FREE ALGEBRAS AND DECIDABILITY IN ALGEBRAIC LOGIC

I. Németi, 1986.

Dissertation with the Hungarian Academy of Sciences

CONTENTS

Introduction	(i)
I. Basic notation, definitions, background	1
I.l. Basic set theoretical and algebraic notation	1
I.2. Our first-order languages	6
I.3. Our proof systems	9
I.4. Cylindric algebras	13
4.1. Abstract cylindric algebras	13
4.2. Special cylindric algebras ····································	15
4.3. Cylindric algebras as nonstandard models	21
I.5. Relation algebras	25
II. Free cylindric algebras are not atomic - Gödel incompleteness theorem holds for first-order logic with three variables	29
II.1. Exposition of the problem	29
II.2. Special notation and background for chapter II	34
II.3. Statement, proof and discussion of the theorem	41
III. Decidability of equational theory of cylindric-relativized set algebras - importance of interchangeability of the existential quantifiers	108
III.1. Deciding the equational theory of noncommutative cylindric algebras - proof theoretic importance of interchangeability of the quantifiers	112
III.2. Deciding the equational theory of cylindric-relativized set algebras. Model theoretic consequences	142
References	IJ
List of notations	J
Tigt of guhioota	sı

Summary of Chapters II. and III.

We use the notation of [HMT] and [NFr]. Difference: $\phi((u,v))$ denotes here $\phi(u,v)$ introduced on p.23 of [NFr].

SUMMARY OF CHAPTER II.

MAIN THEOREM 1 WY1CA3 is not atomic.

DEFINITION 6 (i) Let $\{u,v,w\} = \{x,y,z\}$ and $i,j \in 2^{\mathbb{H}}$, $k \in 2$. Then $u_{<} > = v_{<}$ \iff u = v. In the following, instead of $u_{i} = v_{>}$ and $u_{<} > = v_{j}$ we shall simply write $u_{i} = v$ and $u = v_{j}$ resp. $u_{k} = v$ \iff $v = u_{k}$ \iff $p_{k}(u,v)$ $u_{i} = v$ \iff $v = u_{i}$ \iff $p_{k}(u,v)$ if $i \neq < > *$, $u_{i} = v_{j}$ \iff $\exists w(u_{i} = w, w_{k} = v)$ if $i \neq < > *$, $u_{i} = v_{j}$ \iff $\exists w(u_{i} = w, v_{j} = w)$ if $i \neq < > *$, $v_{i} = v_{j}$ \implies $v_{i} = v_{j}$ \implies

By the above, the formula " $u_i = v_j$ " has been defined for all $i, j \in 2^{\frac{\pi}{4}}$ and $u, v \in \{x, y, z\}$.

(ii)
$$Ax' \stackrel{d}{=} \left\{ (u_i = v_j, v_j = w_k \rightarrow u_i = w_k), (u_i = u_i, v_j = v_j \rightarrow \exists w(w_0 = u_i, w_i = v_j)) : \{u, v, w\} = \{x, y, z\}, i, j \in 2^{\frac{\pi}{2}}, |i|, |j|, |k| \leq 3 \right\}.$$

Let us note that $Ax' \subseteq Fm_3$ is a <u>finite</u> set of formulas.

Ax
$$\stackrel{d}{=} \forall xyz \land Ax'$$
. Thus $Ax \in Fm_3^{\Lambda,0}$.

REMARK 7 (i) " $u_i = u_i$ " means intuitively that " u_i is defined". (ii) Ax is a formulation of π , i.e. $\models \pi \leftrightarrow Ax$. But as we shall see later, $\frac{1}{3} \neq \pi \leftrightarrow Ax$, in particular $\frac{1}{3} \neq \pi \rightarrow Ax$ while $\frac{1}{3} \rightarrow Ax \rightarrow \pi$.

DEFINITION 8 Let $\phi, \phi \in \operatorname{Fm}_3^{\Lambda, 1}$.

- (i) $\varphi u_i \stackrel{\text{df}}{\longleftrightarrow} \exists x(x=u_i, \varphi)$ if $u \in \{y, z\}$ and $i \in 2^{3}$, and pair(x) $\stackrel{\text{d}}{=} \exists y p_0((x,y)) \land \exists y p_1((x,y))$.
- (ii) $\phi \circ \psi \iff \exists y (\phi y_0, \psi y_1, x_0 = y_{00}, y_{01} = y_{10}, y_{11} = x_1),$ $\phi \circ \Leftrightarrow \exists y (\phi y, y_0 = x_1, y_1 = x_0),$ $\epsilon \iff x_0 = x_1, \quad i \iff pair(x), \quad o \iff F,$ $-\phi \iff pair(x) \land \neg \phi, \quad \phi + \psi \iff \phi \lor \phi, \quad \phi \cdot \psi \iff \phi \land \phi.$ (iii) $Ev^{\Lambda} \stackrel{d}{=} Ev \stackrel{d}{=} \{ \phi \in Fm_3^{\Lambda, 1} : Ax \mid_{\overline{3}} \phi \leftrightarrow \epsilon \circ \phi \}, \quad \xi_{\Lambda}^{\Lambda} \in RTA,$ $\xi_{\Lambda}^{\Lambda} \stackrel{d}{=} \xi_{\Lambda} \stackrel{d}{=} \langle Ev, + \dots, 0, 1, 0, \dots, \epsilon \rangle.$
- THEOREM 9 (i) & is an algebra, i.e. the set Ev is closed under the operations $^{\circ}$, $^{\circ}$, ϵ etc.; and $^{\cong}_{Ax}$ is a congruence on & ϵ . Further, Ev $\geq \{\phi^{\circ}\psi: \phi, \psi \in \mathbb{F}_{3}^{\Lambda, 1}\}$.
 - (ii) Ex /_{≡Ax} ∈ QRA . ■
- REMARK 10 (i) We used Ax instead of π because $E_{\pi/m_{\pi}} \notin RA$. (ii) Remarks on why we used $E_{\pi/m_{\pi}} \notin RA$.

From now on, we allow only binary relation symbols in our languages Λ , \Re denotes the set of relation symbols of Λ , and a recursive function $\mathbf{g}: \mathrm{Fm}_{\infty}^2 \to \mathrm{RAT}$ is fixed such that \mathbf{g} satisfies (i),(ii) below (such a \mathbf{g} exists by Lemma 3 in Chapter II.1.). Thus from now on, in the definitions $\mathrm{p}_0,\mathrm{p}_1,\mathbf{g}$ are parameters that we do not indicate explicitly.

- (i) g(R(x,y))=R, $g(\neg \phi)=-g(\phi)$, $g(\phi \land \psi)=(g\phi) \cdot (g\psi)$, $g(\phi \lor \psi)=(g\phi)+(g\psi)$ for all relation symbols R and formulas ϕ,ψ .
- (ii) g preserves meaning, i.e. let m be a model, $a,b \in M$, $\phi \in Fm_{\omega}^2$ and assume that either $m \models \pi$ or $\phi \in Fm_3^2$. Then

$$m \models \phi[a,b] \iff (a,b) \in (g\phi)^{\mathcal{R}(M)}(\langle R^{m} : R \in \mathcal{R} \rangle).$$

- DEFINITION 11 (i) Let $\varphi \in Fm_{\omega}$ be arbitrary. Then $\varphi(x_0,x_1) \stackrel{d}{=} \exists yz(z=x_0,y=x_1,\varphi(z,y)).$
- (ii) The function $\mathbf{h}: \mathrm{RAT} \to \mathrm{Fm}_3^1$ is defined as follows: $\mathbf{h}(\mathrm{R}) \stackrel{\mathrm{d}}{=} \mathrm{R}(\mathbf{x}_0, \mathbf{x}_1) \in \mathcal{E}$ for all $\mathrm{R} \in \mathcal{R}$, and $\mathbf{h}: \mathrm{RAT} \to \mathcal{E} \wedge \mathcal{E}$ is a homomorphism, i.e. $\mathbf{h}(\tau; \mathbf{e}) \stackrel{\mathrm{d}}{=} \mathbf{h}(\tau) \circ \mathbf{h}(\mathbf{e})$, $\mathbf{h}(\tau^{\cup}) \stackrel{\mathrm{d}}{=} \mathbf{h}(\tau)^{\cup}$, $\mathbf{h}(1) \stackrel{\mathrm{d}}{=} \mathcal{E}$, $\mathbf{h}(-\tau) \stackrel{\mathrm{d}}{=} \mathrm{pair}(\mathbf{x}) \wedge \neg \mathbf{h}(\tau)$, $\mathbf{h}(\tau \cdot \mathbf{e}) \stackrel{\mathrm{d}}{=} \mathbf{h}(\tau) \wedge \mathbf{h}(\mathbf{e})$, $\mathbf{h}(\tau + \mathbf{e}) \stackrel{\mathrm{d}}{=} \mathbf{h}(\tau) \vee \mathbf{h}(\mathbf{e})$, $\mathbf{h}(1) \stackrel{\mathrm{d}}{=} \mathrm{pair}(\mathbf{x})$, $\mathbf{h}(0) \stackrel{\mathrm{d}}{=} \mathbf{F}$.
- (iii) The functions $\kappa, \overline{\kappa}, \kappa' \colon \operatorname{Fm}_{\omega}^2 \to \operatorname{Fm}_3^1$ are defined as follows: $\overline{\kappa} \varphi \stackrel{d}{=} \operatorname{Vx}(\operatorname{pair}(x) \to \kappa' \varphi), \qquad \kappa' \varphi \stackrel{d}{=} \operatorname{hg} \varphi,$ $\kappa \varphi \stackrel{d}{=} \operatorname{Vx}([\operatorname{Ax}^{\times} \wedge \operatorname{pair}(x)] \to \kappa' \varphi), \quad \text{where } \operatorname{Ax}^{\times} \stackrel{d}{=} \operatorname{Ax} \wedge \overline{\kappa} \pi.$

THEOREM 12 (solution of a problem of [TG], p.3.78)

- (i) $\pi \vdash \varphi \iff \pi \vdash_3 \kappa \varphi \iff \vdash_3 \kappa \varphi$, for all $\varphi \in \mathbb{F}_{\omega}^2$.
- (ii) $\pi \models \phi \Leftrightarrow \kappa \phi$, for all $\phi \in Fm_{\omega}^{0}$.

REMARK 13 Discussion of Thm.12 will follow.

THEOREM 14 (solution of Problem 4.14 of [HMT]) Let $1 \le \beta \le \omega$ and $3 \le \infty < \omega$. Then $\Re_{\beta} CA_{\infty}$ is not atomic, further, $\Im_{\beta} CA_{\infty}$ is not atomic either.

THEOREM 15 (discussion of Thm.9.)

- (1) $\pi \mid_{3} / Ax$ for some $p_0, p_1 \in Fm_3^2$; moreover
- (ii) Ex/ π \notin RA, in particular $\pi \frac{1}{3} \neq (\phi \circ \psi) \circ \gamma \leftrightarrow \phi \circ (\psi \circ \gamma)$ for some $\phi, \psi, \gamma \in \text{Ev}$ and $p_0, p_1 \in \text{Fm}_3^2$.
- (iii) $\pi \not\models \phi^{\circ} \varepsilon \Rightarrow \phi$, $\pi \not\models \phi^{\ominus \ominus} \Rightarrow \phi$ for some $\phi \in \mathbb{F}_3^1$ and $p_0, p_1 \in \mathbb{F}_3^2$, where in addition ϕ is of form $pair(x) \land \phi$; and $\pi \mid_{3} \not\rightarrow \phi(x_0, x_1) \circ \varepsilon \Rightarrow \phi(x_0, x_1)$ for some $p_0, p_1, \phi \in \mathbb{F}_3^2$.
- (iv) $\overline{Ax} \mid_{3} \rightarrow (\phi; \psi); \uparrow \leftrightarrow \phi; (\psi; \uparrow)$ for some $\phi, \psi, \gamma \in \mathbb{F}m_{3}^{2}$ and $p_{0}, p_{1} \in \mathbb{F}m_{3}^{2}$ where $\phi; \psi = \exists z (\phi((x, z)) \land \psi((z, y)))$ is the "usual" composition and $Ax \subseteq Ax$ is a strong extension of π , see the next Def.16.

DEFINITION 16 (i) $\mathcal{K} \stackrel{d}{=} \mathcal{K}^{\mathbb{F}_{m_{\alpha}}}$.

- (ii) Let $T \subseteq Fm_{\omega}^{0}$, $\varphi \in Fm_{\omega}^{0}$. Then $T \models \varphi \iff T \cup \{\pi\} \models \varphi$.
- (iii) Let H be an arbitrary set. We define

 $P_0(H) \stackrel{d}{=} H$, $P_{n+1}(H) \stackrel{d}{=} P_n(H) \cup (P_n(H) \times P_n(H))$, $P_{\omega}(H) \stackrel{d}{=} \bigcup \{P_n(H) : n \in \omega \}$, let $U \stackrel{d}{=} P_{\omega}(H)$, then

 $pj_0^H \stackrel{d}{=} \{(a,b) \in ^2U : (\exists c \in U)a = (b,c)\}$ and

 $pj_1^H \stackrel{d}{=} \{(a,b) \in {}^2U : (\exists c \in U)a = (c,b)\}$, i.e. pj_0^H and pj_1^H are the usual**/ set theoretic projection functions on $P_{\omega}(H)$.

Let the denote the similarity type containing two binary relation symbols p and q. Then

 $\mathfrak{S}(H) \stackrel{d}{=} \langle P_{\omega}(H), pj_{0}^{H}, pj_{1}^{H} \rangle \in Mod(h)$.

We call G(H) a standard model of projection functions.

(iv) Let $\overrightarrow{Ax'}$ be the "standard theory" of the projection functions p,q, i.e. let $\overrightarrow{Ax'}$ be the set of all first-order formulas with 2 variables that are true in $\mathcal{E}(\omega)$. I.e.

 $\overline{Ax'} \stackrel{d}{=} \{\varphi \in \mathbb{F}m_3^{\Lambda,0} : \mathfrak{C}(\omega) \models \varphi \}$.

Let $p_0, p_1 \in \mathbb{F}m_3^2$ and $\phi \in \mathbb{F}m_3^{\Lambda,0}$. Then $\phi(p_0, p_1) \in \mathbb{F}m_3^0$ denotes the formula we obtain from ϕ by replacing p(x,y), q(x,y) in it everywhere with p_0, p_1 . Now

 $\overrightarrow{Ax} \stackrel{d}{=} \overrightarrow{Ax}(p_0, p_1) \stackrel{d}{=} \{ \varphi(p_0, p_1) : \varphi \in \overrightarrow{Ax}^7 \}, \qquad \overrightarrow{Ax} \stackrel{d}{=} \overrightarrow{Ax} \cup \{ \overrightarrow{\kappa}\pi \}.$ Thus \overrightarrow{Ax} , $\overrightarrow{Ax} \in Fm_3^0$.

- (v) \mathcal{R}_H denotes the relation algebra generated by pj_0^H , pj_1^H i.e. $\mathcal{R}_H \stackrel{d}{=} \mathcal{C}_Q(\mathcal{R})\{pj_0^H,pj_1^H\}$, where $\mathcal{R} = \mathcal{R}(P_\omega(H))$.
- (vi) We say that $U \in CA_3$ is strongly quasi-projective, in symbols $U \in \overline{Q}CA_3$, if $\operatorname{Res}U$ contains a subalgebra isomorphic to $\operatorname{Res}A_0$. $1^{\overline{Q}CA_3} \stackrel{d}{=} \{U \in CA_3 : \operatorname{Res}\{\operatorname{Res}U\}\}$ and $(\exists e \in \operatorname{Nr}_2U)A = \operatorname{Sg}\{e\}\}$.

^{*/}We shall use this notation when H will not contain any pairs.

THEOREM 17 (discussion of Thm.12)

- (i) $\pi \models \varphi$ and $\pi \mid \frac{1}{3} \neq \overline{K} \varphi$ for some $\varphi \in \mathbb{F}_{3}^{2}$ and "good" p_{0}, p_{1}, g_{2} .
- (ii) $\pi \downarrow_3 / \phi \leftrightarrow k\phi$ for some $\phi \in \mathbb{F}_3^0$ and "good" p_0, p_1, g ; moreover
- (iii) $Ax^{\frac{1}{3}} \not\rightarrow \psi \rightarrow \psi$ for some $\psi \in \mathbb{F}_{3}^{0}$ and "good" p_{0}, p_{1}, g ; and $\overline{Ax} \xrightarrow{1} \kappa \psi \rightarrow \psi$ for some $\psi \in Fm_3^0$ and "good" p_0, p_1, g .
- (iv) $T \models \varphi \iff T \vdash_{\overline{3}} \varphi$, for all $T \subseteq \mathcal{K} \ni \varphi$.
- (v) $T \models \phi \xrightarrow{f} T \mid_{3} \phi$ for some $Ax^{*} \subseteq T \subseteq Fm_{3}^{0}$, $\phi \in k^{*}Fm_{3}^{0}$ and "good" p_{0}, p_{1}, g_{2} .
- (vi) $T + \varphi \iff \chi^{H} T + \chi \varphi$, for all $T \subseteq Fm_{\omega}^{0} \ni \varphi$.
- (vii) T | φ +> T | κφ and T | κψ +> T | ξψ, for some $Ax^{\mathbb{R}} \subseteq T \subseteq Fm_3^0 \ni \varphi, \psi$ and "good" p_0, p_1, g .
- (viii) $_{1}\overline{Q}CA_{3} \neq RCA_{3}$.
- (i) It can be proved (similarly to Thm.14) that Sig RA and $\mathfrak{F}_{\mathcal{B}}SA$ are not atomic. Moreover, $\mathfrak{F}_{\mathcal{B}}K$ is not atomic if $K\subseteq SA$, $\mathcal{R}(U)\in K$ for some infinite U and the equations valid in K are recursively enumerable. We do not know whether $\mathfrak{Fr}_{\beta}NA$, $\mathfrak{Fr}_{\beta}WA$ or $\mathfrak{Fr}_{\beta}Crs_{\infty}$ (2<\impsi< \omega), $0 < \beta < \omega$) are atomic or not.
 - (ii) We can prove $\overline{Q}SA \notin RA$ exactly as $\overline{Q}CA_3 \notin RCA_3$.
- (iii) We sketch a direct proof of Thm.12 that does not use Tarski's representation theorem QRA SRRA.
- (iv) (about a logic \mathcal{L}_3 used in [TG] that is stronger than our L_3) (v) There is a recursive $G: Fm_{\omega}^0 \to RAT$ such that $[\pi \models \phi \longleftrightarrow]$ SA = G ϕ =1, for all $\phi \in \mathbb{F}_{\omega}^{0}$].
- THEOREM 19 (solution of Problem 2.7 of [HMT]) There is b e Fr CA that generates Sr₁CA₃ but not freely. In general, Sr₅CA₆ has a β-element generating system that does not generate it freely, if $0 < \beta$ and $3 \le \infty$. This generating system is irredundant.
- REMARK 20 (i) Thm.19 remains true for $\Im K_B K$ if K=RA or if $\Re(\omega) \in$ K⊆SA, but it fails for K=WA or K=NA. (ii) (about the proof of Thm.19)

SUMMARY OF CHAPTER III.

EqK denotes the set of equations valid in K.

COROLLARY 1 (Maddux) EqCA is undecidable.

<u>DEFINITION 2</u> Let K be a class of structures (in particular, K may be a class of algebras).

- (i) K is said to be strongly decidable if its similarity type is finite and if there is a recursive function $f:\omega\to\omega$ such that
 - a) $(\Psi \mathcal{O}(eK)(\Psi X \subseteq_M A)(\exists \& \in K) [X] \mathcal{O}(=X) \& \text{ and } |B| \leqslant f(|X|)]$, and
 - b) {∅€K : A∈W} is decidable.
- (ii) $\mathbf{F}\mathbf{K} \stackrel{\mathrm{d}}{=} \{ e \in \mathbf{K} : |\mathbf{A}| < \omega \}.$
- (iii) QeqK denotes the set of quasi-identities valid in K.

REMARK 3 Let K be a class of algebras. (i) If K is strongly decidable then EqK is decidable, moreover the set of universal formulas valid in K is decidable. In particular, QeqK is decidable, hence the word-problem for K is solvable. Further, EqK = EqFK, moreover FK and K cannot be distinguished by universal formulas.

- (ii) Connections between decidability of EqK and EqK=EqFK.
- (iii) CA2, RCA2 and WA, NA are all strongly decidable.

Chapter III.1.

DEFINITION 4 NCA $\stackrel{d}{=}$ { $U \in CTA_{\infty} : U \models \{C_0, C_1, C_2, C_3, C_5, C_6, C_7\}$ }.

THEOREM 5 Let ≪≤ω.

- (i) EqNCA $_{\infty}$ is decidable.
- (ii) EqNCA \approx EqPNCA , if $\ll < \omega$.
- (iii) QeqNCA \neq QeqPNCA, if $\ll > 3$. Thus NCA is not strongly decidable if $\ll > 3$.
- REMARK 6 (i) The condition $\infty < \omega$ cannot be omitted in Thm.5(ii) because EqNCA \neq EqPNCA if $\infty > \omega$. We do not know whether the word-problem is solvable for NCA, $\infty > 3$. NCA is strongly decidable for $\infty < 2$. Let $\infty > 3$. Moreover, if i $\in 8$ then let

NCA⁻ⁱ $\stackrel{d}{=}$ { \emptyset (\in CTA_c: (\forall j \in 8 \sim {4,i})) \emptyset (\models C_j}. Now, if ie 8, i \neq 0 then [NCA⁻ⁱ is strongly decidable iff ie {2,3,7}].

We give the constructions showing that WA and NA are strongly decidable.

(ii) About the proof of Thm.5.

COROLLARY 7 If we replace (4) in the proof system $\frac{1}{\infty}$ with the following (4b) - (4d) then we obtain a proof system where the set of provable formulas is decidable. If we replace (4) in $\frac{1}{\infty}$ with (4a) - (4d) then the set of provable formulas remains unchanged.

- (4a) $\Psi v_i \Psi v_j \varphi \rightarrow \Psi v_j \Psi v_i \varphi$
- (4b) $\Psi v_k \phi \rightarrow \Psi v_k \Psi v_k \phi$
- (4c) $\exists v_k \phi \rightarrow \psi v_k \exists v_k \phi$
- (4d) $R(\overline{x}) \rightarrow \Psi v_k R(\overline{x})$ if $v_k \notin Rg\overline{x}$, and $R(\overline{x})$ is an atomic formula.

Chapter III.2.

THEOREM 8 (recalled without proof) Let \propto be arbitrary.

- (i) ICrs is a variety, i.e. it is axiomatizable with identities.
- (ii) ICrs is not finitely axiomatizable.
- (iii) ICrs is not axiomatizable with finitely many schemes, but it is axiomatizable with countably many schemes.

MAIN THEOREM 2 EqCrg is decidable for all $\ll \leq \omega$.

DEFINITION 9 Let & marbitrary.

 $G_{\sim} \stackrel{d}{=} \{ \ell l \in Crs_{\sim} : (\forall s \in 1^{\ell l}) \sim (Rgs) \subseteq 1^{\ell l} \}.$

Let $K \subseteq Crs_{\swarrow}$. We say that V is a K-unit if $\mathscr{Eb} V \subseteq K$.

THEOREM 10 (i) EqG and EqCrs are decidable for all $\propto \leq \omega$.

- (iii) If $\ll < \omega$ and $K \subseteq Crs_{\infty}$ satisfies conditions (a)-(d) below then EqK is decidable.

- (a) Union of K-units is a K-unit, i.e. $(\mathbf{W} \in \mathcal{V}) \times \mathbf{K} \implies \mathcal{K}(\cup \mathcal{V}) \in \mathbf{K}.$
- (b) Restriction of a K-unit is a K-unit, i.e. $\mathfrak{C}_{V} \cap \mathfrak{C}_{K} = \mathfrak{C}_{V} \cap \mathfrak{C}_{K} \cap \mathfrak{C}_{K}$
- (c) Base-isomorphic image of a K-unit is a K-unit, i.e. $\mathcal{C}_{V} \in K$ and $f : base(V) \rightarrow U \Rightarrow \mathcal{C}_{V} \{f \circ s : s \in V\} \in K$.
- (d) Ulek ⇒ Eb1^{Ul}ek.

LEMMA 10.10. Let $\gamma \subset \infty$, $2 \le |\gamma| < \omega$ and $\tau \in Tm(cyl_{\gamma})$.

- (i) Rd ICrs = ICrs and Crs $\neq \tau=1$ \iff Crs $\neq \tau=1$.
- (ii) $\operatorname{HSP} \operatorname{Rd}_{\tau} G_{\zeta} \subset \operatorname{IG}_{\tau}$, but $G_{\zeta} \models \tau = 1 \iff G_{\gamma} \models \tau = 1$, if $\operatorname{ind}(\tau) \subset \gamma$.
- (iii) HSP Rd D \subset ID, and for every $n \leq |\gamma|-2$ there is $G \in Tm(cyl_{\gamma})$ such that

We note that the condition "ind(τ) $\subset \gamma$ " cannot be omitted in L.10.10(ii) by the last statement of L.10.10(iii).

THEOREM 11 (i) EqG \neq EqD if $\alpha \geq 2$. (ii) EqD \neq EqPD if $\alpha \geq \omega$.

- REMARK 12 (i) Probably, the following can be proved with the methods of L.10.10: ISRd $G_{\infty+1}$ ISRd $G_{\infty+n}$ for all $\beta \ge 1$, but ISRd $G_{\infty+n} \ne G_{\infty+n+1}$ for all G_{∞}
- (ii) Crs is strongly decidable for $\infty \le 2$, and probably so are G_{∞} and D_{∞} (for $\infty \le 2$). Let $\infty \ge 3$. We do not know whether EqCrs = EqPCrs or whether the word problem is solvable for Crs. We do not know whether EqD is decidable or not.
- DEFINITION 13 We say that V has the patchwork-property if $(\Psi_s, z \in V)(\Psi H \subseteq \infty)[(H \mid s) \cup (\infty \sim H) \mid z] \in V.$

 $P_{\chi} \stackrel{d}{=} \{ \ell \in Crs_{\chi} : 1^{\ell \ell} \text{ has the patchwork-property} \}.$

- LEMMA 14 (i) $[CBV \models C_4 \iff CBV \in PP_{\sim}]$, for any Crs_{\sim} -unit V. But $OI \models C_4$ for some $OI \in Crs_{\sim} \hookrightarrow HSPP_{\sim}$ if c > 3.
- (ii) HSP $P_{\infty}^{T} = SP P_{\infty} = I \{ \text{elecrs}_{\infty} : 1^{\text{ell}} \text{ is a union of } P_{\infty} \text{units with disjoint bases} \}, and$

EqP $_{\infty}$ is undecidable (and is not finitely axiomatizable) if $\infty \geqslant 3$.

(iii) $SP(P_{\swarrow} \cap D_{\swarrow}) = SP Cs_{\swarrow} = RCA_{\swarrow}$.

DEFINITION 15

- (i) Let $K \subseteq Mod_t$. We say that K is a generalized Kripke-model or that K is a partial model, in symbols $K \in \mathcal{K}_t$, if $(\Psi \mathfrak{M}, \pi \in K) (M \cap N) / \pi = (M \cap N) / \pi$.
 - We define validity of usual first-order formulas in elements of \mathfrak{K}_t the natural way. $K \not\models \phi$ denotes that ϕ is valid in K. $\not\models \phi \qquad (\Psi K \in \mathfrak{K}_t) \ K \not\models \phi \ .$
- (ii) Models with prescribed evaluations of the variables. Let $\mathcal{M}_{t} \stackrel{d}{=} \{\langle \mathcal{M}, \mathbf{v} \rangle : \mathcal{M} \in \mathsf{Mod}_{t} \text{ and } \mathbf{v} \subseteq {}^{\omega} \mathbf{M} \}.$

We define validity of the usual first-order formulas in elements of \mathcal{M}_t the natural way. $\mathcal{M} \models \phi$ denotes that ϕ is valid in \mathcal{M}_t .

 $\stackrel{\text{let}}{\vdash} \varphi \stackrel{\text{df}}{\longleftrightarrow} (\forall m \in M_{t}) m \stackrel{\text{let}}{\vdash} \varphi .$ Let

 $\mathcal{P}_{\mathbf{t}} \stackrel{d}{=} \{ \langle m, \mathbf{v} \rangle \in \mathcal{U}_{\mathbf{t}} : \mathbf{v} \text{ is a } \mathcal{P}_{\mathbf{t}} \cap \mathcal{D}_{\mathbf{t}} \text{ -unit} \}.$

βφ df (¥mePt)m pm φ.

(iii) We say that φ is relativized, in symbols $\varphi \in \mathbb{RF}_t$, if φ is of form $g \Rightarrow \varphi$ for some atomic formula g, where φ is built up from atomic formulas by means of \neg , \wedge and " $\exists v_i (g \wedge \dots)$ ", and further every variable occurring in φ occurs in g. We say that φ is relativized in the usual sense, in symbols $\varphi \in SRF_t$, if there is an atomic formula g such that φ is built up from $\{g \wedge \eta : \eta \text{ is an atomic formula } g \text{ by means of } \wedge$, $g \wedge \neg g \wedge \neg$

COROLLARY 16

(i) It is decidable whether a formula is valid in the generalized Kripke-models, i.e.

 $\{\phi \in \mathbb{F}_{+} : \not\models \phi \}$ is decidable. Similarly,

 $\{\phi \in F_t \ : \ \not\models^m \phi \,\}$ is decidable, but the same formulas are valid in

the usual and in the "patchwork-models", i.e.

 $\{\varphi \in \mathbb{F}_{t} : \not\models \varphi\} = \{\varphi \in \mathbb{F}_{t} : \not\models \varphi\}$ is undecidable.

(ii) Validity of relativized formulas and satisfiability of formulas relativized in the usual sense is decidable, i.e. $\{\phi \in RF_t : \neq \phi\}$ and $\{\phi \in SRF_t : \neq \neg\phi\}$ are decidable.

REFERENCES

- [HMT] Henkin, L. Monk, J.D. Tarski, A., <u>Cylindric Algebras</u>. Part I. North-Holland, Amsterdam, 1971. Part II. North-Holland, Amsterdam, 1986.
- [NFr] Németi, I., Logic with three variables has Gödel's incompleteness property thus free cylindric algebras are not atomic. Mathematical Institute, Budapest, 1985. Preprint No 49/85.
- [TG] Tarski, A. Givant, S., <u>A formalization of set theory without variables</u>. Amer. Math. Soc. colloquium publications, Amer. Math. Soc., Providence, to appear.

Mathematical Institute of the Hungarian Academy of Sciences Budapest, P. O. Box 127, H-1364 Hungary