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Summary of Chapters II, and III,

We use the notation of [HMT] and [NPr]. Difference: (p((u,v)) denotes
here ((u,v) introduced on p.23 of [NFr].

SUMMARY OF CHAPTER II,

MAIN THEOREM 1 ﬁflCAB is not atomic.
DEFINITION 6 (1) Let {u,v,wi=ix,y,2} and i,je2", k€2. Then

d
u, =v,, 4-5-) u=v, In the following, instead of

u;=v ., :cnd u, =V j ;ce shall simply write u, =v and us=v j resp.
u, =v 6-:: vau, @JF pk((u,v))
Uy =v 6:: veu,, = 3w(u =W,W -v) it if<¢s,
ug=v, G 3w(ui=w,vj-w) if  dif<oey.
xiaxj «dzé HY(I'yaxi'Yj) ’
d
y=yy €= I(xmyuxgeyg) o
LA )
zi-zj = X2y s J=2Z ’xi-yj .
By the above, the formula "ui=v ;j“ has been defined for all i,jezi and

u,v € ix,y,z}.
(11) ax’ {(u =V V=W *uiswk), (u =u, V=V > 3w(wo-ui,w =y ))
iu.V.w}-ix,y,z}. i,3€2%,  1il,13],lkl<3].

Let us note that Ax’G Pm, is a finite set of formulas.

3
ax & ¥xyz AAx’. Thus Ax éFmg’o . u
- 3 " ",
REMARK 7 (1) "uy u," means intuitively that "u, is defined (ii)

Ax is a formulation of I, i.e. [k T Ax, But as we shall see later,

|3—Mc¢> Ax, in particular }'3—7‘JC->AJ: while l3—- Ax 2T . )



Al

DEFINITION 8 Let ¢,p € FmB’ o
(1) (puy Qﬁ) Ix(x=u_, @) if u€f{y,2} and ie2®* , ana

pair(x) & Iypfx,yIATyp (x,5) .«

(ii) (:P@ ‘-P & BY((PYO ’Wn_’xoayoo ,YOl=y10 !yin_gxl) s
£
@Y éié QY 1yg=%y ¥y=%5)

E ég xoaﬂ;1 ’ i. & pair(x) " é éi F )

o & pair(x) A ¢ ¢+yédféc9ch ’ CP"P‘i"PA‘P .

(111) Bt 2 Ey & fcpeFm'g’l : Axk gocop: ,  En'e Rm,

A .. o
Ef g E)" g <Evo+9"*’0'1r°! Qé> . [ ]

THEOREM 9 (1) & is an algebra, i.e. the set Ev is closed under
the operations © , ¢ s & etc,; and an is a congruence on Er .,

Ayl
Further, Ev 2 {@op : (€ Pmy’ 1.

(i1) E-.r/gu& QRA . u

REMARK 10 (i) We used Ax instead of I because Eﬁ'/nx4RA. (i1)
Remarks on why we used EvCFm‘;’ﬂ' instead of Fmg’l.
From now on, we allow only binary relation symbols in our languages
A, Rdenotes the set of relation symbols of A, and a recursive function
€ : Fmi-i RAT 4is fixed such that g satisfies (i),(ii) below (such a g
exists by Lemma 3 in Chapter II.l.). Thus from now on, in the definitions

Py+P, 8 are parameters that we do not indicate explicitly.

(1)  &(R(x,¥))=R, g(-p)=-glp), &lpap)=(gp):(gy), &lpVy)=(gy)+(gy)
for all relation symbols R and formulas t?.kp .

(ii) g preserves meaning, i.e. let M be a model, a,bEMN, cpéchzo and
assume that either M k1 or cpEFm:; . Then

Wk lab] = (a,b) € (@M (<R™: Rewd).
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DEFINITION 121 (1) Let (p€éFm,, be arbitrary. Then
a
P(xy,%,) = Jyz(z=xy,y=x, ,9lz,y)).

(ii) The function h : RAT - Fm% is defined as follows:
h(R) 4 R(xo,xl)GE for all RER, and
h : RAT > Est  is a homomorphism, i.e.
n(r;e) & nix)en(s), n(x’) En®)?®, n@a)Se,
B(-7) £ pair(x)A+h(t), h(z-6) & n(TAR(E), hr+s) & h(v)Vh(s),
n(1) & pair(x), n(o) &r .

(iii) The functions #%,X ,X’: FmﬁéFmg are defined asg follows:
%92 ¥x(pair(x) + £%9), «¢ & ngo ,
;xq:g ¥x([Ax"Apair(x)] & ‘@), where Ax™ g axaxm . n

THEOREM 12 (solution of a problem of [TG], p.3.78)

(1) Thy 4= WEX) &> by , forall (QeFu,.
(11) Tk @K@ , for all (EFmy . n
REMARK 13 Discussion of Thm.12 will follow, B

THEOREM 14 (solution of Problem 4.14 of [HMT]) Let A< {3500 and

3£ ¢<w, Then WP CAb< is not atomic, further, P4 %&CA« is not atomic
either, |

THEOREM 15 (discussion of Thm.9.)
1) = |-3—1‘ Ax for some p,,p, € Fmg ; moreover

(11) & /m, ¢ RA , in particular

xfs-v‘ (peg)oT « 9%p®y) for some @+, €Ev and PoPy € ng, .

(1ii) T ¥ PE>P , X ¥ ‘Pw > ¥ for some cpeFm;' and po,ple Fmg ,
where in addition ¢ is of form pair(x)Ap ; and
2
3C|'5—/ Lp(xo,xn_)@)& -Pq)(xo,xi) for some po’pd."PEFmB .
2
(iv)  Exb7 (@ip)s7 © ¢s(psp)  for some q:.tp.'{‘—'Fmg and p,,p, € Fo

3
where @;p = Jz2(p(x,2)Ap(z,y)) is the "usual" composition and
Ax € Ax is a strong extension of I, see the next Def,16. g
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DEFINITION 26 (1) X & s« .
(ii) ZLet T.C.Fmg, LpeFm?o. Then Tl-i:tp 4:(-;# VL A E .

(iii) Let H be an arbitrary set, We define

(iv)

(v)

(vi)

Pi) £1, 2,00 &2 @0 (e (e (1), By & U{r (H) : new,

let u g P,(H), then

pip & 1(a,0) €20 : (FceU)am(d,c)i and
H g i(a,b)er t (dcev)a=(c,b)t , i.e. pjg and pjg are the
usual® x/ set theoretic projection functions on P (H).

Let th denote the similarity type containing two binary relation
symbols p and q. Then

G(m) € B\, piy + Iy > € Moa(m) .
We call ((H) a standard model of projection functions.

Let Ax’ be the "standard theory" of the projection functions p,q,
i.e. let Ax’ be the set of all first-order formulas with 2 var-
iables that are true in G(w). I.e.

a8 iWEFAO : G(w) k@l

Let po,p,ler‘mg and cpéFmA 0. Then (p(po,pl)éFmg denotes the

formula we obtain from ¢ by replacing p(x,y),q(x,y) in it every-
where with PoiPy o Now

& & Kpypy) & 19(pgpy) ¢ @EAX'S, a* S RuiRRY .

0
3'
kH denotes the relation algebra generated by pjg ’ pjg i.e.

Ry @;ﬂ“")zp;g,p;g}, where W = R(B,(H)).

We say that ULECAB is strongly quasi-projective, in symbols
e GCAB, if HAw Ol contains a subalgebra isomorphic to %,y .

Thus Ax , Ax" € Fm

,_,_'Q't’:lt3 4 {ULGCAB: Rwéﬂfma} and (HeGerﬂl)A-Sgie} - m

s:/w

e shall use this notation when H will not contain any pairs.



THEOREM 17 (discussion of Thm.12)
(i) x F@ and :Itl-é—v‘ K¢ for some LPEFmg and "good" PPy 18&e

0
(11) =« l-3-—f P kP for some QPEFmB and "good" PysPy»& i MmoTeover
(id At ]'—7‘ 0 " ™
ii) Ax 3 @ > K¢ for some (pfiFm3 and "good PysPy 8 and
Ax™ %—7‘ K§ > for some L(JGFmg and "good" p,,p, »&
(iv) Tlv;cgp Sy nggp, for all TcX ¢ .

(v) 7T lngp oy '1‘13 ¢ for some A?QTQFmg, (pex“Fmg and "good" PPy »8e

(V) Tho > «Thkxp forall TSPn,3( .

(vii) Tk ==> Tls-;fa.p and T BXYy = "NB"P’ for some

A TCFN 2¢,p and "good" py,p, .

(viii) ,Qca, gl RCA, . =

REMARK 18 (i) It can be proved (similarly to Thm.14) that @i;;RA and
3}{584& are not atomic. Moreover, ’5'(61( is not atomic if K<SA, R(U)eK
for some infinite U and the equations valid in K are recursively
enumerable, We do not know whether %YPNA, %’PWA or 'B'Irfs(lrs;°< (2cx< W ,
0<{’£< W) are atomic or not,

(ii) We can prove QSA Sﬁ RA exactly as 'QCA:B #: RCA.

(iii) We sketch a direct proof of Thm.12 that does not use Tarski’s
representation theorem QRA SRRA.

(iv) (about a logic aGB used in [TG1 that is stronger than our I )
(v) There is & recursive G Fmow-)RAT such that [dt By =

SA k Gg=1, for all @EFm)y]. m

THEOREM 19 (solution of Problem 2,7 of [HMT]) There is bEPFr CA3 that
3 but not freely. In general, 5:’,5 CA, has a p-element
generating system that does not generate it freely, if O<{’.> and 3< .

generates ﬁlcl
This generating system is irredundant., g
REMARK 20 (1) Thm.19 remains true for 317'{51{ if EK=RA or if R(w)e

K&SA, but it fails for K=WA or K=NA., (ii) (about the proof of
Thm,19) -
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SUMMARY OF CHAPTER III,
EgK denotes the set of equations valid in K.

COROLLARY 4 (Maddux) EqCA, is undecidable. n

3

DEFINITION 2 Let K be a class of structures (in particular, K may
be a class of algebras).

(i) K is said to be gtrongly decidable if its similarity type is
finite and if there ig a recursive function f : W > & such that
a) (¥OeK)(¥x S, A)(3&eK)[xloL=x]& ana [B{<2(IX])], ana
b) {0EK : A€W} is decidable.

(11) Pk & feex :  lal<wl,

(iii) QeqK denotes the set of quasi-identities valid in K. B

REMARK 3 Let K be a class of algebras. (1) If K 4is strongly
decidable then EgK is decidable, moreover the set of universal formulas
valid in K is decidable., In particular, QegqKk 1is decidable, hence the
word-problem for K is solvable. Further, EgK = EgPK, moreover PFPK and
K cannot be distinguished by universal formulas.

(ii) Connections between decidability of EqK and EqK=EqPK.

(114i) CAZ, RCA2 and WA, NA are all strongly decidable. |

Chapter III,1

d
DEFINITION 4 NCA = {eleCTA : oL k {00'01'02"’3'05’06'“73}- -

THEOREM Let o<=w ,

(1) EqNCA , is decidable,

(i1) I‘Z‘qNC‘A‘)< ¥ Eq]NCA‘>< y 1f X<,

(1ii) QeqNCA_ ¥ QeqPNCA__, if >3. Thus NCA_ is not strongly decid-
able if <23 . =

REMARK 6 (i) The condition o<W cannot be omitted in Thm.5(ii) because
EqNCA # quNCA“ if «<2>wW. We do not know whether the word-problem
is solvable for NC%(, <X Z3 NCAt>< is strongly decidable for <2, ket o< =3,

Moreover, if i€ 8 then let
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i

NCA_ g [OlECTA, : (¥J€ 8~4,i3) Ok C I, Now, if 1€8, 140 then

[NcAT' is strongly decidable iff i€ {2,3,7].

We give the constructions showing that WA and NA are strongly decid-
able.
(ii) About the proof of Thm.5. .

COROLLARY 7 If we replace {4) in the proof system kg with the fol-
lowing (4b) - (44) then we obtain a proof system where the set of prov-
able formulas is decidable. If we replace (4) in k= with (4a) - (44)
then the set of provable formulas remains unchanged.

{4a) Vvinjq) > ¥vvain

{4p) W ¥ v, @
{4c) 3thp - Vvkavkq)

(44) R(®) # ¥, R(X)  if v ¢ RgX, and R(¥) is an atomic formula.

Chapter IIl.2,

THEOREM 8 (recalled without proof) Let o be arbitrary.

(1) ICrg, 1is a variety, i.e. it is axiomatizable with identities.
(11) ICrg, is not finitely axiomatizable.

(iii) ICrg, is not axiomatizable with finitely many schemes, but it is

axiomatizable with countably many schemes. B
MAIN THEOREM 2 EqCI‘g( is decidable for all o<W , ||
DEFINITION 9 Let o< rarbitrary.
) (4 {Q(e(!rz;>< : (¥s€1m)(31,jéo()s(i/sj)61m_§ )
6 & {eecrs, : (vae1®) ~(rgs) c2™Z
Let K&Crg . We say that V is a K-unit if GLVEK, u

THEOREM 10 (i) EqG, &and EqCrg, are decidable for all «=w,

(ii) EqD, is decidable for o<w .

(1ii) If o<<w and KQCrsx satisfies conditions (a)-(d) below then
EgK 1is decidable.
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(a) Union of K-units is a K-unit, i.e.
(Wev) Gve Kk =» EHUV) e K.
(b) Restriction of a K-unit is a K-unit, i.e.
Gbvek =  E(VNTH) €K.
(¢c) Basge-isomorphic image of a K-unit is a K-unit, i.e.
EsVeK and £ : base(V) > U = Ekifos : sevVi €K,
(a) oek = ex¥ex, -

LEMMA 10,10, Let 4 Co¢, 2= lf[lﬂo and q,-eTm(cyl,y e
(1)  R4ICrg, = ICrs, and
Crg, k=l &= Crs,?r B T=1,
(ii) HSP R4 G, C IGy , but
& Fo=l &= G kT=1, if indlv)C 7T .
(1iii) HSP R4, < ID’E , and for every n £ l'zrl-z there is GeTm(cylﬁ.)
such that
DB 6=1 74) D’[ F 6=1 and [fJ‘Nind(G')l 2 N. Further,
D =d=1 G’b’ p d=1 for some JE€E Tm(cyl,é-). ]

We note that the condition ™"ind(g)cC A" cannot be omitted in L.10.10(ii)
by the last statement of L.10,10(iii).

THEOREM 11 (i) EqG, ¥ BqD if <22,
(i1) EqD, # EqPD, if <xzw.

REMARK 12 (i) Probably, the following can be proved with the methods

of 1.10.10: ISRd G _,= ISRLG o for all (21, but ISRAND . #

Isndopu-;-n-n-l for all néw.

(11) Crg, is strongly decidable for oK< 2, and probably so are G
and D  (for << 2), Let o< > 3. We do not know whether EqCrs =
EqPCrg,  or whether the word problem is solvable for Cr%<. We do not
know whether EqD,, 1s decidable or not. |

DEFINITION 13 We say that V has the patchwork-property if

(¥s,2 €V) (VH S o) [(H]8) O (x~H) |2] € V.

148

4a
P o= iAf)l&Crsx : 17 has the patchwork-property J. |
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Loma 14 (1) [G&VERC, & GVe PR, |, for any Crg -unit V. But
oL E C4 for some &l€Crg ~ HSPE if < 2= 3.
(11) HSPR, = SPE =IfdeCrg : 1" isa union of R -units with
disjoint bases3, and
EqP. is undecidable (and is not finitely axiomatizable) if o<23.
(i1i) SP(R, N D, ) = SPCg = RCA . =

DEFINITION 15
(i) Let K& Modt. We sey that K is a generalized Kripke-model or '

that K is a partial model, in symbols K€ EKt, it
@i ex) Wam e = @amit.

We define validity of usual first-order formulas in elements of
‘.’Kt the Fnatural way. K #LP denotes that (p is valid in K.
d
Fo = (¥REX) K F¢ .
(ii) Models with prescribed evaluations of the variables. Let
M, g §<mt,vy ¢ wWeMod, and VCUM I,

We define validity of the usual first-oxrder formulas in elements

of M, the natural way. 'JI'H?LP denotes that () is valid in T,

F'o @fif} (vmem)mg‘gp. Let

P, & idm, vy, : V isa R ND -unit
Eo & @merpmiy.

(1i1) We say that ( is relativized, in symbols Lp&RFt, if ¢ is of
form € > ¢ for some atomic formula ¢ , where  is built up
from atomic formulas by means of 7, A and "'3vi(g A ees), and
further every variable occurring in Y occurs in ¢. Ve say
that tp is relativized in the ususl sense, in symbols (¢ € SRFt,
if there is an atomic formula § such that (¢ 1is built up from
{g/\oz : o is an atomic formula} by means of A, g/\'l, gAHvi )

and moreover all variables occurring in (P occur in ¢, |
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COROLLARY 16

(1) It is decidable whether a formula is valid in the generalized
Kripke-models, i.e.
1peF, : Fy3 is Qecidadble. Similarly,

{geP, : QWyZ is decidable, Dut the same formulas are valid in

the usual and in the "patchwork-models", i.e.

tper, - Fyl = IQeF, : k3  1is undecidable.

(ii) Validity of relativized formulas and satisfiability of formulas
relativized in the usual sense is decidable, i.e. i@emt : |=g?3 anol
i“PESRFt : ¥ -.LPE are decidable, =
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