SEARCH USING SETS WITH SMALL INTERSECTION

György E. Katona

We consider the following type of intersection. Let \(S \) be a set of cardinality \(n \), and \(A_1, \ldots, A_n \) be subsets of \(S \) of the same cardinality \(k \). We assume that \(S = \bigcup_{i=1}^{n} A_i \) and the intersection \(\bigcap_{i=1}^{n} A_i \) is nonempty. Let \(S' \) be a set of cardinality \(m \), and \(B_1, \ldots, B_m \) be subsets of \(S' \) of the same cardinality \(k \). We assume that \(S' = \bigcup_{i=1}^{m} B_i \) and the intersection \(\bigcap_{i=1}^{m} B_i \) is nonempty. In this paper, we consider the case \(k = n = m \).

INTRODUCTION

Let \(S \) be a finite set of a universal and \(A \) be an element of element of \(S \). We can have the following type of information on \(A \). For some elements \(A \) \(C \) we may ask whether \(A \) is in \(S \) \(\subseteq S \) or \(A \) is not in \(S \) \(\not\subseteq S \). We thus trying to determine whether \(A \) or \(\not\subseteq S \). We are able to do this in a number of \(2^n \) ways. For \(n \) \(\leq 5 \) the number is \(32 \) and for \(n \) \(\leq 6 \) the number is \(64 \). For larger values of \(n \), the number becomes very large. We may consider the number of \(2^n \) ways to determine if \(A \) or \(\not\subseteq S \).
the following constraint is satisfied:

\[b_i \geq b_{i+1} \leq b_{i+2} \leq \cdots \leq b_{k-1} \leq b_k \leq b_{k+1} \leq b_{k+2} \leq \cdots \leq b_n \leq b_{n+1} \]

The case \(k = 1 \) is completely solved. If \(k = 1 \) we have fully good lower and upper estimation. The other cases are partially verified.

It is worth while to mention that under the constraint \(b_k \leq \frac{1}{2} \), the lower inequality (1.1) becomes twice for all possible evaluations of \(\sum_{i = k}^{n} a_i \). Hence, it is in upper estimates under the present conditions \(a_i \leq b_i \leq 0 \)

LONGER EDITIONS

Let \(X \) be a finite set and \(\mathcal{A} \) be a subset of \(X \). We say that \(\mathcal{A} \) separates two subsets \(S \) and \(T \) of \(X \) if \(S \) contains exactly one of \(S \) and \(T \). The family \(\mathcal{F} = \{ F \} \) of subsets of \(X \) is called a separator system of \(\mathcal{A} \) if every subset of \(X \) which is not an element of \(\mathcal{A} \) contains a set of \(\mathcal{F} \). A separator system is a sequence of \(\mathcal{F} \) of \(\mathcal{A} \). A \(\mathcal{F} \)-separator system \(\mathcal{F} \) of \(\mathcal{A} \) is a sequence of \(\mathcal{F} \) of \(\mathcal{A} \). A separator system is a sequence of \(\mathcal{F} \) of \(\mathcal{A} \). A separator system is a sequence of \(\mathcal{F} \) of \(\mathcal{A} \). A separator system is a sequence of \(\mathcal{F} \) of \(\mathcal{A} \). A separator system is a sequence of \(\mathcal{F} \) of \(\mathcal{A} \). A separator system is a sequence of \(\mathcal{F} \) of \(\mathcal{A} \). A separator system is a sequence of \(\mathcal{F} \) of \(\mathcal{A} \). A separator system is a sequence of \(\mathcal{F} \) of \(\mathcal{A} \).

LEMMA 1. Let \(\mathcal{F} = \{ F_1, \ldots, F_m \} \) be a family of subsets of \(X \) and let \(\mathcal{A} = \{ a_1, \ldots, a_n \} \) be a subset of \(X \). Let \(\delta = \delta(\mathcal{F}, \mathcal{A}) \) be the number of subsets of \(X \) which are not in \(\mathcal{A} \). Then the number of subsets of \(X \) which are not in \(\mathcal{A} \) is equal to

\[\delta = \sum_{i=1}^{m} |F_i| \]

and

\[\sum_{i=1}^{m} |F_i| = \delta \]

for some \(1 \leq k \leq \delta \), for \(1 \leq n \leq m \) should be included in \(\sum_{i=1}^{m} |F_i| \).

Proof. Let \(\mathcal{F} = (F_1, \ldots, F_m) \) be the incidence matrix of \(\mathcal{F} \). Then, \(f_{ij} = 1 \) if \(x_i \in F_j \) and \(f_{ij} = 0 \) otherwise. Define by \(a_i \) the number of columns of \(\mathcal{F} \) having exactly \(r \) columns equal to \(\{ a_1, \ldots, a_n \} \). Then the sum equality can be verified

\[\sum_{i=1}^{m} f_{ij} = \delta \]
\begin{equation}
\sum_{\mathbf{r}} \binom{n}{r} x^r = 0
\end{equation}

(2) follows from (1). Since any two elements of \(X \) are separated by at least \(r \), we have an \(r \)-column. If \(r \) is the smallest \(r \) such that \(x^r = 0 \), then the columns are different. The maximum number of different columns with \(r \) columns.

(3) follows from (2). The number of pairs \(x^r \) are \(r \), and if we can not reach \(x^r \), then we can not reach \(x^{r+1} \).

(4) follows from (3). If \(x^r \) satisfies (4) and \(s \) is a divisor of \(r \), then \(x^s \) satisfies (4). Consequently, \(x^r \) satisfies (4), and \(x^{r+s} \) satisfies (4).

(5) follows from (3) and (4). The left-hand side of (5) is bounded by

\begin{equation}
\binom{n}{r} x^r + \binom{n}{s} x^s < 0
\end{equation}

that is, \(x \) satisfies (5).

(6) The repeated application of the previous result will prove our statement. If

\begin{equation}
\alpha = \binom{n}{r} x^r + \binom{n}{s} x^s,
\end{equation}

and \(s \leq r \), then \(\alpha \) is the minimal value of \(x \) satisfying (6).

Lemma 1: The minimal \(x \) of the solution of (1) and (2) is obtained for the maximum \(x \) for which there is a solution in \(\mathbb{R}^n \).

Proof: \(x \) is a solution if the set of solutions of (1) \& (2) is contained in the set of solutions of (2) \& (3). Moreover, it is an interior of points and moreover these linear equations are defined for different \(x \). Finally, if \(x > 0 \), then the corresponding inequalities are satisfied in the opposite way. The assertion is then trivially satisfied.

Lemma 2: If \(x < 0 \), then the minimal value of (1) \& (2) is obtained in satisfying

\begin{equation}
\alpha = \binom{n}{r} x^r + \binom{n}{s} x^s
\end{equation}

(7)
Let us verify that

\[\binom{r}{k} \leq \frac{\binom{n}{k}}{\binom{n-r}{n-k}}. \tag{7} \]

Theorem (7.3) follows from (2) and (2'), if \(n \geq 3 \) and \(r \geq 1 \). Indeed, the left-hand side of (2) implies

\[\binom{r}{k} \leq \frac{\binom{n}{k}}{\binom{n-r}{n-k}} \leq 1, \tag{8} \]

(assuming \(n > m \geq r > 0 \)). Hence we obtain

\[\binom{r}{k} \leq \frac{\binom{n}{k}}{\binom{n-r}{n-k}} \leq \frac{\binom{n}{k}}{\binom{n-r}{n-k}} \leq \binom{n}{k}, \tag{9} \]

and (7) follows from (6). (The case \(n = 3, m = 1 \) can be checked by easy computation.)

2) From (7) we have \(\binom{n}{k} \leq n^{k} \), that is, by the inductive step, \(n^{k} \geq n^{k} \). \(\tag{10} \)

3) For \(n = 3 \) and \(k = 2 \), (7) follows from (2) and this completes the theorem. \(\tag{11} \)

Let us verify that

\[\binom{r}{k} \leq \frac{\binom{n}{k}}{\binom{n-r}{n-k}} \leq \binom{n}{k}. \tag{12} \]

Let us verify that

\[\binom{r}{k} \leq \frac{\binom{n}{k}}{\binom{n-r}{n-k}} \leq \binom{n}{k}. \tag{13} \]

For any solution of (7.5), suppose \(k \geq \frac{n}{2} \), then after all \(1 \leq k \leq n \). Assume, in the contrary that \(k < \frac{n}{2} \). Hence and from (10) we have

\[\binom{r}{k} \leq \frac{\binom{n}{k}}{\binom{n-r}{n-k}} \leq \binom{n}{k}. \tag{14} \]

The solution of the lemma is \(\binom{n}{k} \leq \binom{n}{k} \). Comparing it with the above inequality
we obtain
\[\frac{n^2}{2} \leq \frac{a_k^2 + 2a_k}{2k + 1}, \]
and this is a contradiction for any \(k > 0 \).

Thus we have proved that we have to compute
\[i = \binom{a}{2} \leq \binom{x - 1}{2} \]
rather than \(\binom{b}{2} \).

We prove now that (12) always have a (x integer) solution in x by comparing
\[1 \leq \binom{x}{2} \]
For a given m, \(x = \binom{m}{2} \) and \(x = \frac{m + 1}{2} \) determine an interval. We have to see that these intervals cover all the named numbers. Indeed, it is easy to see that
\[\binom{m}{2} < \frac{m + 1}{2} < \frac{m + 2}{2} < \binom{m + 1}{2} \]
holds if \(k > 7 \) and \(m > 9 \). However, the beginning of the interval corresponding to \(m = 8 \) is \(28 \). The interval over all the integers \(x > 25 \). By \(m > 10 \) there is no \(k \) satisfying \(1 < k < \frac{25}{22} \).

We have proved that (12) has no solution for \(k = 1 \), and if \(x \) is a solution for (12), then the solution \(x = \binom{m}{2} \). This solution satisfies (12), and hence (12) has a solution for all \(m \). The converse is proved.

Case \(k = 1 \).

The left hand side of (11) \(\binom{m}{2} < \binom{x}{2} \). For \(k = 1 \) the controne
\[1 \leq \binom{m}{2} \]
It means that if \(x \) is a solution in the form \(1 \leq \binom{m}{2} \) for some integer \(m \), then the \(m \) is the minimal solution of (11). By Lemma 2, otherwise there
\[\binom{m}{2} \in \binom{a}{2} \leq \binom{x - 1}{2} \]
\[1 \leq \binom{m}{2} \leq \binom{x}{2} \]
\[i = \binom{a}{2} < \binom{x}{2} \]
The minimal \(m \) in this case is the minimal \(m \) satisfying \(1 \leq \binom{m}{2} \).
Symmetrizing the two cases, we obtain in satisfying (1) and (2) the obtained or satisfying $x < 1 + \frac{m}{3}$. By Lemma 2 this is a linear equation. The above equation is not. It only contains $E = \left(A_1, \ldots, A_m\right)$ by considering the corresponding $n \times n$ matrices X of all different columns consisting of 1 and $m - 1$ entries of 2, where $0 < x < 1 - m$. One follows from the nonidentity of x the $x \leq 1 + \frac{m}{3}$, the matrix obtained in the way obviously satisfies the condition that it has differences columns $x > 0$ and the column has at least two more 1's, $x < 1 - m$. This is then possible only if there exists an integer k with $x < 1 - m$. Thus

$$\left| \begin{array}{c}
A_1
\vdots
\cdot
\cdot
\cdot
\vdots
n
\end{array} \right| < 0,$$

where (a) denotes the last integer d and this is the best possible estimate.

One $x = 1$

Using the theory of Sierpinski systems we obtain an almost complete solution here.

Theorem 3: If $E = \left(A_1, \ldots, A_m\right)$ is a mapping system on an incidence vector $n \times n$, then $x < 1 - m$. The equation $x \leq 1 - m$ and

$$\left| \begin{array}{c}
A_1
\vdots
\cdot
\cdot
\cdot
\vdots
\cdot
n
\end{array} \right| < 0,$$

where (a) denotes the last integer d and this is the best possible estimate.

One $x = 1$

Using the theory of Sierpinski systems we obtain an almost complete solution here.

Theorem 3: If $E = \left(A_1, \ldots, A_m\right)$ is a mapping system on an incidence vector $n \times n$, then $x < 1 - m$. The equation $x \leq 1 - m$ and

$$\left| \begin{array}{c}
A_1
\vdots
\cdot
\cdot
\cdot
\vdots
\cdot
n
\end{array} \right| < 0,$$

where (a) denotes the last integer d and this is the best possible estimate.
If there is a finite triple system for \(m = 1 \), let us arbitrarily delete \(\binom{m-1}{2}/3 = k \) right- and left-hand pairs. This construction proves the theorem in this case.

If there is a finite triple system for \(m = 2 \), delete a pair with the \(m+2 \) triples containing it. Then we have \(\binom{m-1}{2}/3 = n \) triples on \(m \) points with the desired property. However, if the number is \(\binom{m-1}{2}/3 \) we can delete some triples until we have only \(n \) triples on \(m \) points. As \(\binom{m-2}{2}/3 \), \(m = \binom{m-1}{2}/3 \) (this case is also admitted)

If \(m = \frac{1}{2} \sqrt{4m - 1} \) (there is exactly one such \(m \) for each \(n \)). We shall construct the incidence matrix \(A \) by its columns. It will have one column for each of the \(\binom{m}{2} \) columns with two \(1 \)'s. It is easy to see that the number of remaining columns

\[s = \binom{m}{2} \cdot \left(\binom{m-1}{2}/3 \right) \]

Choose now a different column with three \(1 \)'s in each, according to the previous result. Hence, if \(2d \) columns of \(A \) are mutually orthogonal or pairwise orthogonal, then \(2d \) is divisible by \(3 \) and the condition is proven.

The same proof works for the following more general case.

Theorem: For \(d = (a_1, \ldots, a_k) \) be a partition on \(n \) points and

\[(a_i, \sum_{j=0}^{i-1} a_j) < a_i \quad (i = 1, \ldots, m, 1 \neq j \neq i) \]

then the minimum of \(m \) is

\[\frac{d}{2} \]
\[
\begin{align*}
W &= \left(1 + \sqrt{\frac{1}{2}\pi - 2\pi^2} - 2\pi \right)^
\frac{1}{4} + 2 \\
&= \left(\frac{1}{2} - \frac{\sqrt{1}}{2} \right)^
\frac{1}{4} + 2
\end{align*}
\]

where \(W \) is the first term. \(W \) and \(h \) are the numbers of triplets in a set \(\mathcal{W} \) and \(\mathcal{H} \), respectively.

The problem can be formulated in the following way:

\textbf{Problem 1.} Let \(Y \) be a set of \(n \) elements. What is the maximum number of different subsets of \(Y \), such that any pair of elements is contained in at most one subset?

Another, more helpful problem is to find the solution of the case \(\mathcal{H} \).

\textbf{Problem 2.} The number \(n \) of triplets in an \(n \)-element set is given. What is the number of the subset of elements in the set \(Y \)?

\textbf{Problem 3.} If it is true that for any \(w \) and \(n \), the \(n \) triplets can be chosen in the minimum of \(w \), at least by \(2 \).

\textbf{REFERENCES:}

