ON THE NORMAL NUMBER OF PRIME FACTORS
OF p—1 AND SOME RELATED PROBLEMS
CONCERNING EULER’S ¢-FUNCTION
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THIS paper is concerned with some problems considered by Hardy
and Ramanujan, Titchmarsh, and Pillai. Suppose we are given a set
M of positive integers m. Let N(n) denote the number of m in the
interval (0,%). By saying that the normal number of prime factors
of a number m is B(n), we mean that, as n —> oo, there are only
o[ N(n)] of the m (< n) for which the number of prime factors does
not lie between (1--¢)B(n) for arbitrarily small positive e.

We use throughout the following notation: N(M,n) denotes the
number of integers not exceeding = in the set M ; d(n) is the number
of divisors of n; p =logn, v = loglogn; p, p;, py.... are prime
numbers, and ), C,.... denote positive constants independent of
n, m.

In the first part, I prove that, if M is the set p—1, and so
N(n) ~ nfu, then B(n) = v. I use the method of Brun and also that
employed by Hardy and Ramanujan* in their proof that, when M is
the set of all natural numbers, B(n) = v. I then apply my result to
a problem of Titchmarsht who showed that, if

8 =73 dp—1),

pP=R

(i) 8 < Cn, by Brun's method;
(i) 8 = Q(i) by analytical methods;
Vi

(iii) S = Cin+o0(n) by assuming the Riemann hypothesis.

As my result means that, for almost all p not exceeding =, i.e.
except for o(n/logn) of the p, p—1 has more than (1—e)v prime

* Hardy-Ramanujan, Quart. J. of Math. 48 (1917), 76-92. See also 8. Rama-
nujan, Collected Papers, 262-75. Recently P. Turan gave a very simple proof
of this theorem, but the application of his method seems to be impossible here.
J. of London Math. Soc. 9 (1934), 274-76.

1 E. C. Titchmarsh, Rend. del Cire. Mat. di Palermo, 54 (1930), 414-19.
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factors, it is obvious that
8> ig(l—e)v,
2p
since N(p,n) > in/u. This result is better than (ii) and is obtained
in a more elementary way.

In the second part I deal with Euler’s function ¢(n). I consider
first the number N(M,n) where the set M denotes now the integers
which can be expressed as the ¢ of another integer. S. S. Pillai*
found that Cyn

lMi_lc:uapz),f_e‘

N(M,n) <

I deduce from the first part that

n
1-¢

NM,n) <
®

for every positive e and every n exceeding some n(¢). I can prove by
Brun's method that

N(M,n) > G logv.
7

In the third part I examine how often an integer m can be repre-
sented as the ¢ of another integer. S. S. Pillai showed that integers
m exist with at least C,(logm)3€e representations. I replace this
number by m% by using Brun’s method.

1. We shall presently evaluate N (M, n) for a certain set M. It will
suffice to deal only with the m satisfying the following two conditions:

(i) the greatest prime factor of m is greater than n1/20v;
(i) the greatest prime factor occurs to the first power only.
For we have

Leyma 1. The number of m (and in fact of all positive integers not
exceeding n) which do not satisfy both the conditions (i), (ii) i5 o(nu=?).

We divide the integers not exceeding n which do not satisfy (i) into
two clagses N}, &N, in number, putting in the first those which have
at most 10v different prime factors. As the {u/(log2)}th power of
any prime less than n'2% is greater than n, we have

10w 10v
el e -

* T have seen this in an American periodical that I cannot now trace.
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The integers m of the second class have more than 10v different
prime factors; and so d(m) > 2!%. But

ki3
2.40) = Ofn)
: _ of n
and so N, O(ng) = O(E),
; u?
since oI — e-10log2y — (1),
Hence N+N, = OG%).

In dealing with the integers not satisfying (ii) we may, from the
first part, suppose that their greatest prime factor exceeds n!/0”),
Hence these integers are divisible by a square exceeding n% and
so their number is less than

n i n
> 5 = Ofaaimm) = {3}
It Lo

This proves the lemma.

We now require the following result which is an immediate con-
sequence of Brun’s* method.

If @ is a given integer and ¢,(a) denotes N(p,n) where (p—1)/a is
a prime, then

. (@) < 06;3 [T (1-5)1‘[(1__) H(l__)

Bt o P
asgar L1 (=3} / T1 (=)
n>2
g .
since 1_[( ) (—laﬁ
‘D>2

follows easily from Landau’s result ¢(a) > C,,a/(logloga).
Denote the positive integers containing exactly % different prime

* V. Brun, Vidensk. selsk. skrifter, Mat.-Naturw. Kl. (Kristiania), 3 (1920),

and Comptes rendus, 168 (1919), 544—6. See also Bull. Soc. Math. (2) 43 (1914),
1-9.
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factors by a{®, al?,... and put f,(k) = N(p,n) where p is such that
p—1 equals one of the a{¥). We prove that

pl—1Em

<" s mmwmw@) @)

af~ =1
For let us write down the f,(£) primes p not exceeding n for which
p—1=a = ¢t ¢ ... g%,
where the ¢’s are primes and ¢, < ¢, ... << ¢;. By Lemma 1 we need

only consider the cases given by g, > #n'/®® &, = 1. Consider also

the primes p’ such that
p'—1 = qalk-D,

where ¢ is a prime and a{*-1 < u1-1¢®), The inequality (2) will be
proved, if every p occurs among the p’, and this is obviously the
case, since, for given p, we may choose
ay‘—” =g g¥... ) < pA—1R0w)
since ¢;, > n'@%), Thus (2) is established.
From (1), (2), we have

nl—1/i200)
n

7 \2
Fulk) < Cy Z nvz/a-f;“"—”(log&?‘_—n) +O(‘:2)

a_ik—lls 1

wh ~ 1 n
= OIEFaZ —_;)“1‘0(—2)- (3)

- g o)1
1 ( 2 2 1;"19;) = (v Cpa)o-1 (4)

= a=1
= Pi= :

(afFD (k—1)! = (k—1)!

Con(vCp)et3 7 -
=) b

Now

atk=D—

SO fulk) <

2

L
or say Joll) = Bk—l—o(ﬁ%).

Applying the method used by Hardy and Ramanujan to prove
that almost all integers have v different prime factors, we now prove
our theorem that v is also the normal number of prime factors of
p—1. We have to show that

n
p) nw+mgwmm=0hg.

k<v(I—e) w
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It suffices to deal with the case %k << »(1—e), since the sum for
k > v(1-+e€) follows in a similar way. Now

2 _ Upn(y+0Cy) < (4 Clg)e-1
R ,Z (k—1)!

P m
P

< 015nf
I
Clearly B, < B, < ... < Byy_g,, for v > v(e). Also
By (v O\ )ra-tel-ri1-e)
Bya-ar  {v(1—3e)]— 1A —}e)]—2}.. [p(1—€]]

o v+ Cyter?
v(1—Le){p(1—2e)—1}...{v(1—e)+1}

> e
(v+ Cia) (1 —3¢)
> (v+10m)(1+%e)*‘”, > vou? for sufficiently small 3.
Hence
v(l—¢)

fvf | B 05’1’& 1
> B <vByy-a< =4 h] = Z i < "’11—37' = O(;i?a)

Also S o(%) = o(#i).

v(l—e) : n 7
Te 3 h0< 3 Beref) = o)
the required result.

By similar but perhaps a little more complicated arguments, we
can show that the same result holds when multiple factors are
counted multiply, i.e. when a prime power g% dividing p—1 is
reckoned as « factors instead of 1.

2. We prove the

THEOREM. N(M,n) = o(nu1) for all positive €, where the set M
are the integers which can be expressed in the form ¢(x).

The proof depends upon the result, due to Hardy and Ramanujan,

n(loglog n—+Cy;)¥-1 (6)
(k—1)!logn

N(my,n) < Oy

3695.6 P
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where m;, denotes the integers having k different prime factors. Since

T

%) >0 Yloglogz’

clearly ¢(z) > n if 2 > Cignv. Hence it will suffice to prove that
there are only o(nu¢1) different values in the set (1), &(2),...,
$([Crgm]).

Consider first the integers not exceeding Cgnv which have less
than v/k different prime factors where £ is for the moment arbitrary.
On replacing », k in (6) by Ciznv, v/k respectively, and noting that
k! > (kje)*, we prove easily that their number is o(nu!~¢) for every
€ if k = k(e), say, independent of n, and so they need not be dealt
with any further.

We have still to consider the integers which have more than v/k
different prime factors. Denote now by p, ¢ respectively the primes
such that p—1 has respectively less than and not less than 40k--1
different, prime factors. From (5), we deduce that, for sufficiently
large =,

N(p.n) <

012 40L%V(V+013)40k+3+0( 'nr) < n

e p et

Hence Z p~1 converges, since

Z:P_l _Z N(p,n)— :’:"(19,?%—1) _ EN@’ m(%_?ﬁ)
= 5 ola)

We now divide the integers having more than v/k different prime
factors into two classes M,, M,, putting in the first those divisible by
at least 3v/k of the p and in the second class the remainder, say the
b’s, which of course are divisible by at least dv/k of the ¢. The
integers m, are divisible by an integer « (say) composed of exactly
[4v/k] of the p. Hence

N(m,,Cignv) < Cgmv Y 1ja
@

1 \(hwfk]
conl 3 1)

i =1.p
= T/,
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CignvARE (n)
[hv/k]! u)

where > 1/p* converges to 4, say.

o =10
We now deal with the &’s. Clearly ¢(4) has more than (1v/£)40k, i.e.
20v prime factors, p* now reckoning as « factors. The integers having
more than 20v prime factors are now divided into two sets of
which the first includes the integers whose square-free part has
more than 10v prime factors. Each of these integers has more than
210 divisors and so, since

d(n) ~ zlogx,

M

T

their number is less than

Cignvlogny of®
210v " (’:)

The second set includes the integers whose square-free part has not
more than 10v prime factors, and so their quadratic part has at least
10v prime factors. An integer, however, whose quadratic part is s is
divisible by a square exceeding sf, as is easily seen by putting
8§ = p1Mpy... (a; > 1). Hence the number of the integers of the
second set is less than

1 ny n
G 3 &= ofg) = o)
RSB -
since 21013 > 2,

Hence there are only o(n/u) different values for ¢(h) and so the

theorem is proved.

3. We require three lemmas.

Lemma 2. N(m,n) = o(n€) for every positive €, if m is @ number
whose grealest prime factor is less than p.

Every integer can be expressed in one and only one way as a pro-
duct of an rth power (r > 1), and an integer not divisible by any
rth power. Denote by m, an integer free from rth-power divisors,
whose greatest prime factor is less than p. Then

N(m,,n) < rCroplv,
since the number of primes less than y is less than Cjyu/v. Hence

N(m,n) < nllryCopby,
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But 7 is arbitrary and can be taken so large that
N(m,n) = o(n®).
Let p be any fixed number such that 0 << p << 1. Then from the
prime-number theorem
N(p, u't?) > Coop'*jv.
We now prove

Levyva 3. The number of square-free integers not exceeding n com-
posed of [Cyy P v]+1 arbitrarily given primes not exceeding ul*?,
where Cy << Gy, 15 Q(n?) (0 < o < 1p).

For consider the square-free integers composed of the given primes
and having [u/(1+4-p)v] factors. These are all less than =, since

("_L1+P)§'-.I'(1+P"’ = n,

and their number is the binomial coefficient
[ Cop P | 1]

v
)
(I+4-plv
ALY
Since (;:) = (;f) , this coefficient is greater than

{02 i pr( 1+ p}}f_u.'(l Wl = G'n[w'(l -f-,o)vl(.up)pﬂu
8 Czlw(lﬂ)v]nip o Q(ﬂ-“) (0 < o< %P)

Levma 4. We can find a positive p so small that there are more than
Coop+Pfv primes p not exceeding p'+? such that p—1 is composed of
primes all less than p.

If p—1 has a prime factor g not less than y, then
p—1 = agq, a = uf.

By (1) the number of values of p not exceeding p!+* and satisfying
this equation for given a is less than

o T T -3

pla

nla
pE2
< [T =) forTT (=)
pla p jgoit%
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< S ST (-2 /- TT ()

pla
Curs? $ (o0 /° (1")

025M1+P§ _L
v 2, Fay
1
since I—]—O(—;)} converges.
1;” P ¢

Since* Z ¢(a) Iog x+o(logz),

the sum in @ is less than  Cy pul*P/v,
where C,, is independent of p. This proves the lemma since the
number of primes not exceeding p!*? is greater than Chp!tfr—! and

14+p 1+p
(Ozo_ozsP)FT = %L

v
for sufficiently small p.

We now proceed to our main theorem. We consider the square-free
integers not exceeding n composed of the primes in Lemma 4. By
Lemma 3 there are Q(n°) of them. Clearly the ¢ of all these integers
is divisible only by primes less than . By Lemma 2 these ¢ have
only o(n€) different values. Hence, if we choose e less than 1o, we
have an integer m not exceeding » which can be represented Q(n°—¢)
[> Q(n??)] times as the ¢ of another integer. Since n = m, the
number of these representations is greater than m% where C; > 1o,
as was stated in the introduction.

* K. Landan, Géttinger Nacke. (1900), 177-86.




