FAMILIES OF SUBSETS HAVING
NO SUBSET CONTAINING
ANOTHER ONE WITH SMALL
DIFFERENCE
by G. O. H. KATONA

Reprint from Nieuw Archief voor Wiskunde
(3) • 22 • (1972) • 54-67
FAMILIES OF SUBSETS HAVING NO SUBSET CONTAINING ANOTHER ONE WITH SMALL DIFFERENCE

BY O. N. KATONA

Introduction

We prove the following theorem: Let $X = x_1, x_2, \ldots, x_n$ be a family of different subsets of a set S of n elements. If no two of them possess the proper part

$$x_i \supset x_j \quad (i \neq j),$$

then $n \leq \binom{n}{\lfloor \frac{n}{2} \rfloor}$ and this is the best possible estimate. The latter theorem serves as the main result of a paper on the authors' problems of combinatorics.

Theorem 1. Let $X = x_1, x_2, \ldots, x_n$ be a family of different subsets of a set S of n elements. If no two of the subsets satisfy $x_i \supset x_j \supset x_k$, where k is a given positive integer, then

$$n \leq \binom{n}{\lfloor \frac{n}{2} \rfloor}$$

and this is the best possible estimate.

Theorem 2. Similarly, we prove a counting of

Harary's theorem, let $X = x_1, x_2, \ldots, x_n$ be a partition of S. If

then $n \leq \binom{n}{\lfloor \frac{n}{2} \rfloor}$ and this is the best possible estimate.

Proof.

Theorem 1 (Adrian Bondy)
We will prove Theorems 3 and 4 in a more general language, which can be realized for the following functions $f(x)$ and $g(x)$.

Theorem 6. Let a_1, \ldots, a_n be positive integers and $f(x)$ be the function defined by

\[f(x) = \prod_{i=1}^{n} a_i^x. \]

The number of roots of $f(x) = 0$ is either 0 or 1, which may be computed as follows:

\[\frac{1}{n!}(1^n - 1). \]

The estimate in the best possible case.

Definitions and Theorems

We say that the class set A is a partially ordered set if a relation \leq is defined on A such that the following properties hold for all $a, b, c \in A$:

1. $a \leq a$ (Reflexivity)
2. If $a \leq b$ and $b \leq c$, then $a \leq c$ (Transitivity)
3. If $a \leq b$ and $b \leq a$, then $a = b$ (Antisymmetry)
4. If $a \leq b$ and $b \leq c$, then $a \leq c$ (Comparability)

We say that A is a finite set if A is a partially ordered set and A is finite.

We say that A is a totally ordered set if A is a partially ordered set and A is totally ordered.

We say that A is a linearly ordered set if A is a partially ordered set and A is linearly ordered.

We say that A is a well-ordered set if A is a partially ordered set and A is well-ordered.

We say that A is a partially ordered set if A is a partially ordered set and A is partially ordered.

We say that A is a totally ordered set if A is a totally ordered set and A is totally ordered.

We say that A is a linearly ordered set if A is a linearly ordered set and A is linearly ordered.

We say that A is a well-ordered set if A is a well-ordered set and A is well-ordered.

We say that A is a partially ordered set if A is a partially ordered set and A is partially ordered.

We say that A is a totally ordered set if A is a totally ordered set and A is totally ordered.

We say that A is a linearly ordered set if A is a linearly ordered set and A is linearly ordered.

We say that A is a well-ordered set if A is a well-ordered set and A is well-ordered.

We say that A is a partially ordered set if A is a partially ordered set and A is partially ordered.

We say that A is a totally ordered set if A is a totally ordered set and A is totally ordered.

We say that A is a linearly ordered set if A is a linearly ordered set and A is linearly ordered.

We say that A is a well-ordered set if A is a well-ordered set and A is well-ordered.

We say that A is a partially ordered set if A is a partially ordered set and A is partially ordered.

We say that A is a totally ordered set if A is a totally ordered set and A is totally ordered.

We say that A is a linearly ordered set if A is a linearly ordered set and A is linearly ordered.

We say that A is a well-ordered set if A is a well-ordered set and A is well-ordered.
For $1 \leq n$, let $\gamma_n = r^{-n} = \frac{1}{r^n}$.

Theorem 1: If x, y are α and η approximately α-determined, then $x \leq y$.

Proof: The proof is straightforward and follows from the definitions of α and η.

Theorem 2: If x, y are partially ordered sets, then the interval $[x, y]$ is the set of all elements z such that $x \leq z \leq y$.

Proof: By definition, the interval $[x, y]$ consists of all elements z that are less than or equal to both x and y, and greater than or equal to both x and y. This follows directly from the definition of a partially ordered set.

Corollary: If x, y are partially ordered sets, then $x \leq y$ if and only if $[x, y]$ is a non-empty set.

Proof: This follows from the definition of a partially ordered set and the properties of intervals in such sets.
Theorem 1: Let A and B be two symmetrical chains and C be their join \(C \) and \(C' \). Consider the set of elements of \(C \) such that \(C' \) is the join of two elements of \(C \) that satisfy the condition:

\[
C_1 \cup C_2 = C
\]

where \(C_1 \) and \(C_2 \) are elements of \(C \) and \(C' \) is their join. The elements \(C_1 \) and \(C_2 \) are considered as a part of the join \(C' \) in \(C \). This condition is satisfied when \(C_1 \) and \(C_2 \) are not such that \(C_1 \cap C_2 = \emptyset \).

Since \(C \) and \(C' \) are symmetrical chains, the set of elements of \(C \) that satisfy the condition are the same as the set of elements of \(C' \). Therefore, we can say that the elements of \(C \) that satisfy the condition are exactly the elements of \(C' \).

Theorem 2: Let \(A \) be a symmetrical chain with \(\text{join} \) \(A' \). Consider the set of elements of \(A \) such that \(A' \) is the join of two elements of \(A \) that satisfy the condition:

\[
A_1 \cup A_2 = A'
\]

where \(A_1 \) and \(A_2 \) are elements of \(A \) and \(A' \) is their join. The elements \(A_1 \) and \(A_2 \) are considered as a part of the join \(A' \) in \(A \). This condition is satisfied when \(A_1 \) and \(A_2 \) are not such that \(A_1 \cap A_2 = \emptyset \).

Since \(A \) is a symmetrical chain, the set of elements of \(A \) that satisfy the condition are the same as the set of elements of \(A' \). Therefore, we can say that the elements of \(A \) that satisfy the condition are exactly the elements of \(A' \).
The proof of Theorem 2 follows the proof of Theorem 1.

Proof of Theorem 2. By the definition of the zero simplicial sets, 0 and $0'$ are defined as the simplicial sets of length 0 and 0', which are the simplicial sets of length 0 and 0', respectively. The proof of Theorem 2 proceeds similarly to the proof of Theorem 1. We define a function f on the simplicial set X such that $f(x) = 0$ if x is a vertex of X, and $f(x) = 0'$ if x is a non-vertex of X. Then, for any simplicial set Y, the function f induces a function $f_X: X \to Y$ such that $f_X(x) = f(x)$ for all $x \in X$. We then show that f_X is a bijection on the simplicial set X. This completes the proof of Theorem 2.
The the claims will be the following:

\[x \] \[y \] \[z \] \[w \] \[t \]

To formally, we see clearly between a, b and where f, g:

\[f(x) = g(y) = h(z) = i(w) = j(t) \]

\[\ldots \]

\[\ldots \]
From Fig. 1 it is easy to see that the two chains are either of length 4 or larger. However, if a_j is of length 4 or larger, then the sum of all the terms of a_j in the product $a_j(a_j + 1)$ is equal to the product of a_j and its conjugate a_j^T. If a_j is of length 4 or larger, then the sum of all the terms of a_j in the product $a_j(a_j + 1)$ is equal to the product of a_j and its conjugate a_j^T.

If a_j is a, then the situation is similar to the paper and we have only two examples: un

Fig. 1.

In the case of the frame, which is a generalization of the basic ideas of [1],

If a_j is a, then $a_j + 1$ where a_j is not totally reduced, and

let $a_j = b_j$ be the length of the chain a_j. a_j is replaced by the simple of a_j.

In a simple chain, the chain a_j is replaced by the simple a_j.
and if a numerical chaos set and its graph may be shown as

where

and

(See Fig. A.)

Fig. 1.

Applying the same we obtain that if \(a \) and \(b \) are numerical chaos sets, and in addition, the graph may be shown as

where

and

1. \(G_n \) if the number of old ones is even

2. \(G_n \) if the number of odd ones is odd.

In the second case as \(a \) is a \(b \) we may also write the rule in the form

or \(a \rightarrow b \). The proof is completed.

Proof of Theorem 8. Let \(c \) and \(d \) be the numbers of the sets \(a \) and \(b \), respectively. The conditions of taking \(c \) and \(d \) are equivalent in this case. If \(c \) is an even 2-numerical chaos set, by Theorem 3, since \(n_1 + n_3 = n_2 \) all the ones are even for \(n = 2 \). Consequently, the sets \(c_n \) and \(d_n \) are given by

\[c_2 = c_2 + d_2 \]

\[c_1 + c_3 = d_1 + d_3 \]

and

\[c_n = c_n + d_n \] for \(n = 1 \) and \(c_n = c_n + d_n \) for \(n = 2 \). The proof is completed.

Proof of Theorem 9. We apply Theorem 3 for the subsets of \(a_n \), which is an even 2-numerical chaos set by Theorem 1. For taking \(a \) and \(b \) we assume \(n = 1 \) and \(n = 2 \). The proofs are completed.
Proof of Theorem 2. Consider the case \(k = 1, 2, 3, \ldots \) as we did. Let \(S_i \) be
the set of indices \(i \) when \(x_i = 1 \) in the first sum. If \(x_i = 2 \) and
\(x_{i+1} = 3 \), then for the corresponding sum
\[
\sum_{k=1}^{3} x_k = x_1 + x_2 + x_3
\]
From the construction, we can choose \(x_1 \) and \(x_2 \) to
be \(x_3 \), which is a contradiction. The same holds for the second case and so on. Thus we can apply
theorems for \(x_1 = x_2 = \cdots = x_n \).

The proof is completed. If we take \(x \) to be not a multiple of the number \(n \),
then there is an element \(x_i \) that is not a multiple of \(n \).

\[
\leq \sum_{k=1}^{n} \frac{d_k}{n} \leq \frac{d}{n}
\]

The following example shows the case:
Here is the text from the image:

See [x] and [y] for a description of the basic facts. The set of points given in the figure here are one set of points of form

\[(x)\]

with length \(L\) and total number \(N\); while the number of elements of the two largest "blocks" (or \(k\)) in \(N\) is easy to see even if we exclude the configuration

\[(y)\]

with \(r = 1\) points and with length \(L\), from the general statement. Follows from the proofs. The general is the configuration.

\[(z)\]

is excluded in [x] instead of \((y)\) with \(x = y\). The combination above two to exclude \((y)\) with length \(L\) to too small, however, to exclude the configuration. So that a good condition between \((x)\) and \((z)\) would be interesting.

References
