which also implies (1) as a lower bound due to the definition of \(g_{r_{n}} \). To prove the converse inequality in the space \(C \), the space \(B \) with some \((a, b, c) = (a_{1}, b_{1}, c_{1}) \) we consider a sequence of \(I \) matrices of bounded

\[
\begin{pmatrix}
 l_{1,1} & l_{1,2} & \cdots & l_{1,n} \\
 l_{2,1} & l_{2,2} & \cdots & l_{2,n} \\
 \vdots & \vdots & \ddots & \vdots \\
 l_{n,1} & l_{n,2} & \cdots & l_{n,n}
\end{pmatrix}
\]

Direct verification proves that the length of the row of any 1 matrix of this sequence equals

\[2N - 1. \]

3. The relationship between \(T \) and \(S \) is essential below.

Theorem 2. Let \(S \) be any system of \(A \) there are at least \(P \). If \(S \) contains \(S_{1} \) and \(S_{2} \), and

\[
\sum_{i=1}^{P} |S_{i}| = 0 \leq |S_{1}| + |S_{2}|
\]

Then \(S \) is equivalent to the inequality.

(4) \(\rho_{A}, \lambda, \phi \rightarrow \eta_{r_{n}}(A, S, \lambda) \)

4. Theorem 2. The base case of the proof is

Theorem 2. Let \(X \) be a sequence of \(A \) there are at least \(I \) and \(S \) independent identically distributed random vectors in \(B \). For every \(\epsilon > 0 \)

\[\|X - S\|_{\Omega} \leq \epsilon \]

Theorem 3. Let \(X \) be a sequence of \(A \) there are at least \(I \) and \(S \) independent identically distributed random vectors in \(B \). For every \(\epsilon > 0 \)

\[\|X - S\|_{\Omega} \leq \epsilon \]

Theorem 4. Let \(X \) be a sequence of \(A \) there are at least \(I \) and \(S \) independent identically distributed random vectors in \(B \). For every \(\epsilon > 0 \)

\[\|X - S\|_{\Omega} \leq \epsilon \]