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This paper contains a few disconnected results on the theory of sets .

I. Sierpinski' proved that under the assumption of the continuum hypothesis
there exists a single valued function f(x) whose inverse function is also single
valued and which maps the sets of measure 0 into sets of first category and whose
inverse function maps the sets of first category into sets of measure 0 . He
stated the problem' whether a function exists which has the above property and
also the following one : It maps the sets of first category into sets of measure 0
and its inverse function maps the sets of measure 0 into sets of first category .
Thus the function would interchange the sets of measure 0 and the sets of first
category . We shall prove that such a function exists. Our proof will be very
similar to that of Sierpinski : we will of course assume that the continuum
hypothesis holds .

Construction of f (x) : It can be shown3 that a transfinite sequence Ga of Gd
sets of measure 0 and a transfinite sequence Fe of Fo sets of first category exists
(a < % , 91 is the first ordinal number of the third number class) having the
following properties : 1) G1 U F 1 = R, G1 (1 F1 = A (R denotes the set of all
real numbers), 2) every set of measure 0 is contained in some G a and every set of
first category is contained in some Fe 3) A a = G« - Ga (1 u G,, B a = Fe -

$<a
Fa n U F0 both have the power of the continuum, for every a . We evidently

b<a

have G1 = U Ba , F1 = U Aa . Hence we can construct a function f(x)
a>1

	

a>1
in such a way that f (A,,) = Ba for every a > 1, and that f f (x) = x for every x .
The function f(x) is clearly a single valued function whose inverse j -'(x) is also
single valued. Since, in addition f (x) coincides with its inverse, we have only
to show that f (x) maps both the sets of measure 0 onto sets of first category,
and the sets of first category onto sets of measure 0. But both of these state-
ments are obvious . For let G be any set of measure 0 ; by assumption G C Ga
for some a and f(G) C U Fb , which is a set of first category . Similarly let F

b<a

	

be any set of first category ; by assumption F CF e for some a, and f (F) C U G5
b<a

which is a set of measure 0 : This completes the proof .

II. Let m be a cardinal number . Two sets A and B in Euclidean space are
called m-equivalent if they can be split into m summands A = UA a , B = U&,
A a I I Aa; = Ba, (1 B01 = 0, and A a ^' B. . (The sign =denotes congruence .)

1 W. Sierpinski, Fund . Math . Vol . 22, p . 276-278 .
2 Ibid .
3 Ibid .
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Banach and Tarski 4 proved that in three space any two sets containing open
sets are finitely equivalent, and that on the line and the plane any two sets
containing open sets are countably equivalent .

Professor Tarski 5 communicated to me the following result of Lindenbaum :
There exist 2 ° linear sets no two of which are countably equivalent . This result
was never published, and Tarski does not remember the details of the proof .
I have succeeded in proving that if m is any cardinal number < c, then there
exist 2° linear sets no two of which are m-equivalent . I do not know whether
my proof differs from that of Lindenbaum, but I have thought it might be worth
publishing, since the result has some interesting applications .

First we remark that it is easy to construct 2' subsets of an infinite set A of
power n such that the symmetric difference (x - y) U (y - x) of any two subsets
x and y has the power n . It is sufficient to divide A into n mutually exclusive
subsets of power n, and to consider the unions of all these subsets .
Let now {a.) be a Hamel base (a < w~, wz is the smallest ordinal belonging

to the power of the continuum.) and let A 8(3 < co, w„ the smallest ordinal
belonging to 2`) be a family of subsets of this Hamel base such that the symmetric
difference (481 - A 82 ) U (A8 2 - A51 ) has always the power c . Denote by U8
the set of real numbers of the form E ckak where the Ck are rational numbers
and the ak belong to A8 . Now we show that for 0 1 ~ 02 U,3 , and U0, are not
m-equivalent. We can clearly assume that A82 contains c elements not contained
in A81 . A being a set of numbers and x an arbitrary number, let us denote by
A + x the set of all numbers z + x where z belongs to A . Also we denote by
A(" the reflection of A with respect to y . It suffices to show that if {xS I and
{yc } are two sets of power m (5 < cos , wa is the smallest ordinal number belong-
ing to m) then the union of all the sets U81 + xn , U(,z) does not contain U82 .
And this is clear for if we denote by a # the elements of the Hamel base necessary
to express the xS and the yC, (the power of the a ; is clearly _< m) our set U U81 +
xC , U"&) can therefore be generated by the elements of A81 and by at most m
other elements of the Hamel basis ; while U82 is generated by the elements of
A82 , and the latter set contains c elements which do not belong to A8i . This
completes our proof .

III. A set B of real numbers is said to be of absolute measure 0 if it is finitely
equivalent to a subset of an arbitrarily small interval . It is said to be of absolute
measure a if for every e it is finitely equivalent to a subset of an interval of
length a + e, and a subset of it is finitely equivalent with the interval of length
a - e . 6

It is well known that the power of Lebesgue measurable sets mod null sets is
of power c, but that the power of Lebesgue measurable sets is 2` . Tarski'

a Banach and Tarski, Fund . Math . Vol . 6, p . 244-278 .
1 Oral communication .
6 Tarski, Fund . Math . Vol . 30, p . 218-253 . This paper contains the definition and all

the properties used of absolute measure used in this proof.
' Oral communication .
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posed the problem : What is the power of absolutely measurable sets mod sets of
absolute measure 0? (It is of course clear the power of absolutely measurable
sets is 2` .) $ We are going to prove that the power in question is 2' .

First it is clear that it suffices to prove that the power of all sets in the interval
(0, 1) mod sets of absolute measure 0 is of power 2` . For if we take any set A
in (0, 1) and translate it by 1, take its complement in (1, 2) denote it by B,
then A + B has absolute measure 1, hence if A 1 and A 2 are not congruent mod
sets of absolute measure 0, A 1 + B1 and A 2 + B2 are also not congruent . This
is a strong indication of the truth of our theorem, since it is well known that the
power of all sets mod sets of Lebesgue measure 0 is also 2` .

To prove our theorem it clearly suffices to show that there exist in the interval
(0, 1) c disjoint sets whose absolute measure is not 0, for by taking all possible
sums of these sets we clearly get 2` sets no two of which are congruent mod sets of
absolute measure 0 .

Let now {a.} be a Hamel base with a 1 = 1 . Split it into c disjoint sets of
power c. Denote these sets by V,3 . We define the sets R g as follows : x e Rs if
and only if 0 <= x < 1 and x = D=1 ci a ., , the c; rational and different from 0
and al < a2 < • ak , aa kV$ . (For i < k a aq does not have to belong to V0 .)
We are going to prove that the disjoint sets Rs are not of absolute measure 0 .
In fact we shall show that R o is not finitely equivalent with any subset of (0, 2) .
For suppose that Rfi is finitely equivalent with a subset of (0, 2) . This would
mean that there exist sets U 1 , U2 U,. whose sum is the interval (0, 2),
and real numbers x 1 , x 2 , • x ; , y 1 , y2 yt , k + 1 = r, such that, R,3 is
contained in UL% i + x i , U;'' ) , the sets Ui are supposed to be mutually exclusive .
Let ak be the a s of largest index which occurs in the representation of the x i and
y; and denote by R' those elements of Rs in whose representation the a s of
largest index has an index > k. Then if w is an element of Rs and w e U i + xi
there exists a z e Ui with z = w - xi, hence z e R' , also if w e U;~" ) there again
exists a z e U ; with z = 2y ; - w hence z e ' . Similarly if z e Rs we have
z + xi a Rs and 2y ; - z e R' . Thus we see that (Rs fl Ui)+xi = R~fl (Ui + xi)
and (R, n U;)1' =R , fl U;', hence we conclude that R,, fl (0, 2) is finitely
equivalent toRs = R, fl (0, ' ) U R, fl (2, 1) . On the other hand a translation by

2 = 2 shows that Rs n (0, 2) - (Rs n (0, 2)) + 2 = R , n (2 , 1) . Thus

Rs fl (0, z) would be finitely equivalent with Rs fl (0, 2) U (R; fl (0, 2)) + 2-
A general theorem of Lindenbaum and Tarski 9 shows that this is not possible,
which completes our proof.

Sierpinski 10 constructed a set k of real numbers of power c whose complement
has also power c, and such that if k -'^- '' k' then the power of k' fl (R - k) [as before
R denotes the set of all real numbers] is <c . It is easy to see that if we define Ro
as in III but remove the restriction 0 < x <- 1 . Our set R5 has the required
property .

8 This statement follows from the fact that there exist sets of absolute measure 0 having
power c .

o Lindenbaum and Tarski .
to W . Sierpinski, Fund. Math . Vol . 19, p . 22-28 .
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We are going to prove that Sierpinski's theorem can not be improved i .e .
ifm is a power < c there exists a number x o such that k + xo (1 R - k has power
>=m . Let ya be any set of real numbers of power m, and suppose that our
theorem does not hold . Then both k + ya fl R - k and (R - k) + y. fl k
have power <m for all a . Therefore since m' = m it is easy to see that there
exists azek and aweR-k such that z+yaEk and w+yaeR-k for all a .
But then clearly xo = w - z has the required property, which completes our
proof ."

IV. Let f(x) be a continuous function in the closed interval (0, 1) . Denote
by E the set for which

lim f(x + h)-f(x) < .
h-•+o

	

h

Jarnik 12 proved that E is not countable . We are going to give a very simple
proof that E is of power c . (It is easy to see that the complement of E is an F,,
thus from the fact that E is not enumerable it immediately follows that E is of
power c.)

Let xo be a number < 1 for which lim f (x+h) -
f(x)

< - . We can of course

assume that such a number exists . Let N > f (11 - f(xo) , and consider the

set of numbers for which f (y) - f(xo) >_ N . Consider the greatest such y and
y - xo

denote it by yN . Clearly yN < 1 . Hence evidently

f(yN+h) -
f(y,)

< N for h < 0 .
h

Thus yN belongs to E. Also we have ftv) - f (x) = N(yN - x), hence for
N, > N2, yN, < yN, . Thus the power of points y, is c, which completes the proof .

Professor Anthony P. Morse communicated to me the following proof of
Jarnik's theorem which he obtained some time ago : Choose k so that if we put
g(x) = f(x) - kx we shall have g(0) > g(1) . Now take any number c such that
g(0) > c > g(1) . There clearly exists an x such that g(x) = 0 . Let x, be the
largest such x. It is easily seen that

lim g (x, + h) - g(x.) < 0
h-+o

	

h

	

-
and hence

lim f(x` + h)-f (x°) < k .
h-.+o

	

a
Thus x, belongs to E. The power of points x, is clearly equal to that of the
continuum, which completes the proof .

UNIVERSITY OF PENNSYLVANIA

11 This proof is due to Mr . P . Lax . Oral communication .
12 Jarnik, Fund . Math. Vol . 23, p . 1-8 .
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