On the arithmetical density of the sum
of two sequences one of which forms
a basis for the integers.

By
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Let a,, a,, ... be any given sequence of positive steadily increa-
sing integers and suppose there are Xx=7/(#) of them not exceeding
a number 7, so that

By =n< ey,
The density ¢ of the sequence is defined by Schnirelmann as the
lower bound of the numbers f(n)/n, n=1, 2,.... Thus if a, #1,

§=0,
Clearly f(n)=¢dn,
Suppose also that the steadily increasing set

A,=0, A,, 4,....

forms a basis of order ! of the positive integers. This means that every
positive integer can be expressed as the sum of at most / of the A4's.
I prove the following

Theorem: If ¢ is the densily of the sequence a-+- A, i. e. of the
integers which can be expressed as the sum of an a and an A, then
y=z4.00—3)

=8+ 21

Particular cases of this theorem have been proved by Khintchine

and Buchstab in an entirely different and more complicated way.
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I prove my theorem as a particular case of a more general one.
Let the positive integers =7 not included among the @’s be denoted
by &,, b5,..., and let
by 2 .’I<by;1 .
Put

1
Bt 0t e Tl =3 1)

Clearly E=0, since &, =1, b,=2 etc. Then there exist at least

E
x+51_3 integers =7 of the form a+ A, where in fact we need only

use A=0 and a single other A. This theorem is deduced from the

E
one that there are at leastﬂ— of the &'s=n which can be represented
n

in the form a4 A, and in fact only a single A is used.
We require the

Lemma: An infeger J >0 exists such that there are at leasit

E
— of the b's among the integers =n in the set a,-}J, a,+J,....
n

For the number of solutions of the equation
atv=5b

in positive integers v and a's, 6’s=n is £. Thus for given b=0,,
there are &, —r solutions since the number of a’s<b, is clearly b, —r
and every such a gives a solution v. Hence summing for r=1,2,...,,
the total number of solutions is
3
E= Z (6,—1r).

r==1

But there are at most 7 possible values of v, namely 1, 2,..., 2

and so for at least one value of v, say J, there are not less than£
n

solutions of a4+ J/=20& in @’s and &’s not greater than 7.
Now express J as a sum of exactly [ A’s, say

J=A+A+4...+A,

by including a sufficient number of A,’s among the A’s if need be
and where A, need not denote the first, 4, the second etc.
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Denote by 1 fhe number of &'s in the set a} A5, s=1, 2,..., ..
I prove now that

c B
Wit R
For in the set of integers given by
atA +4,,.

there are at most |1, + 1., of the 6's. Thus the set 2+ A, contains p,
of the &'s together with some a's. When we add A, to the numbers
of the set a—- A,, the i, b's give at most ., &'s, while the a's give
at most p, &'s. Now take the set a-}A,+ A,+ A;. This contains
at most 1, -+t 11 of the 6's by precisely the same argument applied
to the sumof a+ A, L A, and A,. Similarly the set a-+ A, +A4,-+...L
—+ Ay, i. e. a-+J will contain at most P, +pa—+...4ps of the &'s. But

- E L}
since the set a--J contained at least — of the &'s, clearly one of the
n

£ E
s say P = ' and so the set @ - A, contains at leastJ— of the b's=n.
n n

Now the set a-}- A,, since A;=0, consists of exactly the x a’s. Hence
. B
the set a-+ A including 4, =0 contains at least x—|—£— different inte-
n
gers =n.
Suppose now the a's have a density ¢ with 6< 1 which is no loss

of generality. We have f(6,) =35, hence b, —r=f(b)=¢b,, b, = ; F

O

and therefore

gx1t2+...1y ytlo
- 1—3 2 T 2(1—9

yly+1).

Hence for the number N of integers =7 in the set a|-4

G Bl
N=x+ _ Y — —n—x),
2(1—2) In ) W
say. For x=3dn
rn’(xlzl___a___z_[,n_____x_)}1_i>0
' 2(1—28) In l '
i e Nt =t -2 B—0"

2(1—29) in
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hence N=n B—I—M),
- 21
and this is the theorem.
I can prove in the same way that if a sequence a,, a.,... is
given and there are f(n) of the a's not exceeding 7. then in the set
|a+ A|, there are at least

f(n) _|_'@£‘E__f (7))
21
numbers not exceeding 7.
Before closing my paper I would express my sincere gratitude to
Prof. L. J. Mordell for having so kindly helped me with my ms.
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