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The fuctions f(m), +(?z) are called additive and mntiplicative 
respectively if they are defined for non-negative integers m, and if: for 
(?nl, m,) = 1, tha,t is, for m, and m2 relatively prime, 

fh m*) =f(ml)+fhJ~ 

Tw%%) = e%) 40%). 

We consider only functionsf(m), 4(m) satisfying the following conditions : 

(1) f(m) a- 0. 

(2) Cf(p)/p converges when t,he summation is extended to a,ll primes p. 

(3) f(pJ #f (p2) if pl, p2 are different primes. 

(4 4(m) 2 1. 

(3 I2 5!dSkJ converges. 
P 

* eeceived 25 October, 1934; read 15 November, 1934. 
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It is shown later on that conditions (2), (5) are superfluous. We shall 
throughout denote by iV(f; c, d) the number of positive integers not 
exceeding w, say ml, ma, . . . . or simply m, for which 

where e, d a.re given constants ; when d = co, we use simply N(f; c). We 
shall now prove the 

!I!HEOREM. I. c is u given. number, then N(f, c)/n and I?($, c)/n tend to 
limits when n+ co. 

We have the case of the abundant numbers on taking c = 2, 

where c(m) denotes the sum of the divisors of m. 
It is sufficient to consider additive functions, since, if $(m) is multipli- 

cative, log$(m.) is additive. Also if I: {4(p)- 1)/p converges,. so does 
E {logid,(p))/j3, since, if x > 1, logx <x-l. 

The method will be more intelligible if we consider first the special case 
in which f((p”) = f(p) for any integral exponent u ; so that 

f(m) =p~f@). 
Consider also the function 

where JJI~ denotes. the k-th prime. We show that N(f,, c)/n tends to a 

limit A,. For if we denote by a,, u2, . , ., a, the integers whose prime 
factors are not greater than px: and for which also f,+(aJ 2 c, we find the 
integers m < a for whichf, (m) > c by taking al1 the multiples of al, a2, . . . , aI 
not exceeding n. Hence N(f,, c)jn-+A, say. 

fk-ice fk+l(m) Zfk(mh &+I I > A,, and since A, < 1, lim A, = A exists. 
JG:--fm 

We prove that N(f; c)/n+A. i’t is sufficient to prove that, for every 
E > 0, a k exists so great that, for % > n(E), {N(f; c)--N(f, ; c)}/% < E. 
This means that the number of integers m <n, for which fk(m) < c, and 
f(m) > c, is less than’ En. 

We require two lemmas. 

LEMMA 1. We mn Jind a number 6 such that 
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The proof is similar to my proof* for the estimate of the primitive 
abundant numbers. Let p, <JIM < . . . < pt be consecutive primes, not 
necessarily the first prime, second prime, . . . , satisfying the conditions 

(4 Pl+ 

We can satisfy these conditions since G( 1--pal) diverges and gp;2 
1 1 

converges. 
Now choose 8 so that 

0 < 6 < tin Ifbi) -APi) I7 
where pi, pi are any two different primes from pl, .*, , p,. This is possible 

by (3). 
We now show that it is sufficient to consider only such of the 

N(f ; c, c+6) as satisfy the two further conditions 

(4 m is divisible by one of the pi (i = 1, 2, . . . . t). 

(PI m is not divisible by any one of the pi2 (i = 1, 2, . . . . t). 

For it follows from (b) and (c) that the number of integers m < n which do 
not satisfy either (a) or #I) is 1 ess than &En for n > n(E), Le. the number of 
integers m <n not satisfying (u) is given by 

n-[~I-[~]...+[~I+...-[~~... = niil (I--$-) +R, 

while the number not satisfying (8) is less than 

Also t is independent of n. 

* P. Erdiis, “On the density of the abundant numbers “, Journal London Math. SOL, 
9 (1934), 278-282. 
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From (a), m,/‘i is an integer for all h and appropriate pi, From (a), 

and so t,he number of the m satisfying (u), (j3) is less than &, since we shall 
now prove that all these quotients are different. Suppose that 

and SO p< fp* if X # /J. Then 

ftmmx) -fh) = fbd -f@iL 

fh)-f&J =f(Pi)-f(Pj)- 

But fh)-f&J < 89 f(Pi)-f(Pj) > 69 

and this contradiction shows that the quotients are different. 

LEMMA 2. The number of integers m <n, for which 

f(m) -f&4 > 6, 

is less than &n for sujkiently large k = k(~) say. 

For clearly 

from (2), for sufficiently large k. Hence the lemma is proved. 
We now proceed to the proof of our theorem. We divide the integers 

not greater than n satisfying the two conditions 

f&4 < c, f(m) Z 6 

where k = A(E), into two classes. In the first class, we put the integers 
m for which f(m) > c+S. For these f(m)-fk(m) > 8, and so, from 
Lemma 2, their number is less than +z. In the second class, we put the 
integers for which f(m) ,<c+S. Their number is Iess than &n from 
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Lemma 1. Hence our theorem is proved for the special case when 

fW =fb)- 

The transition to the general case is now so simple that it will suffice to 
sketch the proof. We have, for 

Call gl, g2, . . . the integers all of whose prime-factors occur with an exponent 
greater than 1. We have 

s L= f (1+$+$+...), 
i=l !A 

where the product, which refers to all the primes p, converges. 
Just as in the special case, we can prove that, if we denote by Arci) the 

number of integers m ci) <n whose quadratic part is g,, i.e. the greatest 
g by which m(j) is divisible, and for which f(m(“)) 2 c, then N(‘)/n tends to a 
limit d,. It is evident that I;di = A is a convergent series since L$ < l/gi* 
It is also easily seen that A is the density of the integers m for which 
f(m)> c. 

We can discuss similarly the slightly more general case when we replace 
condition (2) by (Y), which includes (2). 

(2’) The primes 2, 3, 5, . . . can be divided into two classes 4 and r so that 
both X(&)/a) and E (11~) converge. 

The proof runs just as above, the only difference being that now we 
define g,, g,, . . . as the integers which are the product of an integer composed 
of the ri and of an integer whose prime factors all occur with an exponent 
greater than 1. 

If, however, the additive function f (m) satisfies (1) and does not satisfy 
(2’), so that now condition (3) is omitted, then N(f; c)jn+ 1. We consider 
the special case when f(n) - pTnf (p). The general case can be dealt with 

similarly. 
The proof is deducible from the following theorem of I?. Turan, which 

he has communicated to me. 
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Let X(M) be an additive function which is bounded and not negative for 
all primes m =pi and suppose that 

Then the number of integers m <n for which 

Ix@>--e4 I > 4(n) 
is o(n). 

TurSn’s proof is similar to his proof* of the Hardy-Ramanujan theorem 
that almost all integers not greater than n have loglogn prime factors. 
Their theorem is, in fact, given by taking x(p) = 1. 

We now divide the primes 2, 3, 5, . . . into two classes p’ and r’ such that 
f(q’) > 1 for the q’, and Jr’) < 1 for the r’ if X (l/q’) diverges ; we denote 

py:(l’~ bY h(n). It immediately follows from Turk’s theorem, on putting 

x(q’) = 1, x(P’) = 0, that the number of integers not greater than n which 
are divisible by more than $l(n)(l-+-e) or less than y51(~)(l-~) of the 
q’ is o(n). Since f(q’) > 1, we have, for almost all integers not greater 
than PZ, 

f(m) > (I--- 4 5Unh 

and so N(f, c)jn+ 1. 
If 2 (l/q’) converges, then, from (2’), E (l/r’) diverges. 
Put x(P’) =f(r’) and x(q’) = 0. Since (2’) is not satisfied, 

also x(p) < 1. Hence, by TurAn’s theorem, we have, for almost all integers 
not greater than n, 

x(m) > F-4$2 (4. 

Since f(fn) Z xb), NV, )i c n+ 1 also ; thus our theorem is proved. 

The University, 
Manchester. 

* P. TUT&~, ‘I On a theorem of Hardy and Ramanujan “, Journal Lodolt Math. EOC., 
9 (1934), 274-276. 
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