Note

A Simple Proof of the Erdös-Chao Ko-Rado Theorem

G. O. H. KATONA

Mathematical Institute of the Hungarian Academy of Sciences, Budapest, Hungary

Communicated by W. T. Tutte

Received January 24, 1972

A simple proof is given of the theorem of Erdös, Chao Ko, and Rado.

THEOREM (Erdös, Chao Ko, Rado [1]). Let $X = \{1, 2, ..., n\}$ be a finite set and A_1 , A_2 ,..., A_m be different subsets of X such that

$$|A_i| = k$$
 $(1 \le i \le m, k \le n/2 \text{ fixed})$

and

$$A_i \cap A_j \neq \emptyset$$
 $(1 \leqslant i \leqslant j \leqslant m).$

Then

$$m \leqslant \binom{n-1}{k-1}$$
.

Proof. For $1 \le i \le n$ let B_i be the set of those numbers among 1, 2,..., n which are congruent, mod n, to one of

$$(i-1) k + 1$$
, $(i-1) k + 2$,..., ik .

B_i's are not necessarily different.

1. If $1 \leqslant i_1 < i_2 < \cdots < i_d \leqslant n$ and B_{i_1}, \ldots, B_{i_d} are pairwise non-disjoint, then $d \leqslant k$. To prove this, let us fix B_{i_1} . By the symmetricity we may assume that $i_1 = 1$. B_j is non-disjoint with B_1 if and only if either

$$jk = q_1 n + r_1, (1)$$

where $0 \leqslant q_1 < k$, $1 \leqslant r_1 \leqslant k$, or

$$(j-1)k+1=q_2\,n+r_2\,, (2)$$

where $0 \leqslant q_2 < k$, $1 \leqslant r_2 \leqslant k$.

184 KATONA

For fixed q_1 there is at most one (j, r_1) satisfying (1), and for fixed q_2 there is at most one (j, r_2) satisfying (2). If (1) holds for some j with $r_1 = k$, then $(j-1)k+1 = q_1n+1$, and (2) can hold only for the same j. If (1) holds for some $j=j_0$ and $1 \leqslant r_1 < k$, then (2) can hold, with $q_2 = q_1$, only for $j = j_0 + 1$ since $j_0k+1 = q_1n+r_1+1$. However $B_{j_0} \cap B_{j_0+1} \neq \emptyset$ since $k \leqslant n/2$. Thus, for every q, there is at most one j with $B_1 \cap B_j \neq \emptyset$ so that either (1) or (2) holds, and if q = 0 then j = 1. Our first statement is proved.

Denote by $F_1,...,F_{n!}$ the sequences obtained from $F_1 = (B_1,...,B_n)$ by permutation of the elements of X.

2. Count in two different ways the pairs (F_i, A_j) , where A_j is in the sequence F_i :

$$n! \cdot k \geqslant m \cdot n \cdot k!(n-k)!. \tag{3}$$

Here, on the left-hand side, we used the result of point 1, that F_i can contain at most k A_j 's. On the right-hand side, $n \cdot k!(n-k)!$ is the number of F_i 's containing a fixed A_j , because we find k!(n-k)! permutations transforming a fixed B_r onto A_j . (3) is equivalent to the statement of the theorem.

This proof can be considered as a further development of Lubell's method [2].

REFERENCES

- P. Erdös, Chao Ko, and R. Rado, Intersection theorem for system of finite sets, Quart. J. Math. Oxford Ser. 12 (1961), 313-318.
- 2. D. Lubell, A short proof of Sperner's lemma, J. Combinatorial Theory 1 (1966), 299.