FUNCTIONS DEFINED ON A DIRECTED GRAPH

By G. K. ATLAS and T. B. MOTTS

Mathematical Institute of the Hungarian Academy of Science and University

Thessaloniki, Greece

D. Krich has formulated the following theorem [2] in a more general form:

Let G = (V, E) be a directed graph with a real function f defined on the vertices of G, where f(y) is the weight of the vertex y. Then the function f satisfies the following conditions:

1. f(x) = 0 for all x ∈ V.
2. f(x) ≤ 0 for all x ∈ V.
3. f(x) ∈ ℝ for all x ∈ V.

We will use the notation of C. F. Deuring [3].

Finite directed graphs

Let G = (V, E) be a finite directed graph without loops and multiple edges, where V = {v₁, v₂, ..., vₙ} is the set of vertices and E is the set of edges. Define

\[f(x) = \frac{1}{|E|} \sum_{e \in E} g(e) \]

where g(e) is the weight of edge e. The function f satisfies the following conditions:

1. f(x) = 0 for all x ∈ V.
2. f(x) ≤ 0 for all x ∈ V.
3. f(x) ∈ ℝ for all x ∈ V.

We may formulate the following theorem:

Theorem 1: A finite directed graph G = (V, E) has the Krich property if and only if f(x) is the non-negative real value.

We prove the theorem by induction on the number of vertices in G. Base case: G is a graph with one vertex, and f(x) = 0.

Inductive step: Assume the theorem holds for graphs with fewer than n vertices, and let G = (V, E) be a graph with n vertices. Suppose G has a vertex x with f(x) < 0. Let y be a vertex such that (x, y) ∈ E. Then by the inductive hypothesis, f(y) ≥ 0. Since f(x) < 0, it follows that f(x) = f(y) - d(x, y) for some d(x, y) ≤ 0. Therefore, f(x) ≥ f(y) for all vertices y adjacent to x. This contradicts the assumption that f(x) < 0.

Hence, f(x) = 0 for all x ∈ V, and G has the Krich property.

We conclude that the theorem holds for all finite directed graphs G = (V, E).

14 feb 2023
In this case, the right side is the arithmetic mean of values smaller than
are equal to \(g(x) \), but at least one of them is actually smaller. Similarly, \(B \) is a
subset of \(A \).

(1) In the case of two disjoint sets, we have shown that there are
contiguous elements of \((g_1, g_2) \), if \(g_1 \neq g_2 \), \(g_1 < g_2 \), and
the minimum value \(g_1 \) is less than the maximum value \(g_2 \).

(2) In a homogeneous linear equation system, we must show that it has a
non-trivial solution. Consider the matrix \(N \) of coefficients of (3). Obviously, \(\alpha_1 = -\langle P, x \rangle \)

\(N = \begin{pmatrix} 1 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 1 \end{pmatrix} \)

Using the fact that \(B \) is a subset of \(X \), we obtain

(3) If \(x \leq c \) and \(y \leq c \),

\(n_{xy} = \begin{cases} 0 & \text{if } x \leq c \text{ and } y \leq c \\ 1 & \text{otherwise} \end{cases} \)

(4) If \(x \leq c \) and \(y \leq c \),

\(n_{xy} = \begin{cases} 0 & \text{if } x \leq c \text{ and } y \leq c \\ 1 & \text{otherwise} \end{cases} \)

(5) If \(x \leq c \) and \(y \leq c \),

\(n_{xy} = \begin{cases} 0 & \text{if } x \leq c \text{ and } y \leq c \\ 1 & \text{otherwise} \end{cases} \)

Similarly, for \(B \) a subset of \(X \), we obtain

\(n_{xy} = \begin{cases} 0 & \text{if } x \leq c \text{ and } y \leq c \\ 1 & \text{otherwise} \end{cases} \)

and for \(B \) a subset of \(X \), we obtain

\(n_{xy} = \begin{cases} 0 & \text{if } x \leq c \text{ and } y \leq c \\ 1 & \text{otherwise} \end{cases} \)

It is obvious. The matrix \(N \) has the form

\(N = \begin{pmatrix} 1 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 1 \end{pmatrix} \)

Put

\((P(X, Y) + 3, n_{xy} = 0 \) for \(x \leq c \).

These values satisfy the last \(a \) equations because of (1), (4) and (5).

It remains to solve the equation system

\(\sum_{x} n_{xy} (P(x)) = 3, n_{xy} = 0 \) for \(x \leq c \).
We will show in an indirect way that \(W \rightarrow h \) where \(M \) denotes the matrix ofcoefficients of this equation. Assume the contrary for simplicity and set

\[
p(n) = \frac{\text{1}}{\text{2}} \sum_{i=0}^{\text{2}} x_i n_i, \\
p(n) < 0.
\]

Now since the negative elements are isolated from each row, \(M(n) \neq 0 \).

In the above matter, \(x_i \) are linearly dependent, that is, there are \(x_{i_1}, \ldots, x_{i_r} \) not zero such that

\[
\sum_{i=1}^{r} x_i = 0.
\]

We may assume there is a positive number among \(x_{i_1}, \ldots, x_{i_r} \). We may assume \(x_{i_1} > 0 \). Let us choose the indices in such a manner that

\[
x_{i_1}, \ldots, x_{i_k} > 0 \quad \text{and} \quad x_{i_{k+1}}, \ldots, x_{i_r} < 0
\]

By condition (a) there are \(n_{i_1}, n_{i_2} \leq 0 \) such that

\[
m_n = 1.
\]

We separate two cases:

1. \(k > 1 \).
2. \(k = 1 \).

In the case (1) \(n_{i_1} < 0 \), and in the case (2) we obtain from (g) and (h) the inequality

\[
\frac{\text{1}}{\text{2}} x_i n_i < 0.
\]

Instead of (1), we will show that (2) cannot hold for the same reason. The following inequality is trivial:

\[
\frac{\text{1}}{\text{2}} x_i n_i = \frac{\text{1}}{\text{2}} (x_i y_i + x_i z_i) \leq \frac{\text{1}}{\text{2}} (x_i y_i + x_i y_i) \leq \frac{\text{1}}{\text{2}} (x_i y_i + x_i y_i) + \frac{\text{1}}{\text{2}} (x_i y_i + x_i y_i) + \frac{\text{1}}{\text{2}} (x_i y_i + x_i y_i)
\]

and is the case (1) strict inequality holds. Then, in the case (2) (11) and (12)

\[
\frac{\text{1}}{\text{2}} x_i n_i < 0.
\]

In the case (1) (12) follows from (11) and (12). The proof is completed.

Conclusion. Every homomorphism and strongly normal finitely presented has the abelian property.
The proof is as follows:

Let G be an undirected graph. If we orient the directions by the edges of G in an arbitrary manner, then the resulting graph \hat{G} is called an orientation of G. A graph \tilde{G} is called a tournament if every pair of distinct vertices is connected by a directed edge in one of the orientations \hat{G}. The following theorem states that if G is a tournament, then \tilde{G} is the Kneser property.

Theorem 2.4: If G is a finite undirected non-complete graph, then \tilde{G} has no two disjoint edges.

Proof: If G is complete, we have trivially the desired result. If G is not complete, then there exist two distinct vertices u and v which are not connected by an edge. If we add an edge between u and v, then we get a complete graph G'. By the previous result, if G' is a tournament, then $\tilde{G'}$ is the Kneser property. Hence, $\tilde{G'}$ has no two disjoint edges, and therefore, \tilde{G} has no two disjoint edges.

General solution of (1)

If G is a directed graph with the Kneser property, every orientation of the system of G has one or more edges in a complete graph G'. In this case, the graph G' is a tournament.

The following proposition is a directed graph G' and known to be a complete graph G'. If G' is a complete graph, then G' has the Kneser property.

Proposition 2.5: If G' is a complete graph with the Kneser property, then G' has the Kneser property.

Let G' be the complete graph with the Kneser property. Then G' has no two disjoint edges. Let G' be a tournament with the Kneser property. Then G' has no two disjoint edges. Therefore, G' is a tournament.
Consider all the minimal sub-arrays \(\lambda_1, \lambda_2, \ldots, \lambda_m \) of \(\Xi \). Each \(\lambda_i \) is an array of \(\lambda_i \) elements of \(\Xi \). The order of \(\lambda_i \) is determined as usual. The order of \(\lambda_i \) is determined in the proof of Theorem 2. Only then do we have more than a sub-array.

REFERENCES