2x

with a numerical constant C,

5. Theorem III is obviously a “finite” form of the classical theorem of
H. WEYL 8) according to which if ¢y, @s, ... is an infinite sequence of
real numbers satisfying for every integer k the relation

lim — Z’ ekitv =0

n+»w M vr=1
then for every 0Sa<f<2a we have
lim — 31

n+wm N a=g,=SBmod2n
*=n

Another "finite" form of this theorem one can find on p., 101 of
KoksMA's well-known book 7), where a sketch of the proof is also given.
Theorem of VAN DER CORPUT and KoksMA (in a slightly modified and
restricted form). If there is a d with 0<<d <1 such that (4. 1) holds for

e 3N —
k=|:Tloq§-(loglog—5-):|=No

K being a suitable numerical constant, then with the same K we have for
all0sa<fs2n

1—321";n|<xan+zx > %"’4—

2
sk=3

'_f’_(k_) ‘m::'xa
+2K§<’ém X e 3

L4
«<p,=fmod 2n

B) 1. SCHUR, Sitzungsber. Berliner Akad. 403—428 (1933).

8) H. WEyYL, Uber die Gleichverteilung von Zahlen mod Eins. Math. Ann., 77,
313—352 (1916).

7) J. B. KoksMA, Diophantische Approximationen. Ergebn. der Math. und threr
Grenzgebiete (1936).

7
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- we see that in order to obtain the same error term

1
Choosing ¢ = s
as in (4.2) we have to restrict more of the 5,'s, i.e. Theorem III is sharper
than the theorem of VAN DER CORPUT-KOKSMA. As a matter of fact one
can not deduce Theorem II from it (whereas it can be deduced from
Theorem III). This improvement was obtained roughly speaking by using
“DUNHAM JACKSON means” of the FOURIER series of the periodic dis-
continuous function f,(x) defined by

bHx)=1 for 0=x<a
LHx)=0 for a=x<2a
instead of the partial sums of the continuous function f3(x) defined by
Llx)=1 for N=x=a—1
f:(x)=0 for a=x=2n,
and linear in the remaining intervals,

o<n<f2‘-

6. We consider Theorem III in the special case
|sk| =Kk , 2>1 and fixed

for all k < nlA,
Then the error term in (4. 2), if m S n'l*, is

<C(-:;+m‘)

i.e. choosing m = [n'/+1] we obtain the following
Corollary. If ¢4, ..., @n are real, 1 2 1 and

3 eklpy | =g
v=1 .'.....(6.1)
1
1= k=ni*!
then for all 0Sa<f=2a we have
i
wc:?é;;no&zu l-ﬁZ.nan <EaH v . 6D

with a numerical constant C.
The interesting question whether the estimation (6.2) is best possible
or not, remains open.

7. L. KALMAR 8) made the remarkable discovery that if the roots of the

8) L. KALMAR, Az interpolatiérél (hungarian), Matematikai és Fizikai Lapok 1926,
p. 120149, The expression T,/(z) in (7.3) denotes the classical CEBICSEF-polynomial

Tald)= (f-Jf—‘;’—"—’) + (z—‘“";’—j)

He actually proved a more general theorem when the roots of polynomials @, (z) e on a
prescribed closed JORDAN-curve,
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polynomials
0 (Z)=(E—aP) z—2M)...z—2") . . . . {7.1)
satisfy for all n =1, 2, ... the inequalities
IZP=P=...Ex=—1. . . . . (1.2

and if the polynomials wa(z) have the asymptotic representation (with the
obvious meaning of the n-th root)

) n /S w,(2)
o 1/ T

on the complex z = x + i, y-plane, cut along the segment —1Sx<1,
then the roots x(™ are uniformly distributed in FEJER's sense?®) in [—1, + 1]
i.e. writing

xM=cos ¥, v=1,2,...,n,n=12,...,0=SI=9N=.. . ==nr (7.4)

we have forevery 0Sa<fs2n

Sl s o s w ¢ s (08)

imL 3 1=f=° ... ... @5

n+»w N (n) L3
a=0 =8

It is easy to see from (7. 3) that the polynomial

1
2w oy | —2 | = F, (w)

has all its roots on the unit-circle and for |w| <1
“_
lim VFa(w)=1. . . . . . . . (7.6
n—=rw

%) L. FEJER, Interpolation und konforme Abbildung. Gétt. Nachr. 1918, p. 319—331.
Generally if [ is a given JORDAN-curve and the points z(lﬂl, zg!)....,zilnl (n=1,2..) are
on I, he calls the points zi:!) uniformly distributed over [ if mapping conformally the
outside of ! onto the outside of || = and continuously on the boundary, the maps

wid) = eldl® .., win = ely!®
are uniformly distributed over the unit-circle in WEYL's sense i.e. forevery 0 Sa < f < 2a
1 _p—a
lim > 1= 7

n—rax N ‘;:?iﬂ)é‘g

In the case when ! degenerates into a doubly-covered segment —1 < x < 41 then the
mapping function is z = } (w + l) and we get the definition (7.4)—(7.5). This definition
w

of equidistribution fits in with various function-theoretical problems even in the case of
segments.
9
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It is natural to ask for the “finite” analogon of KALMAR's theorem. Making
the following weaker assumption that the roots of the polynomial

fz)=a+...+2* . . . . . . . (7.7)
liein |z|2=1 and on a fixed circlé |2| =@, 0 <¥ <1 we have
If@|=1+e . . . . . . .. (7.8

we may expect that the error term in the distribution of arc zv is much
smaller if & is “small”. But the example of DE BrRUIN

fi (@)= (1—zie

_— S— 1 - ‘—-—Ir.l
h=llognl, k=g o]
with sufficiently large w > wg (#) shows as before that even under the
assumptions (7.7) and (7.8) we can not get a better error term than

n
0 (log n) '

As was conjectured by DE BRUIJN, we can prove that the error term is

logn

o }:288
n

, only if we assume that the sequence fa(z) of polynomials (7. 7)

satisfies lim max |f (z)| =1 for every positive # < 1.
n—+o |z|=¢

8. As mentioned in 4. we start with the following remark of I. SCHUR.
Let z — re'? be a fixed point on the complex-plane, and ¢ — ge!’ move
along the line arc { = y (y fixed). Then

|z—CP=r*4 0*—2rocos(p—a)

[z—C2 2
——— —2r cos (p—a).

If o moves from + © to g = r the expression on the right decreases
monotonically; hence if { = o =goe, go>>1 and |z| = r<1 then
|z—C¢ |2 iy 2

———=|z—en|?, . ... (8.1
|Zo] | | @®.1)
This is the remark we need.

Let
fle)=ay+...+anz"=an ﬁ’l(z—zv)=au I (z—ege'v) (8.2)
y= v=1

be the polynomial of Theorem II; let
lnl=e=1, v=L2.con. . . . . (83

and the & of this Theorem be fixed. Let z be on the circumference of the
10
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circle | z| = @ and {, be any of the roots z.. Then the remark (8.1) gives

- 2
|—z|—zz|—'l-z|z—-—e’?v|’. i [ - )
Multiplying all these inequalities we obtain on the whole |z|= ¢ the
inequality
2 2
=1f@F ey

|ag aa|

ly(2)]? = ' vél (z—e'r))

i.e. a fortiori

. — 1@ M,
M e R = e Maen] TTaowal =

The distribution of the roots of y(z) in the different angles is identical
with that of f(z). Now assume that Theorem II is proved in the case
when all the roots lie on the unit circle; then

w@=1+bz+...4baz" |ba]=1 . . . (8.6

and with
—r__
max |y (z)| = Ms —eg*n?
lz|=9
we have for all 0sa<f<2a

_B—a 4. n
csr et Zn | <CI0 T g B

Then using (8.5) we have

T — My = VILH: I
o @n

iie. from (8.7) a fortiori

8.7)

e
—ef% j e logg(n 9)=logg’(n 9

_p—a 4, n
2'.» 1 27 n <Clog Y lﬂgg(ﬂ.ﬂ).

a<p,<Amod2n
Hence Theorem II will indeed be entirely established once we prove it in
the special case when all the roots lie on the unit circle.

11
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