LOGIC WITH THREE VARTABLES HAS GUDEL’E INCOMPLETENESS
PROPERTY - THUS FREE CYLINDRIC ALGEBRAS ARE NOT ATOMIC

Németi, I. 1985.

CONTENTS

Abstract ' (1)

Introduction (i)

§1. Logical formulation and introduction
1.1. Our languages
1.2+ Our proof system

1.3. Godel’s incompleteness property

O N1 W oA

1.4. Connection between Gddel’s incompleteness and 1
atomicity ;

1.5. Connection with cylindric algebras 43" s
§2. The main theorem and its proof 20

§%. Logical aspects, outline of a purely logical proof, 62
answers to a problem of Tarski, connection with
gsemi-associative relation algebras of Maddux

List of (special) symbols 83
< 30

References



(1)

ABSTRACT We show that the l%-generated free CA, is not a-
tomic if fA>1 and o> 3. This is a solution of Problem
4,14 in [HMT]. The heart of the proof is the definition of =
reduct of CA3'5 which is a (representable) relation algebra.
This way we give a positive solution to Tarski’s problem [TG]
gsection 3.10, r.3.78. (The solution says, roughly, that full
first-order logic, hence set theory, can be interpreted in the
equational tiieory of CA3 and not only in that of RA. This
does not generalize much further.) By showing that not every
quasi-projective semi-associative relation algebra is repre-
sentable, we provide a negative answer to an algebraic part
of the same problem of Tarski (see the references to Maddux’s
work above the formulation of the problem in [TG]), too. We
investigate free relation algebras, too, and investigate the
logical aspects.

INTRODUCTION

Cylindric and relation algebras are algebraizaticns of
firgt-order logic., The structures of free cylindric and free
relation algebras are quite rich since these are able to re-
capture the whole of first—-order logic, in a sense. One of
the first things to investigate about these free algebras is
whether they are atomic or not.

3?@ CA, denotes the [-generated free cylindric alge-
bra of dimension o<, where p3>0. The following have al-~
ready been known: If P?/(.o then %F,CAM is atomless (Pi-
gozzi, [HMT]2,5.13)., Assume O< p<w. If <2 then
%F’Cﬁ"‘ is finite ([HMTJ2.5,3(i)), hence atomic, SC}FGAE is
infinite but still atomic (Henkin, [HMT]2.5.3(ii),2.5.7(ii)).
If 3<£<X< W then 37"(50& hes infinitely many etoms (Tarski,
[HMT]2.5.9), and it was asked in [HMT]as Problem 4.14 whether
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it is atomic or not. ﬁpr!& has exactly .2"JJ zero=dimen~

sional atomsx/ (Pigozzi, [IIMT]}2.5.11). It was conjectured
that these are all the atoms if K 2w (see [HMT]2.5.12,
Problem 2.6).

Here we prove, as a solution of Problem 4.14 in [HMT]
Part II p.180 that g;VPGAu is not atomic for (< and
&> 3. Here we present a metalogical proof, using Gddel’s
incompleteness theorem for usual first-order logic, This way
we prove that ZJQ?{,JC.L is not atomic, either, if =< W ,
In [N84a], by characterizing the locally finite part of

s

that ZPHGCA, dis atomic if o<FwW 7 5. [HML] also raised

CA, and this way solving Problem 2.10 of [HMT], we show

the problem of finding purely algebraic proofs for these
properties of free algebras, We have direct, purely algebraic
proofs showing that fﬁf’(} CA, is not atomic, for «24,
However, thcse proofs do not work for o =3 (we have counter-
examples in which the crucial lemmas fail), and they are
longer than the present metalogical proof. On the other hand,
those algebraic proofs show that there is an atom of 793'?_, CA,
(for 0« Pé W and 4= (< W) below which there is no atom
of %, CA.. We do not know whether this holds for =3 or
not. l'1‘1:1e algebraic proofs can be found in [N84]. As for the
conjecture in [HMT] about the nonzero-dimensional atoms in
the case o<2> W, in [N84] we prove that it is true for the

free representable CA, ( <> w), and we have some partial

=/ There may be much more atcms in ,‘237%[50}‘&. I.e. the atoms
of Z)HraCA, usually are nct atoms in  FpCA .
i :
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results that might point into the opposite direction for the
free CA . Namely, in [N847] we show that there is a nonzero
element in .‘Eﬁ*PC.L which is below =dj; for all i,jE€cX~2.
This cannot happen in the representable case.

We investigate free relation algebras, too. They are
not atomic, either. Actually, we prove more. Namely: ©SA
denotes the variety of semi-associative relation algebras
introduced in Maddux [Ma78],[Me82]. SA is obtained by re-
stricting the associative law from Xijy;z to x3;13;1. We prove
that no recursively enumerable variety of SA’s (containing at
Jeast one full infinite set algebra) has an atomic free alge—
bra. In Németi[N8Sc] it is shown that this result does not
generalize to the broader classes WA and NA introduced in
the same works of Maddux, (WA and NA are obtained from
SA by further weakening *the associativity of relation compo-
sition. We note that RAC SACWACNA.)

A separate section_(§1) is devoted to the discussion of
connections with logic.: There we show that atomicity of the
free CA’s correspond to failure of GSdel’s incompleteness
theorem for the corresponding logics with finitely many va-
riables, Thus the result that 9}40A3 is not atomic shows
that the logic with three veriables, though rather weakx/, is

strong enough to have GOdel’s incompleteness.

About the method of the proof,.: Using the pairing func-—

tions technique of Tarski together with G&del’s incompleteness

*/-E.g. the fact that feg is a function if f and g are
functions is not provable in this logic,.
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theorem for first-order logic, it is not too difficult %o
show that gi—Pc;so( is not atomic for (H>1 and %3, and

that the semantical version of Godel’s incompleteness holds

for logics with three variables (indeed, these are corollaries
of our lemmas 2.2, 2.7 in §2). Using in addition to these
Tarski’s representation theorem of quasi-projective relation
algebras (QRA’s), ome can show that §ﬁsch, gﬁESNrBC%x’
gi*{,_,m, %RP.A are not atomic if P; 1 and oXZ4 (and that
the stronger, syntactical version of GOdel’s incompleteness
holds for first-order logics using > 4 variables). These
are corollaries of Lemmas 2.2,3,6,7 of §2, The cese o(=3 is
much more difficult, as often is in cylindric algeora theory
(and in finite varizble logic).

In §1 we give examples to show that first-order logic
with three variables is indeed quite weak. Let L3 denote
first-order logic with % wvariables. Let Fm3 denote the
set of formulas of L3 and let F?r- denote the provability
relation of LB' (A precise definition of Fg— , and hence
of Ly, is in §1. Our L3 was called restricted three-va-
riable legic in [HMT]§4.3.) Now L3 is not complete (nei-

ther is L, for 34£«<w ), i.e. there are many valid but

=
unprovable formulas in L5° The heart of our proof for the
cgse o«K=% 1is the definition of a translation function 4«

and a finite set AxQFmZ, of axioms such that
(a) (UcpeFms) [Axl:gp iff Ax I—a—d\({)_],
thus achieving a kind of completenesg for L5 (cf. TTODP.3.3

in 83). We shall call the sbove (#) a quasi-completeness
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property (of LB)' This (%) is analogous to Tarski’s trans-
lation mapping theorem (TMT), see [TG] hm.4.4(xxxiv) on
Pe4.47. One can use the above (%) to shsw that whole first-
order logic can be ilt up in LE' in spite of the fact that
L5 is very weak. For a stronger version (053) of L3 this

is done in [TG], but on the expense c¢f adding a strong scheme
of formulas as an axiom scheme to L5 . namely the axiom scheme
of associativity of relation composition, (and introduczing a
strong substitution rule called general Leibniz law), Tarski
raised the problem that if one does not add the above scheme
of axioms to L3 y then L3 might remain too weak, i.e. one
perhaps cannot build up full first-order logic in I,. By
proving (#) therefore we solved Tarski’s problem positively.
For a formulation of the problem see [TG]p.3.78, which is in
§3.10 of [TG] immediately below item (BIV") but above Thm.
3.10(i). The history of this problem goes back quite some
time (actually, Maddux’s work on SA’s was motivated by Tarski’s
asking this problem in the early seventies). HNamely: Taking
up the extensive work summarized in Schrdder[S85], Tarskil[741]
started to investigate the coannecticns between the axiom sys-
tem of relation algebras (which is roughly the same as the
above outlined L3 augmented with the associativity scheme)
and first-order logic, He found that all the relation al-
gebra (RA) axioms are provable in L3 (strengthened with the
general Leibniz law) except the associativity scheme., So he
raised the problem "how much of IiA theory can be carried
through in L3 " In Tarski[T53],[T53a] he proved basically

our (#) above for "Ri-logic" that is basically for Ly. This
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together with his earlier problem mentioned above gave rise
to the problem, roughly speaking, whether (%) holds for I.3 .
By subsequent developments and partial solutions (e.g.
Maddux’s discovering of SA’s), the problem became richer,
obtaining finally the form in which it appears in the mono-
graph [TG], For this richer problem, we shall see that there
is a negative answer, too.

The present results seem to solve another problem in [TG].
Namely, since we have the quasi-completeness property (%) for
our L5 which is equivalent to CAB’ the main obJjective
(formalization of full set theory) of [TG] can be carried
through in our L3 (i.e. in the equational theory of CA3).
This meens that despite of tlie conjecture formulated on p.3%.37
(at the beginning of Sec.3.7) of [TG] the main aims of [TG]
can be carried through in Tarski’s original version of 563
(that is, in cﬁa as defined at the beginning of §3.7 of
[TG]) instead of the stronger version of 063 defined in §3.8
therein: not only associativity called (AX) there but also the
general Leibniz law called (AIX") can be avoided., Introducing
this general Leibniz law (AIX’) had some undesired effects

6-17’ P.3.764-?)

(this is pointed out in [TGJp.5.427_6, Pe3.74
one of them being that it does not fit into the process of
algebraization.

The algebras corresponding to L3 without the associative
scheme are Maddux’s semi-associative relation algebras, SA’s.
Thus our () above implies that every first-order theory can

be represented as an SA (as a positive solution of Tarski’s

problem). In more detail, all finite first-order theories can
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be represented as elements of the free SA. And the same holds
if SA is replaced witn CA5' Trom TMT, Tarski proved that
every quasi-projective relation zlgebra (QR%) is representable,
(This is the algebraic form of the "quasi" completeness theorem. )
Therefore one might think that from (%) one could prove that
every quasi-projective sS4 (Q3A) is representable (since this

is what Tarski did from TMT for RA’s). However, this is not
true even under quite strong assumptions (see Thm.3.7 in §5).
This gives a negative solution to (a part of) Tarski’s above-
mentioned problem. (What one can prove from (%) is that a
certain generalized reduct of any QSA is representable.) As a
corollary, there is =& GA5 Jd° with a pair of quasi-projections
(moreover, ¥udL €Qsh) such that 4 is not representable.

We note that replacing the associativity sclieme, which is
an infinite set of formulas, with the finite set Ax of for-
mulas is crucial in being able to prove nou-atomicity of free
algebras (i.e. establishing GOdel’s incompleteness property
for L3 Je
The contents of this paper were presented at the 1985

January Oberwolfach meeting, see [N85],
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§1. ILOGICAL FORMULATION AND INTRODUCTION

1,1, OUR LANGUAGES

First-order logics using finitely many variables have already
been widely investigated, see e.g. Henkin[H67],[H?3],[H83],
[Johnson 731, Maddux[Ma83], Monk[M713, [Poizat 82].

Let of Dbe any ordinal, First we introduce our firast-order
logic (with equality) using o< variebles. (For «2>@ this
will be the same as our "normal® first-order logic.) We
recall the following from [HMTI§4.3.

Our set of variables is f{v; : i€x}. ILet (> De any
ordinal., Iet R = (Ri : i&f&) be the sequence of the rela-
tion symbols and let @ =(¢; : ie{%) be the sequence of
their arities (in other words, ranks), such that (216(3)

( g;€0¢, §;6W )“/, Let A & {o¢4R,0> . Then we say that
/A 1is our language.

A

The set Fm of formulas of A is defined the following

way. Fm'\ is the smallest set such that
(1) R (VgavqsereaV q) ie[Siuiviwd : 1,36 RU{TLEVC
c
(ii) iavitp . (PVLP ’ \PALP ’ -;LP} CPn" whenever i€ and
A
o € Fn”

REMARK 1.1, (a) T and F denote the "TRUE" and "FALSE"

formulas., We shall use ¥vi, =+ , +» etc, as derived logical
connectives,

(b) In Fo'  we allow only the so called "restricted®
formulas, i,e, formulas in which the relational atomic for-

mulas have a prescribed sequence of variables. (I.e.

/), We assume that everything is disjoint from everything that are
needed to be disjoint, e.g. v, : i€x3I() {R; : ierJ}» =0.
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Ri(v,] ,vo) or Ri(v'i ,v,.l) ¢FmA even if §i=2.) Allowing
only the restricted formulas is not & real restriction: For
< 2W, every first-order formula is (semantically) equiva-
lent to a restricted one., In the present paper we mostly will
kave only binary relation symbols, in which case the above
again holds if o< 2 3, However, if o{<wW) and there is &
relation symbol of arity o< then not every formula is e-
quivalent with a restricted one., Thus allowing only restricted
formulas makes our logics slightly weaker than the usual ones
(e.g. those in [Poizat 82] or in [TG]). But this will make
our result that "the logic with.3 variables is strong enough"
even stronger (see Thm.71.6.).

(¢) Ve do not have operatior symbols in our languages,
This is not a restriction from the point of view of the in-
vestigations in the present paper: One can easily express that
an n+l-ary relation symbol is actually an n-ary function, See
e.g. [M?G]Pp52055-2084,Def.11.26,Thm.11.28.

(d) We required the arities to be finite numbers (i.e.
that @.€w) for convenience only. The present (cylindric
algebraic)} approach is well suitable to investigate infinitary
relations, too (i.e. where 9i600 ig not required), This is
illustrated e.g. in [HMT1§4.3, cf. also [Sain82], [ AGN77],
[v7al. O

The notions of a model Tl for A and that of validity
E , or semantical consequence k. between elements of FmA,
are the usual; therefore we omit their definitions. (They can

be found in [HMT]§4.3, Part II p.1532.)



1.2. OUR PROOF SYSTEM

We will use the following proof system lm for our langua-
ges A . (It coincides with a usual one for o3 w) . [-i,-;-K
is defined in [HMT]$4.3%, Part II p.157.)

The logical axioms /\'FA are the following kind of

formulas, Let ©,P € Fr®  and 1,j,k€cX &

1) @ » if @ is a propositional tautology
2) Wil »>¢) > (Fvy > ¥v,p)

@) vy g

)y o=~ ¥vi0 , if v; does not occur free in
(5} vi=vy

{6) Jvy (vi==v:j )

(7) vi=vy > (viavy > V4=V

'€)) Vi=Vy -3 [LP-> if\ri(viﬂr:i -Mp)] s if 143

€9 Jvyp e WV -

The inference rules are Modus Ponens ((MP), or detachment), and

Generalization ((G)).
A A . .
Let AxCFnm and tPEF@ « We write Ax}-r’—A(,p if @
can be derived from Ax by the above proof system (in the

usual sense, for more detail see p,157 of [HMT]Part II).

: ] -
Instead of I_'r-,'/T we shall often write BN el = -

REMARK 1,2. Let A = {(,R,e> , F’ = DoR.

(a) For o{>2W we have !—i,—-&n i’&’ y l.e. our logie
9
<Fm/\’ If> is complete w.r.t. the proof system }'i-“;'é'.-. ; and

also coincides with the usual first-order logic (see [HMT]

4.3.23),
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(b) We call A monadic iff all its relation symbols
are unary, i.e. iff (J.Iier.s) §;<1. If A is monadic, then
again, p|— = Ii y i.e. b is complete w.r.t, F , for any
o+ (For proof see Prop.1.11 in §1.5.)

(¢) For o<W if A is not monadic then }-;(— is not
complete, i.,e. Ig— # k= . Since clearly l— is sound, this
means that there are (semantically) true formulas that are un-
provable by blo— . (See [PH\?T]4.3.28+§5.2(CA“;£G3“).) Below
in (E1)-(E3) we list some examples of true but unprovable
formulas,

(¢c1) One cannot add finitely many new schemes (in the form
prescribed in [M69] or in [AN8B0O]) to the logical axioms A’FA
such that I'R— would become complete (theorem of Monk [ME9]),
Thus j= 1is, in & sense, essentially incomplete (for «<wd ),
For a contrasting result see [AN81],

(c2) Let dép<w . There is a valid formula using o< va-
riables which cannot be proved with (5 variables (theorem of
Monk [M69]). That is, let /\“94«, (B), (> (i.e. A has
one «-ary relation symbol I and uses o< variables). Then
(3 LP&Fm/\,g)[}i‘:gp and not I—F- q;] « Thus for completeness, we
need all the infinite variables,

Let (PEFmA be valid. Then there is [5<ub such that
¢ is provable with r:v variables, by (a). We do not know
whether there is a recursive function [5 : FmA = W such
that (¥ t.pEFmA )[}ﬁ,? - ]WLP] (Problem of Bird [B85].)
For partial results in this direction see [N85b].

(¢3) There is a “Henkin-type, nonstandard" completeness

theorem for }-E_-E (see Prop.1.10 in §1.5). More precisely: We
?
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can define (quite natural) nonstandard models for our languages

A e have [qJ can be

A such that for every formula (p€Fm
proved by |z— iff (@ is valid in all, including nonstandard ,
models]|. See Henkin [H671,LH73].

(c4) Examples of unprovable formulas. Let A={«,R,e> be

a language with o<W,

(E1) The "merry-go-round" formulas, Let € Fo'. Let

MGR(¢) denote the formula

Fv, (vo=v, Advy(vg=v, Aﬂv,] (vy=vo AV ) ©
o (vomvy A v, (vy=vg Avp(vp=v, AV P ) -

Intuitively, MGR(y) expresses the equivalence of inter~
changing the variables v,,v, in two different ways (using v,
as suxiliary variable). Now, MGR(Y) is valid for ell ¢ ,
but there are \pGFmA for which MGR(LP) is net g - pro-
vable. (A result of Henkin, see [HMT}3.2.71(7).) For such a ¢
we can take e.g. R(VO';'Vx-q) (if R is an «-ary relation
symbol in A ). We note that for every (€Fm", MGR(®) can
be proved with «+1 variables, see [HMT11.5.14.

(E2) TLet =3, Then (I)"the composition of two functions

is again a function", (II)"composition of relations is asso-
ciative", (III)"the inverse of the inverse of a relation is
the original relation", though expressible in A, are not

i}-—’— -provable, Again, they all are provable with 4 variables.
(We note that the last sentence (III) is closely rclated to

the merry-go-round formulas, see [HMT]Part II p.101 and [HMT]
Part I p.17. Actually, (III) is eguivalent with the letter.
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(Results of Henkin, Maddux and Tarski, proof for (I) can be
found in [Ma83], proof for (II) in [HMT]3.2.69(3), proof for
(III) in [HNT13.2.71(8).) We note that each of the above
(i)—(III) express the fact that the relational-algebraic re-
duct of a 5-dimensional cylindric algebra is not necessarily
a relation algebra in the sense of [T41],[CT51]. One of the
main results of the present paper is that if we define compo-
sition and inverse of relations in a different (rather
complicated but semantically correct) way then under a finite
assumption, the reduct will be a relation algebra, i.e, the
above (I)~(III) hecome Fgr--provable. For more on this see

Remarkié; Y in §2.
S~

(E3) Let o¢(=2. Let R,S be binary relation symbols. ILet
Dok, RgR denote the domain and the range of R resp. Then
the following can be expressed with a formula Y :

"DoR=DoS; RgR=RgS; DoR is a singleton imply R=8",
A precise forwmulation of Y is:

¥v ¥, [CSV,IR FIN 3V1S YA (ﬂvOR o '3VOS YA

(LIvy (v =vyA v RTI AV, RD -9v0=v1)] > W¥,(R"e5") ,
where R° is R(VO’V1) and 8% is S(vo,vq). Then ¢ is
not PE—- -~ provable., (A result of Henkin, we give a proof

arter Prop.1.19 in §.1.5.) Again, y is provable with 3

variables, []

REMARK 1.3. One might ask the question: Why are we investi-

gating the provability relation };—E ? Is f3~3 not only one
9 ]
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(more or less ad-hoc choice) of many possible inference sys-
teme? Would we not get completely different results if we

took gsome other generally accepted axiomaetization of first-
order logic? Well, this question occurred to others (e.g.
Tarski, Henkin, Maddux) in the past. Their investigation seems
to indicate that the answer is no (except for some inessential
minor differences such as e.g. provability of MGR , but e.g.
Fgf "associativity of composition of relations” seems to be
invariant). Namely: in [M78] and [M83] Maddux investigated
two inference systems both different from hFﬁT » The second
one was not even a Hilbert style one but instead a Gentzen
type sequent calculus., He found that provability with n va-
riables remains essentially the same, Similar observations are
based on Henkin [H67], see e.g. discussions of the defirition
of FE— on p.7 there. All these seem to justify our identi-
fying }ETE with provability by "the usual inference system of
logic" restricted to n variables. More or less equivalent
versions of EF:E were studied e.g. in [H67]1,[H73],[M71],
[Johnson?3], [Me78],[Me833, [T7c]. O

1,3, GODEL’S INCOMPLETENESS PROPERTY

The smaller o is, the wesker our first—-order logic using o<
variables is. One measure of "strongness" of a logic is

whether Godel’s incompleterness progerty holds for it or not.

DEFINITION 1.4, Let A be a language. We call a formula

q;EFmA consistent iff noti—l-,-—[\- "‘? e Sometimes we shall
9

write "p—— —consistent" (instead of consistent) to emphasize

T A
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that this is a syntactical notion. Define M0 ¢ fLPEI"mA :
p has no free variable}, Let TQFmA e« We say that T is

. AO\F .
complete iff (Wp€Fm' '")|Thr—¢ iff not Tl-i,-;-i\-qq)].

A e
Define T d {tPéFmA’O g TF—I-,:F‘-LI,J} « We say that A has G6-

del’s incompleteness {in short, A has G.,i.) iff there is

a8 consisten® formula (pel"‘:nA that cannot be extended to a

complete, decidable (i.e, recursive) theory, i.e. there is no
A al .

T & Fm such that €T = T, T complete, T decidable. We

sey that _ A has wesk Godel’s incompleteness ( A has w.G.i.)

iff +there is a consistent (pEFmA that cannot be extended
to a finitely axiomatizable complete theory, i.e. =(3 7 < Fn)

[‘I‘ is finite, €T and T complete_]. 4

Clearly, any language with infinitely many rela-tion symbols
has weak Gddel’s incompleteness, However, if A has only
finitely many relation symbols then the property of having
W.G.i. is much more interesting.

We note that in all our proofs for Godel’s incompleteness,
the "incompletable" formula ¢ will always be a consequence

of the theory of arithmetic (in a sense).

Let A =<o(4E,0> 3, o=w> be noumonadic. Then A has
G.i. by Gédel’s incoupleteness theorem (see e.g. [M76]Thm,
15.19, p.273%) since }73- is a complete inference system (cf.
Remarki,2(a)}).

Our main theorem in the present paper is that (non-mona-
dic) first-order logic with 3 variables has Godel’s incomplete-
ness in the sense of Def.1.4. (i.e, it is strong enough).

It was known that first-order logic with <£2 variables does
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not have even weak Godel’s incompleteness in the case of fi-
nitely many relation symbols, not even when |—=— is replaced
with | o (Result of Henkin, see [HMT]2.5.7(ii), 4.2.7-9.)
It was asked, as Froblem 4,14 in [HMT]1, in an algebraic forn®/
whether first-order logic with 2 3% variables has weak Go-

del’s incompleteness or not.

REMARK 1,5, In Definition 1.4 above, we defined syntactic

notions., TFor o<W , these syntactic notions differ from
the corresponding semantical one, by Remarkl1.2(c). There are
many {g— -consistent theories that are semantically incon-
sistent. E.g. by (E2) in Remark1.2(c), there are Fgr--con-
sistent theories stating explicitly that the compositiorn of
two given functions is not a function, Thus when preving G.i,
for a language A with oW we have to deal with

semantically inconsistent theories, too. Though there are

more h;— - consistent formulas than semantically consistent
ones, when proving G.i.'the incompletable formula ¢ will
always be true in every modei of Peano’s aritimetic (in a
sense), hence ¢ will be semantically consistent. There-
fore our main theorem will imply that the semantic version of
Godel’s incompleteness property holds for logic with 3 va-
riables, too, This latter consequence is however, much easi-
er to prove. Cf. Remark 2. . in §2. The real difficulty in
proving our result (Theorem 1.6(i) below) is in dealing with
those complete (hence|?—3 -consistent) theories which are

9
semantically inconsistent. a

x/icf. Proposgition 1.8 herein.
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THEOREM 1,6, Let A= {o(yR,@> be a language, oK 23,

(a) If A 4is not monadic, i.e. if there is at least
one at least binary relation symbol in A, then A has
Godel’s incompleteness,

(b) If A 4is monadic, then A does not have G.i.

(but A has w.G.i. if [DoR[ 2 W ).

Proof. We prove Thm.1.6(e), as our main theorem, Thm.1, in
§2. Proof of Thm,1.6(b): Assume that A is monadic, ILet
Y E F  be }-l:;;-( —consistent., Then () has & model by
Prop.1.11 in §1,.5 herein. Then it is known that P hes a
finite model Wl, too. Iet T 2 foer Wk} . Now T
is decidable since W is finite, YET by WM kg and
T 1is complete because T i3 the theory of one model and

since }—f,? is sound., QED -
At
\ N
The proof we give for Thm.1.6(a) in §2 uses Tarski’s QRA
representation theorem (representability of relation algebras
with a pair of guasi-projection elements, i.e. of QRA’s),

However, in §3 we outline a purely logical proof, too.

1.4, CONNECTION BETWEEN GODEL’S INCOMPLETENESS PROPERTY AND
ATOMICITY OF THE FORMULAAIGEBRAS

The ideas in this section (and their subsequent elaboration)
might be related to Problem 1 (which is in §Algebraic formula-
tion ... of ... logical results) of [M75], which asks to give

an algebraic proof for Gddel’s incompleteness theorem.
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Clearly, G.i. 2w.G.i, but w.G.i. # G.,i by Thm.1.6(t).

Next we characterize the property w.G.i.

DEFINITION 1,7. ([HMT]§4.3.) Let A= {e;Ry@> be a lan-
A
guage. We define the formula-algebras P%A and pﬁ# ’O.

Let
S 8 VL AL B v Dy e

FuMO & MO v A, 4D

#/

pzA d {((?,q» eE(FmA) . l-r'—“ (Pd'-bq)g y and

A 4d A 0 d A, O
pW £ Wh=h o MO S MO
The subscript p intends to refer to "provability" (the al-
gebra is formed module provability and not semantic equiva-

lence)., [

Clearly, p%/\’o is a Boolean algebra. We note that p%A’O
is the syntactic version (orl-f—u- ~version) of the usual Lin-
2

denbaum-Tarski algebra of A .

PROPOSITION 1.8. Let A be a language. Then

A has w.G.i. & pmA'O is not atomic,

Proof, For any formula (PeFmA , let i;6 denote its uni-
versal closure, i.e. { is ¥v...%v, p where the free va-

riables of \p are among Vo,...,v, . Assume that A has

x/ Here V: 2Fm’“ -» Fn®  denotes the function for which
V('f!q’) = L{?VKP y ete,
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w.G.ie Let LPeFm'\ be a formula that cannot be extended to
a finitely axiomatizable, complete and decidable theory. We
will show that there is no atom below '?/p_a_“. Assume that
'U/pz" is an atom below l{-f/pg". This means that T/=° \F/E =
v/=, i.e. that ’L’ALF/E = v/= , i.e. l'i"',T (’UAI?‘*CP), i.e.
d

—_ d 4 A
hex T §»  where Eupe’\. Let T% {7, and T S

iq)eFmAgO . TI-I-,—,—KtlJ} . We will show that T is complete

and ? is decideble. Let ¢€Fm™Y be arbitrary. Then

either T/= £ (P/a or T/= .é_.-,\l)/;-._ since “®/3 is an a-
tom, i.e, either l’F,T": -y or }r—'-\ T+ -y, thus either
ngp or T}-IT-'—A- ~y » Both cases cannot occur since
Tl-r—,-/-\-Lp iff I-F’-K*c > (by the deduction theorem, cf. §2,
P ard sincel—r-:-’—\ T->¢ ). Thence if lr—’-K'C >y and
im € > Ay then E—I-,-;,—\ t=>F, i.e, %/z = 0 contradicting
the fact that T/= 1s an atom. Clearly, 1 is recursively
enumerable (since T is such). By completeness of T we
nave mn™luT $agp qJ&&‘i, hence the complenent of T
is recursively enumerable, toco, hence T is decidable., (We
used the trivial fact that Fm™° is decidable.) Tie proof
of the converse is completely analogous: Assume that pﬁwl\’o
is not atomic, Then there is ngFmA’O such that there is
no atom below p/=. We will show that there is no [initely
axiomatizable, complete and decidable extension of .

Assume the contrary: let (€T EFmA, T finite, complete,

Iet T ©be the universal closure of the conjunction AT of

T, 1.e. let 1= YoAess Ay, where T = ftpo,.,., L}Jnx.
We will show that T/s is an atom below tp/;-,. Clearly,

T/= £ Lp/a by LPET. Let q)eFmA’O be arbitrary. Then
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either T I?,T\' Y or T l-f:x wyp, since T 1is complete,
therefore either Li";'f\' Ty or im T ¥, i.e. either
T/s € Y/s or T/z¢ -up/a. T/z # 0 since e.g.
. - @ q
I"IT:—T; -» 1T iff I‘I‘—’?L'U 2 F by (T}-I‘—,T:- iff TI':-DTK*F_),

hence Wrag by I-F,—{(fv-a;['_. GED

REMARK 1.9. We note that pmA atomic =>pg:MA'O atomic.

To see this let lp/Ps be an atom in ﬁﬁhA » Since all
ranks in A are finite, the universal closure §7ps of ¢
'is an atom in pgﬁtA’o, Now if b is a nonzero element in
the second (the Iindenbaum-Tarski) algebra then it is such in
the first one which was assumed to be atomic., Then there is
an atom kp/pg below b in the first one, But then @7 =
is an atom bélow b in the second algebra,

The other direction is not so obvious., Actually, it
becomes false if we allow quotient algebras modulo arbitrary
theories. (However, without theories its truth follows from

our main result.) O

1.5, CONNECTIONS WITH CYLINDRIC ALGEBRAS

The title of the present paper suggests that there is a
connection between the logic Ln and between the class CAn
of cylindric algebras, Indeed, there is one: CA “s can be
considered as "nonstandard models" for L., this way making
the provability relation.kﬁ— complete, These "nonstandard
models" can be used therefore to show unprovability of (un-
provable) formulas of L+ On the other hand, by giving

eriteria for a "nonstandard model" to be "standard", one can



arrive at completeness results w.r.t, the original models,
(This latter activity is called representation theory within
CA theory). In this section we give examples of both appli-
cations of nonstandard models (i.e. of CAn's).

The ideas in this section (application of CA’s to the
study of the logic L, of n variables) are elaborated in
[H?73] and [HE?]1§4.4, pp.t2-46, where Henkin starts out with
L, and arrives at CA’s as the adequate tool for its study,
What we call "nonstandard models" here are called generalized
models therein.

Cylindric algebras are Boolean algebras enriched with
some constants and unary operations such that these new
constants and unary operations satisfy some additional equa-
tions. As a generic example, see Pamﬁ in Def.1.7. (be-
ginning of §1.4). Let o be an ordinal., Taen the constants
of an e«=-dimensional c¢ylindric algebra (a Ch,) are denoted
by dij (i,j€e<) and the unary functions by c; (i€e).
Thus a CA, Ol is an algebra of the form

& (/.4 /4
o = {4, +7, ,6‘!' '0(’ O“, 17 G?,dij >i,,on< *

Let A= {o,R,@> be a language with p= DoR. Let zd
Sw'. Then % is an algebra similar to CA "8 where di} =
(vi=vj} . di(qj = aviq for any (peFmA , and (F+¢qj=
qu, etc. Let Ol€C4 end x€A, Then Aﬁ(x) = {ieoC :
c?xﬁk}. ( Zf&x) simulates the set of free variables of "x".
za0 ¢ ixen . A%x-0l.

From our point of view, Cj,“s are designed to form

"nonstandard models" for the groof system P§1§ as follows,
¥
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(For a detailed exposition of "this point of view" see [H73].)
Recall that [s:DoR and A= {o,R,e>. Define
. bi
M e scoey : Mec,, gePa ana (wiep ) A(g;) < ¢43-
et <U,g> eMM. Then there is a homomorphism h : > o
such that (¥i€f ))h(R. (Vv e-.V
el ot ouc Si ol
ij ¢ h(ﬂviq:)=ci h(\p), h(p Vy)=hp + hy etc. for
every i,j€ and P,y € Fm/‘). Let LPEFmA. We say that

_1))=gi (and of course,

h(vi-—-vj)=d

p is velid in the model {,g>» , in symbols (UL,g)%q),
iff hq)=’la . (<(@l,g> can be thought of as an abstract model
with g, (iEfb) as abstract relations and +%,..., cj‘f as
abstract disjunction,..., quantification.) We define
o itr @FHeM )N . We define AxKZ@ the
usual way.

Now, the equations defining CA 2 are such that (x) below

holds.

(%) Let HeM be arbitrary. Then (a)~(b) below hold.
(a) yen™) Mg
®) @ gpem)@eO[(ne e R ¢y > niZ
and (’El%tp = ’a’llgéwity )] 5

By (%) we have that I.'I-',T.(LP =3 %L{), for any (.PEFmA.

The other direction also holds, because the equations defining

5

p)

CA, do not say more than the above ().

Keeping the above in mind, one can now easily obtain a set
of equations defining CA, (by "translating" the definition
of l'f','; in §.1.2 into equational form)., E.g. the following

-
Ci

-X+y. X<y stands for =x-y=x, as usual in BA theory.

set of equations will do: ILet x & —ci-x and Xy g



C(4) equations defining BA

iy 2 & (a2 C

0(2) cylx»73) & (cix > cly)

C(3) olx<x

C(4) ci(esx+c;y) = c5% + e;y
c;(~c %) = —o;x

,C.C.X = C,C.X
€;¢ 485 %1

03d5 = dyy if i éd13,x}
¢(5) djg; =1
Cc(6) cidij = 1
C(7) djjrdsy € dygy
c(8) diJ.'x < c?.(di;} »x) if i#j

Now, the above C(1)-C(8) define the class CA_ .

PROPOSITION 1.10, (completeness theorem for&FTT)' Let A=
?

<o<,R,g> . AxeFmA and LpeFmA. Then

dxbr— ¢ ife xEy. O
Proposition 1.10 above together with Prop.1.8 show the
connection between Godel’s incompleteness property for Ln

and non-atomicity of Qﬂ)ﬁﬁpAn, see also HRemark 1.9, It

also gives a tool to handle semantically inconsistent but
FET-—consistent theories, cf. Remark 1.5.

Next, as an application of Prop.1.10, we shall show that

the formula in Remark 1.2(c){E3) is not vrovable by FE-. Let
A =42,(R,8),(2,2)) and let @ be the formula defined in
(E3). For showing F§—¥|P we will construct &€ M’ for

which M }%A-# P s



et U fa,b,c,d,el, 4% ix: xeuy, %, 570" 1" are
the Boolean set operations on A, dOO =
d:% 5 ia,el., Iet ty be the equivalence relation on U with
blocks fd,a} and ie,b,di, and  t, be the equivalence rela-
tion on U with blocks Jd,e},%a,b,c}. ILet XeA and ie2.

cgl'x d jueu : (av(:x)(u,v)eti}.

Now it can be checked that ClGCAE. (E.g. by checking the
above C(1)-C(8) )., Tet RY fu} and 5% fe} ama é
(eLt, (R,8)). Now it is not difficult to check that

Wiy - O

In any theory of "nonstandard models"™ it is customary to
pay special attention to those "nonstandard models" which
happen to be "standard". In the case of our M™ these
standard objects are called representable. The reason for
this is that c¢ylindric algebrss that can be obtained from real

models are called representable., Let TN be a model for A=

{ot,R,@> . Then there is a CA, L&™  naturally corresponding

%/ The"official" defining equations for €4, are fewer and
more easy to check. We defined € by defining its so
called "atom structure", i.e. by defining toety on U, It is

even easier to check that to and tq satisfy the few re-

quirements for ferming & cylindric atom structure, cf, [HMT]
24740,
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to MWl. We can define uEsm as follows, see [HMT]4.3.4,
For any qJC-.E‘mA let '@m d {SE“M : WE P [ s1}. Then the
uciverse Ce® of L&M™ ig ce ¢ H 'C'fm : e}

and the operations are the natural ones, e.g. Z‘Pm+ 'q')m= m
5 ~TN 0 .

oy (l? )=('3Vil.?) etc. Now a CA_ is called represent-
able iff it is a subdirect product of GAx's corresponding to
models the above way. (This is the same as saying that
corregponding to a set of models.) More precisely, this is
the definition for «< W), For olZW the definition is
more general but for our purposes it is to this same effectx/.
Therefore the representation theory of CA"s can be used to
show e.g. completeness w.r.t. the "real" semantical con-

sequence relation }ﬁz « As an example of this, we prove the

following.

PROPOSITION 1,11, Let A= {(,R, 9) be monadic. Then the
proof system }»r—o-( is complete w.r.t. the semantic % sy i1e€a
?

FIT,T;‘-LP &= Iﬁrq; for any LPE-.FmA.

Proof, Assume }-17;0-3‘(? « Then by Prop.1.10 there is a "non-
standard" model (e}L,g)E..M.A such that (C)L,g)l%%é @ . Ve
m~y assume that {g; : ie’%3 generates Ol . Since A is
monadic, each g, is 4-dimwensional in €, i.e, (Uier;)
Aa(gi) ©1. There is a theorem of CA theory (Monk[M62]) saying
that every C!L‘ generated by 1-dimensional elements is repres-

entable, Therefore -l is representable. This means that

*/ There is & wide variety c¢f different notions of "represent—
ability", tneir interconnections is investigeted e.g. in
[HMTAN] or in [HMT1§Z.1.
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there is a "real" model Ml of A such that (&,g)l%ﬂp
implies ’ml#uP « Thus };;éq) . The other direction follows
from the soundness of }—r—,a o QED

That the proof system }«5-;;2 is complete (for ordinary
languages) in the case o ZW can be proved the same way,
using the representation theorem (of Tarski) saying that if

K Zw then every CA_  generated by finite-dimensional e-
lements is representable., Similarly, the fact that l—r—';
cannot be made complete w.r.te. !ﬁ for o<W by adding
finitely many new schemes to the logical axioms A-FA (cf.
Remark 1.2(c )) follows from the "nonfinitazibility" theorem
of Monk [M69] saying that the representable CA s are not
finitely axiomatizable,

Representation theorems will play an important role in

our proof of Goédel’s incompleteness for o€ 23.
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§2. THE MAIN THEOREM AND ITS PROOF

Leb a(,P be ordinals., Then C4, denotes the class
Oof all o=dimensional cylindric algebras. If emech then
LU denotes its zero-dimensional part, i.e. 2ZdOl d {a€a :
A“(a)aoi. Let K be a class of algebras. Then Si'"SK de-
notes the ’5-generated free HSPK-algebra, where HSPK is
the variety generated by K. Recall that Gddel’s incomplete-
ness property was defined in §1. The main result of the pre-

sent paper is

THEOREM 1 (a) The logic with three variables has Gddel’s
incompleteness (for more precise statement see Thm.1.6 at the
end of §1.3.).

(b) jﬁchAa is not atomic., Moreover, I/ $i1CA3 is not

atomic, either,

In the course of proving Thm.1, we shall also prove the
following. Recall from [HMT]Part II p.55 that ’ﬁ,g(x,oc) de-
notes the largest reguler locally finite o<¢-dimensional cy-
lindric set algebra with base %, (If o<W then the u-
niverse of ‘R:F (K ,%) consists of all oK —-ary relations on &£.)
R(U) denotes the full relational set elgebra with base U,
IGg, denotes the class of all representable CA "8 (if < >2),
RA and RRA denote the classes of &ll relation algebras
(RA’8) and all representable RA'g respectively., We recall
from Maddux[Ma?78],[Mag2] that SADRA is the variety of

semi-associative RA’s. Recall that we obtain the definition
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of SA by replacing associativity of the operation ";" in
the definition of RA“s with the weaker equation (x3;1);1=x;1.
SA“s are much closer to CAB'S than RA"s, cf. e.g. [Ma781Thm.(19)
P«150. The classes WA and NA were also defined in [11&78]’
[Ma82] by further weakening associativity of ";" to
((x+17)31)31=(x+1")3;1 and by omitting it respectively. XgkK
denotes the set of equations valid in the class K of similay

algebras,

THEOREM 2 Let [5 1. (8) Let 3% o< w. Let KeC4,
be such that EQK is recursively enumerable (r.e.) and
%{l(x,«)ex for some infinite & . Iet A: b - (<+1) be
such that RgA¢ 2. Then QPmK is not atomic, Hence
%(A)K and HpK are not atom:.c either. In particular,

P

neither ﬂ'F, Aa( nor ﬁr',,,Gs‘,< is atomic,
(b) Let KESA be such that EgK is r.e. and R(UV)€EK

for some infinite set U, Then 'J’ii'ﬁK is not atomic. In
particular, neither one of S‘i‘pSA, S‘i'pRA, ﬁPRRA is atomic.

(c).ﬂPWA and %NA are atomic if f,ao. Further,
EqWA and EqNA are decidable,

We note that the assumption o<W in Thm.2(a) can be
replaced with RgA& W but cannot be completely omitted
since 4/ ﬁﬁ CA, is atomic for o Zw. (For proof see [N84al.)
As a contrast, ?f'r,_,' CA, 1is not atomic for all oK 23 and

!2,>O (for the case o<>w c¢f, [N84a].).

REMARK 2,1. The proof of Thm.2(a) is not hard to generalize
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to prove the following stronger result., Let 3go<ctd. Let
KcBg, with "&{Z(w , <) EK and EgK r.e. Assume K F (02 -
C4),(C7) of [HMT]p.162. Then ﬁPK is not atomic (if {3> 0).
Note that K%CAM may occur in this case since CA C’I ,05,
Ce (but not necessarily in K)., Proofidea: By o(<w, we
have that (01)’(05)’(06) is a finite set of equations
containing no variables. Let qVL(e) be the formula associ=-
ated to the cylindric equation e as defined in §4.3 of [HMT].
Now qyx(cq/\csz\c6) is a single formula and not a formula
scheme, Therefore we can add this formula to Ax defined in
the proof of Thm.1, obtaining say Ax*. Then we repeat the
proof of Thm.1 with Ax replaced by ax', [I

To prove Thm.s 1-2 we shall need some lemmas, Lemmas
2.2,3,6,7 are more or less known, we state and prove them for
completeness and also because we shall need them in a form
slightly different from the known versions. The heart of the
proof is Prop. 2.10., In the proof we shall use the connection
between CA“s, RA"s and first-order languages. We shall use
the notation of [HMT], mostly the notation of [EMT]§4.3, but
we shall introduce that notation wherever we need it,

In our languages mostly we shall have only binary rela-
tion symbols. In §2 we shall have only one binary relation
symbol E, for convenience only. ZEverything in §2 can be
repeated to languages having arbitrarily many binary relation
symbols.

Let 2£o(<w. Then A, denotes the language (with

equality) having cne binary relation symbol E and having
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ivi : i€} as set of variables. I.e., /l(u(@d,(E),(2)>

in the notation of §1.1. F%< denotes the set of formulas of

/x<, i.e. FmA“ in the notation of §1.1 (this is de-

noted by iﬁr in [HMT184.3).

In what follows we shall write x,y,z instead of VoiVqs

Vo respectively, Throughout the paper, we shall use the

following convention:

Agsume that Q(x,y) is a restricted formula with free va-~
riables among x,y and that @(x,y) is not in the language
of the equality, i.e. that p(x,y) contains E(x,y) as a

subformula., Then

(8) 9(x,2) ¢ IyG=zAg(x,y)), @G,2) & Ix(x=y Apx,2)),
@(y %) ¢ (zex Ap(y,2)Y, @(z,x) g Iy (7=z A p(3,x)),
®z,y) & FHx(x=z AP(x,7)),  plx,x) d 3y (y=x A@(x,3)),
LP(J’,Y) ¢ 3x(x=y AQ(x,3)), l{,v(z,z) d 3x(xaz Ag(x,x)).

We call (8) the "substitution convention"“/.

About the usage of (8): We shall have a formula ablreviated

a8 X;=¥je Let us apply the above convention (S) to this

formula (E(x,y) will occur in this formula). 'That is,
(.P(x,y) is now X;=F 50 Then we shall write q)(x,z) as

X; =% The meaning of Xj=z; is 3y(y=zz\xi=yj) instead of
taking the definition of xiayj and replacing in it y with

*/ We have to fix the order of substitution, because the "merry-
go-round" equations are not {rue in CAyx, and this means that
Wer.t., provability, the order of substituftion does matter. th.
(E1) in Remark 1 2{0), §1.2.) However, since we shall state
axioms whenever we shall need them, the only important thing

is to fix the order of substntutlon and it will ot be im-
portant to know exactly how they are fixed,
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z everywhere. If ¢p(x,y) is x=y then by x=z we really
mean x=z and not 3Iy(y=zAx=y) Dbecause of the requirement
that E(x,y) should occur in the formula qu,y). Using

(S) makes our formulas shorter and easier to read.

Let HEo¢. Then Fu» & Tg€PFm, : all the free va-
riables of ¢ are among {vi g i&H]}. We shall heavily use
the fact that every ordinal is the set of smaller ordinals,

€.g. in the above notation H will ofter be an ordinal like

in S .

Let PO(X,.Y), pq(X.y)EFmg be arbitrary. Given pi(x,y)

(ie2) we define :]'CEFmg as follows:

g gz [ (9(x,3) ADp(x,2)) S y=z A

(P (52 F)AP (%,2)) > y=2 A
3Z(p0(z,x}Ap1CZ,y))]. -

It

We call T the pairing formula. Writing out the definition

of T without using (S) would be

T = ¥x¥y¥z[(po(x,y)A3y(y=z Apo(%,5)) > 3=z A
(p (7)) AI7(F=2Ap, (x,5)) >3=2 A
I2{3y(y=2 A J2(2=x A Ix(x=y A J7(3=3 Ap(x,7))))
A 3x(x=z qu(X.y))] -

In what fcllows [k denotes the semantical consequence rela-
tion. The following Lemma 2.2 has been known since it states

a basic property of Terski’s pairing functions. Cf. [TG],

[T53].
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IFVMMA 2.2. There is a recursive function £ : Fmi--)li‘m3 such

that (i)-(iii) below hold for every :_PeFmi :

(i) x F yeofy
1) £lag) = 2£(g)
(iii) fg € Fmg it peFn), , for every j<2.

Proof, Let Fmé denote the language Fm5 enriched with two
unary (partial) function symbols PgsPq and such that we
consider not only restricted formulas. I.e. Fmé consists of
all first-order formulas built up from one binary relation
symbol E, two unary function symbols Pg1P4 and using only

X,¥,2 &8s variables. ILet

T g JCA/\{Pi(x’Y) 4—>p1(x)=y : i521.

P
In what follows we use the validity relation |==P to denote
that we use the logic where p,,p, denote only partial
functions., (For details see e.g. [Bu85]. p;(x)=y means that

"pi is defined on x and pi(x)=y".) Then €.ge.

I, |§ nyﬂz(poz=x AP12=7)-

First we show the existence of f’ : Fmi-»Fm% with the re-

quired properties (but using " T, 5" instead of " {E").
There is an algorithm of obtaining a prenex normal form
pr(q)} of LPGF'“EJ such that pr(lp ) is a formula of the
form Q (P(x,y) where Q 1is a sequence of exisgtential
quantifiers and negation symbols -~ , (P(x,y) is a quen-

tifier~free formula containing only variables cccurring in Q

and x,y, each variable occurs only once in Q, x,y,z do
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not occur in Q and further pr(qu).—.-,pr(l.P) for every Y€
Fma. Let q,)&FmE) and pr(y) be Q L?(x,y) with the above
properties, Let w be a variable. Then Lp(x,poy,w/p,]y) de-
notes the formula we obtain from (p(x,y) by replacing y,w
with PoY +P4Y respectively everywhere in (.p(x,y), simul-
taneously.

Assume that Q is vV3IwQ” for some (possibly empty)
sequence Y of the negation symbol and for some variable w

and Q°. Then it is not difficult to check that

) T, b v plx,y) & vaZ(POZ=.,VA33[y=z/\Q'LP(x,pOy,w/pqy)J)_

Now, based on (1) above, one cen easily define the required
function f’: me) - Fm% (by an obvious recursion).

Next we want to get rid of the function symbols pg,p,
and of the nonrestricted formulas. Recall that we have only
one relation symbol E which is binary. Iet {X,¥,z{={x,7,23.
Let 7T,6 be finite sequences of pn,p, and let i€2, Then

it is not difficult to check that

@) =,k E(tX,85) € 3z [p,z=TX A p42=6F A E(pOE,pq'i)]
(3) % ks BlpgZ,pa2) 335 [F=py7 AT=pq% AB(X,7)]
(1) b TR6T © Tz [p Z=UE AD,7=6F A PyZ=D4Z |

p'B
(5) m, ks p;%=T 15 @ 33[3-p,% A 317 ]
b %=pTF > Ta[p; (3,%) A 515 |

(6)

Based on (2)-(6) and on convention (S), one can define a
recursive function g : Fmé —)»l'f‘m5 such that (¥ ¢ &Fmé)
[jtp % @ & gp and g(w):-.g(q;)]. Noticing that Fy &>
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:n:p )5 P for every § € Fm,, completes the proof. QED

Let RA, Rs denote the classes of all relation alge-
bras and all relstion set algebras respectively, cf. e.g.
[mT]185.3, [J82,84],[Ma80,82,83]. SimRA denotes the class of
all algebras similar to RA’s. Thus e.g. SASSimRA., Let R
be a set. Then Frp,SimRA is the set of all relation zlgebraic
terms written up from the elements of R, as variable sym~
bols., I.e. FpRSimRA is the universe of the free SimR4 al-
gebra generated by R in accordance with the notation of
[EIMT]. We shall often write RAT,, or RAT , instead of
Fry SimRA., Thus RATy is the smallest set such that (i)=(iii)
below hold:
(1) R€RAT; for every REXR
(ii) ']’ v0,1 €RATy,
(iii) Y, ©;6, 2T, 76 , T+6 €RATy, if 1,6 ERATy .
(Here 1° stands for the identity relation and Y,; stand
foir inversion and composition of relations.)

Let X e@lLeRA and 1 € RAT Then 'Cm(x) denotes the

1+
element h(T )EA where h : ﬁ-,ISimRA > @l is the homomorphism
taking the free generator of 3%HSimRA to X. If Jl€éRs
then base(®L) denotes th: base of O, cf. [HMT]5.3.2,

Our next lemma is basically the same as Lemma 5.3%.12 of
EHMTJK/, see also [M&61b],[Ma78],[TG]. It sais, roughly, that

every element of Fm§ can be "expressed" with a relati»an al~

gebraic term.,

®/ We have to reprove L.5.3.12 of [HMT] because we need re-
cursiveness and homcmorphism w.r.t. - of the tranglating
function.
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LEMMA 2.,%. There is a recursive function r Fmg - RAT
such that (i)-(iii) below hold for every q;eFm‘;.
(i) (rup)a'(}:) = {a e® . {base U,X> k L?[a]},
for every X €&l €Rz. (Note that ¢l[al is meaning-
ful because \p is a formula with at mest two free

variables Vy,v, )

(ii) r(ayg) = -z(y).

Proof, ILet RAT denote the set of all relation algebraic
terms over the single variable symbol (or generator) R .
That is, RAT = RAT{R}=FriH?imRA. Notation: Let lpeFm3 and
i i, d _ ®/
i,j€3. Then 53¢ = Bvi(vi-vj/\up) v

We define a Tunction + : RAT >->Fm§ as follows (see
[HMT]5.3.7):
t(R) € E(x,y), t(17) $ (x=y), (D %1, t0) ¢

iet T,6 €RAT., Then
8(tY) $ 65ssl60) , t(T;6) ¢ v (st @A s26(6)),

t(-7) ¢ ~t(t), t(r-¢) = t('c')Ataa'), t(v+6) ¢ t(T)vis).
It is not difficult to check that

) %) = faer® : (basedl,i>E t(v )[a]}

for every X € Ol €Rs and T € RAT,
Let R 2§xe®raT : Ixl<wl. First we define a

recursive function ¢ : Fug > R with the following

i‘fWe note that if vy does not occur in ¢ and (p(v /v ) de-
notes the formula we obtalu from ¢ Dby replacing v every—
where by vy then SJ‘P > q:(v /v Ve
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properties (i)"- (iii)": £/

(1) kg @ Vit(r)Asit(r)Asgt(ry,) : reowpd, see
Fig.2.

(ii)’ If (PeFmg then Q¢ = {<t,1,15} for some TERAT

(1ii)"  e(a)={¢-Tg,1,15) if (.P&Fmg and T e op.

5 ’U;a
7‘/ }5
YU
N1y
/]
FIGURE 2

We may assume that the elements of me‘; are built up from

E(V547,4), vi=vy by V,-.,ﬂvi (i,jJ€3) (since there is a re-
cursive function transforming each element of Fmg to such a
formula and preserving also the properties needed in (i)’-(iii)’).

We define ¢ by (1)=(8) Dbelow.
(1) §(B(vg,v)) S KR,
@) elvy=v;) § §{¢1,1,158 for ie3

(3)  elvy=v? e(v,=vy)E {1’ 1,153,
?(voave)g g(vezvo)g‘ 1€1,17,1>8,
e(v,=v,)E o(v,=v, )8 i<1,1,1° 1.

Let Py eFma. Then
4 [ SPVUsy if chq;#FmE
S 4 2 { i< 3ir : reQQUSPI, 1,158 if P € P

*/ Intuitively, (i)’ means that every formula npeFma dan be
"dJecomposed'" into a Boolean combination of "simple! :jf‘ormulas
p(v;v.), i,J€3, where "simple" means that  is obtained from
a retafion algebraic term, This is true because we have onl
binary relation symbols and only 3% variables. If we have only
binary relations but 4 variables, then e.ge EVB(R(vova)/\

R(v1v3)AR(v2v3)) cannot be decomposed in the above way. This
is proved in [N85a], for more on this see RemarkZ2.5.
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{<ﬂ{-r0 t reHy,M-r, @ reH 3, fli-r, : rEH2’5>

- . - 2
(5) S’("(P) d : HyUH UH,= 9, HyNH;=0 for icj<3} if ‘P¢Fm3
f¢-1001,15}  if @€MmS and  gp=ir} .

(6) e@vap) £ {<Sirge(xyiry) : r€QPY,1,1 53
<11, 2y (r 520) + regpIdlir Gém

3
(7) 9( vO(‘P) f¢ ’l;Z{Tg’(r']u ;I‘O) : reg‘?}iq 123 if (PEE‘mg

{<1, 2y (r5mp) + vepph15) if ¢fmd

d
@) 3(5"1“?) i((Z{rqo(rO';ré") : rEgtr]);"l,’l,’l)}if (,oEFmg

Now Q: Fm3 -+ R is clearly recursive, since Fmg is a
recursive subset of Fm3’ and it is not difficult to check

that (i)’-(iii)” hold. Let (pEFmg. Then we define
d
r(tp) = T where oY = f(’b’,1,’l>§ .

Then r : Fm§ > RAT is recursive, Also, F 9 et(rgo) by
(1)°-(ii)“, bence (i) holds by (®). (ii) holds by (iii)’.

15D

REMARK 2.4. In §2 we will not use the exact form of f or

T « We will use only the stated properties of fer, namely

that
(1) fer : me)+RAT is recursive,

(2) for T'"preserves meaning" (see L.2,2(i)+L.2.3(i)) and

(3) fer preserves negation, i.e. for(-.(p)=-f°r(q>).

In §3 we will use two more properties of fer , namely that
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(4) fer preserves disjunction, and

(5) for(E(x,y)) = E (for all relation symbols E ).

There are methods different from ours to achieve (1)-(5). For
example: Assume that there is F that satisfies Lemma 2.2(1i),
(iii) (i.e. F satisfies the "f"-part of (1)-(2) above).
Then one can define f° which satisfies (3)-(5) in addition,

too, as follows. We define f£° by induction on the formulas:

£ (B(x,3)) € B(x3)

f'(vi-vj) F(vi=vj) .

£ (4 $ a2 (), £ (QVY) S rpv e, £ (pAY) d s Aty
£ (3vyp) ¢ F(Ivyp).

/[=1

Then it can be checked that £’ will satisfy (1)~-(5) above,

The same thing can be done for the “r-part" of (1)-(5) above, [

REMARK 2,5, Lemma 2.3 above does not extend from Fmg > RAT

to Fmﬁ - RAT as Thm.2.5.1 below together with the discussion
preceding it shows, Namely, the algebraic form of Lemma 2.3
concernes the relationship between CAB's and RA‘s. The
investigation of the relationship between CAB'S and RA's
goes back to well before 1961: Some years before 1961 Tarski
conjectured that the study of RA’s cuan be reduced to the study
of some class of CA3'S, cHi [M61b]p,517_11. This gave rise
to the problem of finding that class of CAa's. In this
direction [M61b] proved

(%) RA = m"caa”
for a certain class CABHC‘: G.i;a. (The direction RA 2 ’Raf,‘CAa”

was obtained by Gebhard Fuhrken.) The definition of CAB”
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referred explicitly to the operations of Tt CA,, therefore it
was natural to try to substitute GA3” in the above () with
some more natural subclass of CAB' Henkin and Tarski proved
that NrBC%_(ECAB" for o4 ([M61b]Thm.9.2,[HMT]5.3.8),
therefors Ro™Nr_CA,CRA for o>4 giving rise to Nr;Ch

e
as a candidate fir a natural substitute for CA3” . But Monk
showed thet RA?WN%%( for o<z5 ([M61b]Thm.9.16,[M61a]
Thm.2). The problem arose whether RAQMIJracA4 or not.
This is Problem 5 in [M61b]p.80; an equivalent form of this
is whether RA = R 'CA, or not. A partiel positive solution
to this 1961 problem of Monk waé found by Maddux, namely
[Ma78]TIhm.21, which is quoted as Thm.5.3.17 in [HMT], says

RA = SHTCA,. To answer Monk’s original question amounts to
deciding whether or not 8 can be dropped in the preceding
equation. This problem is asked in Maddux [Ma78] on p.151
(immediately above Thm.20). In [N85a] the following negative

solution is proved:

THEORE 2+5e% RA ¢ MKCA4 , therefore RA #£ mer30A4 either.

Thus the answer to Problem 5 in [M61b] is neo. This improves
Thm.9.16 of [M61b] as well as Thm.2 of [M61a]. As a corollary
of Thm.2.5.1 above, we conclude that Thm.? on p.133 of [Ma78]

does not generalize from ULGCAE' to f)(eCAa, and [HMT]
5.%.12 does not generalize from SNr

CA, to Nr CA4. (These

> 3

corollaries, however, have easier proofs, cf. [N85al.) L[]

Let Aeﬁm8>. We call A inseparable iff there is

no set TQB&nS) which recursively separates the theorems of A
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from the refutable sentences of A, i.e. iff there is no
recursive (i.e. decidable) set TQI*‘mg) such that {cPeFmE_,:

ARy CTC foer’ : A K wpl. Cf. [MP6IDer.15.7, p.266.

Let p & r(pp(x,3))y d r(py(x43)) and®/

T, & (@50 > 1) (%50 » 1) (Y 50).

. 2
Then T, € RAT (since pi(x,y)EFm3 e

0

LEMMA 2.6. Let QEme be inseparable and let & d

(rf ) *Rp,- Then there is no decidable proper congruence
R € Co %, SimRA such that %€1/R and $r,SimRA/R ERA.

d

Proof. Assume R is such. Define T £ 0

{ g€Fm,, : rfyp € 1/R3.
We will show that T recirsively separates the theorems of A
from the refutable sentences of ‘A which contradicts the
choice of A . T is recursive because r,f and R are de-
cidable. Assume Tem% is such that @ Fy - We will
show that T€T. Let ¥ & 9 SinRA /R. Then FERA and
D 5 p/R, 1 e g/R are "pairing functions" in F vy 12 €
1/R. Therefore ¥ is representable, i.e. FERRA by
Tarski’s theorem QLA €RRA, sce [Ma?78a]. Assume T#T.
This means rfY tf-”T/R. By %€E&RRA and »€1/R then there
are ({€Rs and Z€A such that @“(z)n'i“ while

(I‘f’r )ﬂl(z) £ 1%, By m= (rf 2) “fp, ve also have

(e A Y (2)=1®  and T, X(2)=1% Let U € vase® and mé

{U,Z>. By Lemma 2.3 we then have

%/ Here a = b abbreviates -a+b as usual in Soolean algebra
theory.
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() MWE LA, W¥ LY and
Ge) $H(2) = {<u,v>EU : Wk pyCu,2)i,
'(2) = §<u,v>€%0 Wk py(u,2)3.

By Ty (2)

2,2 and (%) then M EAL , WK 4 » contradicting A Et .
Thus TE€T for every 'a"eFm‘?) for which A Fq. Ie. T

10(' and (=) we then have M ET . By Lemma

contains the theorems of } . Assume A F 2 for some TE€
Foo. We will show &T. We have AP ET by Ak ag, i
rf(-;'b'-)e’l/R. But rf(-,'a‘-)=—rf(fr) by Lemma 2.2(ii) and
Lemma 2.3(ii), hence rf('a'-)EO/R # 1/R, 1i.e, rf(T)¢’I/R.
This means 4¢T. Thus T is disjoint from the refutable
sentences of 4 . QED

»

et 7' S w A¥xyzvs[(po(24%) A Dy (2,3) ABo(¥53) A g (V547D

> Z=V310 2—'(1‘;> Ul-'<1~i'a7 =57 &1% '

Then J°€ Fmg. f° expresses that '"the pair is unique"®.

LEMMA 2.7. There exist an inseparable ?\EFmS) and pi(x,y)

eFmg (i€2) such that A is semantically consistent with

', i.e. AAT has a model,

Proof. Recall the finite set AE of axioms for arithmetic*/

from [E72]p.19%. Then Ap 1is inseparable by lxercise 1 in

%/ We could take any variant of Robinson’s arithmetic which is
finitely axiomatizable and at the same time inseparable, see
e.g. [M761Thm,16.1,p.280 saying Q is inseparable and Def.14.17
(or Prop.14.18) saying that Q is finitely axiomatizable, (War-
ning: "essentially undecidable" is weaker than “inseparable!
and is not enough for our purposes, see e.g. LM761p.269, middle
of »age.) For recently found "minimal" versions of this theory
with the desired properties see e.g. [Shep83].
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[E72]p.238., Our inseparable formuls A will be A trans-
lated tc set theory (and relativized to the finite ordinals),
while pi(x,y) (i € 2) will be formulas in set theory expres-
sing the usual intended meaning. Then A will be insepa-
rable and the model H =CH,e> of all hereditarily finite
sets will be a model of ) AT .

The definition of p.(x,y) for i€ 2:

For convenience, we shall write xEy instead of E(x,y).

x={y} < yEx A¥z(zEx - z=y),
ix3By 2 Az2(z={x} AzEy)
x={{y}} ¢ z(z=fy} Ax=§23%)
x20y ¢ J2(xEz A zEy)
pair(x) g ﬂy[{yEEx A¥z({23Ex » 2=y)] A¥zy[(2BUx A {z3Bx A
YEUX A {yt#x) - z=y] A ¥zExJy(yEz).
po(x,5) & pair(x) A {yiBx
d pair(x) Alx=1§73% v ({71Ex AyEUX)].

po(x,y), P4 (x,y)éFmg have been defined,

P4 (x,¥)

The formulation of A (we shall be more sketchy here):

xEOrd d "x is transitive and E is a total ordering on x"
xEFord < XEOrd A "every element of x is a successor ordinal"

x=0 C__l "X has no element”

sx=z ¢ z=xU{x}

x<y $xey, x<y ¢ x<yAxdy,

X+y=az d dv(z=xUv Axnv=0 A"there is a bLijection between v and y")
X*y=2 d "there is a bijection between z and xxy"

XeXpy=2 < "there is a bijection between z and the set of all

functions from y to x"
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Then )’ is the formula saying: "O,s,+,- yeXp are functions
of arities 0,1,2,2,2 resp. on Ford" and (leyEFord)l_—sx#OA
(sx=8y > x=y) A(x<sye>x<y) Ax-ﬁO/\(x<;er=yVy<x)A
X+0=x Ax+5y=8(x+y) A x+0=0 AX 5y=X-y+x A xexp0=s0 A xexpsy=
xﬂg_oy-x]. !

Now A &Fm(% is defined to be the restricted form of the
above  4°(cf. [HMT]4.3.6.). QED

REMARK 2,8. Now we have all the tools needed %o prove Go-

del’s incompleteness property for nonmonadic languages using
24 variables. (This shows that the o >3 case is much
eagier than the =3 case.) The idea is the following. The
"relation algebraic reduct" Ro¥, or M, is defined in a
natursl way on Fmi - Eg. o3¢ 5 z2(p(x,2) AY(z,y)), ef.
[HMT]15.3.7. For o(24 (M%)/Pg €RA by [AMT]5.3.8

since % € CA, by [HMT]4.3.22. Let 5 ¢ %, 5inRA  and
let h : q -> M% be a homomorphism taking the free ge-
nerator of f‘% to E(x,y). Let @ d hm, where @ is
A - Ty, @8 in Lemma 2.6 and A is inseparable such that
A AR is consistent, cf. Lemma 2.7. Then ¢ will be se-
mantically consistent (since h ‘preserves meaning").

Assume that T dis a decidable complete theory containing Vo

Define R & {(1:',6)62

G : (bt «»h6&6)€TI, Then clearly R is
decidable since T 4is such, it can be seen that R is a
congruence on Ci, y '?6’1/}? # O/R and @/R €RA by
M%/pe €RA. These contradict lemma 2,6, hence there is no
such T. This proof, however, does not work for =%, since

the relation algebraic reduct, though can be defined for %3
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G.e. for CA5), is not an RA. (E.g. ";" is not associative
but also both xYY=x and the Peircean law fail in 1%§CA3.
Further xV;(-x)g¢ -1 fails, too.) Until now, no generalized
reduct of CA5 has been known which was an RA, not even under

agsuming finitely many axioms in Fma. The essential part of

our proof for o«=3 will be the definition of such a reduct.
The main idea is to use Eml instead of Fmi as the uni-
verse of the RA - this way we will have 2 auxiliary variables
even in the case «=3. However, we shall have to be careful

te remain within Fql

even when writing up the auxiliary
definitions, otherwise the idea does not work., We will code
binary relations as unary ones with the help of the pairing
functions pi(x,y). Qur main effort will go into using only
finitely many axioms (in the language of Fma). (It is not
trivial that this can be done since we have to prove "schemes"
like associativity of relation composition.)

We note that now we have all the tools to prove that free
relation algebras are not atomic (using the above argument,
we do not even have to define RA-reduct). However, we shall
prove these later, arfter the proof of our main result.

We also note that using Lemmas 2,2,6 one can prove that
the semantic version of Godel’s incompleteness property holds
for languasges using >3 variables, hence that %G%( is
not atomic for any [21 and « >3, What we said above

about the o> 4 case proves tnat ﬁFCA“ for K24 is

not atomic, by §1.4. [l
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We are going to define a (generalized) reduct of a re-
lativization of the free G;efk3 which is a relation algebra.
This is the most important part of our proof. We shall work
mostly "on the logic side" for a while.

First we define some auxiliary formulas. Let 2% denote
the set of all finite sequences of 0,1 including the empty
sequence <> as well. If i,je2® then ij denotes their
"concatenation" usually denoted by ij , and |i] denotes
the "length" of i . Further, if k€2 +then we write k
instead of <k)>» for the sequence <k> of length 1.

We are going to define formulas (xiayj) EFm3 for®/ i,
je2®. (We shall need these formulas only for [i],|]}<3.)
Recall our convention (S) from the beginning of the proof.

We write x;=y and x=y. for x;=Y,, and x resp. if

<> V5

j€2®, ILet i,j¢2® and k€2, Then

(x,5=9) & (x=y) |,
(x,=7) c=lpk(x.y) 5

d
(xik=y) = Hz(xi=z Az =y)

Q.

(xi=yj) dz(x =2 ij=z) .

(x=yj) d (x<>==yj) .

Let (p&Fm;, u€fy,z} and i€2®. Then

Q.

(pu; Elx(x=ui A Q).

%/ The intended meaning of (xi i =V .
0... n JO...Jk
PnAsD are partial functions tThen D, «eeD; X = P eeeD: ¥ &
'O 1 . i, i, Iy do

Any restricted formula using only 3 variables and expressing
this, will do.

) is that if
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DEPINIPION 2.9, (The definition of (ot )

-
|

We define some new operations on i"m3. Let pair(x) -

EYQO(XJ) A 3yp.1 (x,y). Let P,y € Fm;. Then we define
LPO'*P g peir(x) A 33((?30)\ \PYq AX5=¥00 Ax1=311 A yO"IBy']O) '

see Figure 3.

Py x

J.

N

X000 Y0110 T 41%%1

FIGURE
(Illustration of t.PG'l’).)

gpu d pair(x)A 37(‘~PyAx0=y’|Ax“l=y0)' !
i 4 pair(x)A xg=x,
1 ¢ pair(x), O d E

LP-H.PQ' pair(x) A ((PVLP), Py d pair(x)A LPAl{) .
@S pair(x)A ¢ -

Ora < {pair(x)/\q) 3 LFEFmQ %, O’MLQ" {Ora,+,- :",Oo'i’@’ui 1.,>'
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Then %ESimRA. We call G the gne—~dimension~based
RA, where "one-dimension-based" refers to our efforts to
use only one variable in defining the relation algebraic

operations, U

Recall from §1.2 the proof system }E_—R which we
]

denote by IT as well, Define

PE;‘(—Z d =ix d {((P,q))ezli‘n& : AxlT(.pHLp}, and

A

T, S

(cf. $§1.4 and [HMTI§4.3.) Then Y, is an algebra
similar to CA°<'B. The basic fact we shall use about }T

I]=0

<Fm°<, VyA, +,LI,F, gvi’ Vi=Vs >i,.j6c<°

is that Ju /2, € CA, for any Ax, We note that if Ax
is finite then %/a“ z ’Rl,a %]CAUC for some

g € Fr,]CA“ .
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PROPOSITION 2.10. Therc is a finite Axg-.,Fmg such that

% E Ax and (Ha/s,, € RA.

Sroof. About defining Ax: We do not define Ax TDbefore

the proof, Instead, during the proof we shall postulate that
some formulas are elements of Ax, hence Ax will be listed
during the proof. We shall be careful to keep Ax finite,
and check N’ b Ax but otherwise Ax will be very redun-
dant: it could be reduced to a few, natural axioms about
Po(xs7) s P4 (XD

Assume that Ax is given. By [HMTP]4.3.20 we have
», € Co¥, , hence =, €Co Cra. as well, since all the o-
perations of (#a are polynomials in fﬂk, Let R d C’fi.'u/sAx.
We have to show that WRERA. We snall prove conditions (1)-
(4) on p.162 of [Me 78a]l(which is the same as (1)=(iv) of
Defo4.1 in [JTS2] or Thm,2.4(i)-(iii) in [J82]). Obviously,
R E€BA, heuce condition (1) is satisfied., Next we shall
prove condition (2), i.e. we shall show that ¢ 1is
associative in R .

In order to prove associativity of © in C";.*a,/.-_ﬂx .

we have to prove
Ax b= (@og)T @ Q-:(\lle-r), for every @.Wh1E€ Ora.

About the proof system }—r we shall use only the following

facts,.
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(%)  Jw, /=5, € Chy (ef. [HMP] 4.3.22)  and

i ®/ .
(3e¢) I—I-. tpé’erilp if v, does not occur freely™ in (p€Fy .

Let u,weix,y,z}, i,jE2x and (PEFmg. Then the following

(s2e¢) is easy to check:

(see¢) the only free variable of $u; is u and

the free variables of ui=";j are U,w.

Note that by (%) we have e.g.

Ax b= dzp & 32(3:2./\32(?) for every (peFn, because

CA F coX=cy(d 5" e5X).

We shall write "by CA" when we use (%), '"by ¥O" (by free

occurrence) when we use (ae),(s3m@e¢), and we shall write by
Ax" when we use the fact that a certain formula is in Ax,

Often, we will omit the expiunatien "by CA".

In the proofs we shall use the fact that the refined
deducticn theorem holds for |+ , i.e. that if Ax Uiy} F; Y
without using the rule of generalization then Ax |— (p < y).
(Compere [HMT] p.161,.) Using this deduction theorem makes

the proofs much shorter; however, each nroof will be easy to

write out without using the refined deduction theorem.

% Do see this, we have l_r 9 -> ﬂviq: by (#). Assume 7
does not occur freely in Y. "hen }—r p > -13vi-.-.q; by (ll-)
and {9) in the definition of |— , hence |z Ivp » ¢ by (1)
and (MP).
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From now on, let 9,9, €O0ra be arbitrary.

Let {u,wi={z2,¥3 (i.e. u=z,w=y or u=y,w=z) and i,,je2x,
1il, tjl €2,
(1) Ax l—r Lpui/\uwj > Pwss and

hx bgogug Augwg > e .

For, (u; Au=wq = (by definition)
3x(x=ui/\q>)/\u=wj = (by FO)
?nc(x=ui}\cp)/\3x(u=wj) = (by CAE cOX-coY=cO(X-GOY)sFO)
Ix(x=ugApAu=wy) b (by CAE X+Y=Y-X)
3x(x=ui/\ unwj)\gp) I——r- (by Ax1)

ax(xawdij\\?) = (by definition)
W.ji s where

(Ax1) x:-ui/\u==wJ 2 XeWgy (2-7.7 saxioms).

The proof of q)uia'«u]-.:-wj adl AP is completely analogous,

we cmit it.

j W
i u/
x;
We shall often use the following abbreviation (because of the

definition of ¢ ): Let u,we€{x,y,z3. Then

Aaw) & (ugmwgg Aug=igq Avgy=¥ag) -

Thus ¢oy is dylpy,Ayy, A A(x,y)). Warning: When writing
A(u,w) we do not use the substitution convention (S) (this is
the only exception). I.e. A(z,y) 1is zg=ypo Zy=I 44 A T01=T 40

and not Ix(x=zAA(x,y)) 1
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Next we show that in the definition of q)uq) we can use 32

instead of y :

(2) Ax bz oy » R(@zoA Pz, A Alx,2)).

For, Iy(Py APy, A A(x,3)) kg (by FO, Ca k cpXscyldgpreX))
dyz(yeaz APy APy, A A(X,)) g (b7 (1), Ax2, CA)
dyz(9zy Ayz,y A A(x,2)) 5 (by FO)
dz(pz, APz, A A(x,z)) , where

(hx2) y=z A A(x,7)) > A(x,2) .

In general, we can use Yy 1instead of 1z, or vice versa, as
"guxiliary" bounded variable. We shall need this in the

following concrete (special) form:

(3) Ax g Hz(z=x}\(pzo)\q)z,|) » dy(y=x AQY,APY,) -
For, z(z=xAyzyAyz,) kg (by FO, CA )
Jyz(zay A z=xAQzy A Y2,) b5 (by CA, (1))

Iy (y=x APy AY74)-
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Let {i,J},:fG,’I} (i.e. i=0,j=1 or i=1, j=0 Ye

() (p9ly; » F(Qz;0AP244 AT;0=2500 A 2101=2410 A 2411741 A
A yj”‘j) N

see Figure 4.

FIGURE 4
(Illustration of (4).)

For,

Ix(x=y; Agay) bz (by (2), FO)

3xz(x=yiA Pzo APz A Alx,2)) ¢ (by 4x3)
32(3;0=200 A T11=291 A Z01=210A W20 AYZ,) g (by FO, C4)
azx(z=xayio=nz00/\yi1=z,mazo1=z,|oA(pzoAqu,l) = (by Ax4,FO,CA)
(34 =X0pAT 1 1°%4 1A% =X 10 A 7 (z=x APz AYz)) b (by (3))
(75 o=%gAT 1 1=X41A% g =X0A T (T=xAqy, AYT4)) b5 (by Ax5)

Iz (y 522 4225 =XAT ;=X AT §4=%1 1A% 01 =X oIy (T=xapy oa34)) %
(by Ax6)

(35 =24 004234477 111 21017241007 =2 A DT (25 HaT=XAPT YT )) b
(by Ax7,(1))
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L (730725 00A 2544 1472101211047 ;j’zj‘\a"y(‘?zio‘\“r“"iq ) b
(by FO)

Fe (P2 0A Y244 AT;072500 A 210172410 A 2411=Tiq AV 5=25),  where

(Ax3) (x=yiA«A(X,Z)) -»> (yio’z00‘7113211AZO1=210) (two sxioms)
(ax4)  (22%a330=200AT 1124142017210 > (F507%00AT11°%414%01"X40)
(ax5) ¥xy SZ(ysz- A 25 =X)

(Ax6) G5 =X4730"X00AY 117%11A%01=¥10) > (T30725004 23417711

A2301°2310)

(Ax'?) Ziﬂx Ayﬂx - y=zi .

FIGURE 5
(The idea of the proof of (4)).

In what follows, we won’t always write out the axioms of Ax

explicitly.
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(5) Ax g (p2ykp & @-yep).
For,
(qaaa.l))\yr }—r- (by definition)
Iy (Q@Pypaty i ADGLY)) b (by (4), FO)
372 (P2ooAPEo T 4AT 00200042001 7201042011 =T 01 AT 1 =24 AM D) b
(by (1), &x)
32(9200A Y201ATZ4AX0=2000 %1 521142001 =%010A%011=210) b (BT Ax8)
323 (2 oAPZoqA T24AZ00=T oA (=7 ATy [201 =7 oA 2427 14 A3 )] A ACxT )
s (by (1),F0)
Iy @y AT (x=g A Tr Yy a7 44 A0 ) A Ax,¥)) by (by definition)
m = (by definiticn)
Iy (g AlpepPyy A 4Cx)) b (by (4), FO)
372 (§Y A Y21 0ATE114T 10210042101~ 2110A %111 T 11AY0=20A AT )
(by (1),Ax,F0)
L (92492 4241 AX) 224 144%™ 200A1107 2101421007701 FF
(by Ax8, FO)

B3 (@224 0AT 244 AZ1 =T AT (=7 AT (2402712 =T AAGET ) ) A AGKY ) )
Fz (by FO, (1))

:'ly('[yqAﬂx{x=y0Aiy(th1upyoaA(xy)))AA(x.y)) b= (by definition)

(pep)og .
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(AxB)  x3=23455 AX35=2355 A2544%2343 A%345°%51

Iy(24; =y AT (x=y jaTy {24 =73 A74=7 500 ] IAACxy ).

and

FIGURE 6

(Illustration of Ax8 ).

FIGURE 7/

— e

(Tllustration of the proof of (5)).
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Now we turn to proving condition (3) of [Ma?Ba] i.,e. we
prove that 1° is the identity of & in ' ®.

Let u€{y,z} and i€2%, li]|<2.
(6) Ax l-f Pu; Ax=u, > @.

For, let wéfy,z3, wiu.
(puy A x=u, = (by FO, Ca)

Ju(w=x A x=u;a pu;) g (by Ax)

w(w=x Aw=u; Agu;) bz (by FO, definition)
FJo(w=x Adx(weu; A x=u;4¢9)) b (by Ax)

Jw(wax A Ix(xaw A ) b= (by CA F sZsgeoXacoX , FO)
T

) kx by gleg.

For, q;@‘]"}—r (by definition)

I yp 217, A AT b (by ax9)*

Iy(yy Ax=yy) g (by (6), FO)

% bz (by @€ ora)

gApair(x) k5 (by Ax10, FO)

Iy(p axeyy A 1Y, AAGRT)) by (by CA)

Iy (@x(x=yo Ap) A7, AA(X, 7)) bz (by definition)

r

po 4 where

#/ Here we needed the stronger " (uniqueness of the pair),

i.e. @K (Ax9) while % b (Ax9).
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T - : 14
(1x9) “FyAMGGy) - xeyy o for fi,0d=f0,11, em

(Ax10) pair(x) = 3y(x=yiA‘%’yjAA(x'y)) for {i,jl={0,1%.

/\g f\g
PN Y
4 \ 4 \
X S\ N X
!/} PN
[ v\
Y \ W
FIGURE 8

(Illustration of (Ax10)).

L

(8) ax = fogoy .

For, 1op b= (by definition)
Iy, 49y, 4 8(x,3)) b (by Ax9)
Ir(pyy A x=y,) b5 (by (6), FO)

¢ g (by @€0ra)

pApair(x) b= (by Ax10, FO)

Iy(p Ax=y, A’i'yo rd(x,5)) b (by CA, FO, definition)

A

409.

Our last condition to prove, condition (4) in [Ma78a’ is
Q'GV;T)=0 iff qﬁ(?;jy)=0 iff Tm(wu;q0=0, for every
¢+ ¢+1 € R.

Let §,% € Ora be arbitrary. To prove j/zAx =0 =»

?/Eﬂx =0 it is enough tc prove

(%) Ax b dIx9 - Ixk

r

because of the following. Assume that f/an =0 in R.
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This means that Ax l—f (S « ¥) (where F 1is the "false"
formula). Now,
(t « £) (by CA)

bz
Ixf e F by (oy BA)

that is, ?/’Ax =0.
To prove condition (4), first we prove some (natural)

auxiliary lemmas.
o
(9 Ax kg 92947907244 AT497%90) 7 §Tq -
For,
924 A 7107299 A Tqq=2q0 bp (0¥ FO, Ax)
Ix(x=y, A 924 A 3y(24=y AXy=T, AX4=T5)) kg (by FO, (1), def.)

T

(10) ax bz (pATop=xq ATq=%p) * ¢3¢ -

For,

Jz2(x=2 AQATo0=%Xq ATgq"%Xo) Fo (by CA k djr-Xgey(dpo-X), Ax)
ﬂz((pz AyOOEZ'IAVO'T"ZO) '—? (by FO, Ax)

ix(xgyo 433(¢Pz AXg=2, Ax,‘zzo)) = (by PO, Ca, (1), Ax, c¢f. the
proof of (%))



- 52 =
Ixc(x=y, A Iy(Qy axy=y, AX4=¥y)) 5 (by definition)
o
¢ Jo-
(1) Ax }-—I—, n.y"zi - iy(tpy)\ Y0241 Ay,lazio) for iefo,13.
For, q;uzi = (by definition)

h(xnziday(?y/\xony,] AX4=y5)) b (by FO, Ax)

W@y 4592254 AT47250)-

(12) ax b5 (§2) Axg=2q AXg=200) > (e

For, 72,4 Xg=24q AX =2, Fp (by (11), FO)
37y 4 5241 A Y4=2q0 A Xg=2qq AXq=210) bz (By 4x)
Iylpy Ax=y) F5 (by (6))

I

q).

(13) ax bg %z AFy0=201 A Fp1=200) > §I0

FOT, $7ZAUno®ZsAloq= Zoo I+ (8Y A, FO, oleAf.)
Bz 4o A UPZo A Xy Zpoh Tlxo204 TyLpyAxo=4 A% 2 4eID I (&y Ax,F0)
B (x=y o Ax =20 A% =20 ATYLPTAT 0=2(4AT4=200] ) b5 (b FO,A%,(11))

(x=y, Ady[@y A x=y]) b5 (by (6), definition)

¢70 -

Ix[@AGo] - Ix[pAaGp»g™)]  and

(14) Ax =
Ax }—r 5:[?/\(\?67”)] - fbc[r)\(q)ump)] and
Ax b

ﬁ[r,\(l:;”e(p)] Y Elx[(p)\(qleg’)] .
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For,
I[gaep)] kg (by (2), £0)

ixz[LpMszATquA(x,z)J bz (by Ax11, FO)

:']xyz[qu lPZOATZ,IA x“yof‘ y1 oﬂzq 1/\)’1 1 =210A3x(x'zokd(n) ).] I”E ?‘

(by Ca, (6), (2, 'Ax)

Ayl ATy AIx(Y AA(x,37))] b’ (by FO)

Ix[ @ ATy ey A 774 4 AlKLT) )] b= (vy definition)

Ix[patpeth] b (by (2), FO)

'ﬂxz[lpupzo A f" Zq A A(x,z)] F; (by ax12, FO)
ey a[pagaga 124 A7=T 1A 00X A¥ 01 A (Rg B4 44Xy 224 oAA(XY) )]

b= (by (10), (1), ¥O)

iy[kp"yo A (.Fy,i A a)C(T' Z,I A xo‘zqt: A xa-"‘zqoﬁ A(ny))] l'?
(by (12), FO, def.)

Ik[ya@lop] bz (by (2), FO)

3xz['5'/\(ywzoupz1 AA(x,2)] p=  (by Axi1, FO)

Ixyz[ ta tp“zoaq)z,‘l AX=3 143 00" 201AF 01200 43x(x=€1AA(H) N =

(by+Ca, (13), (6))
Hyl gy, agyq A 3x@p A B(x,30)] g (by FO, CA, detinition)

dx [l{: Aly 01')_] , where
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(Ax’l,‘) A(X,Z) e ay(x-'-yii\yjo=zj,‘:\yjq=zjoﬁx[X=ZiAA(X,IY)J ) )

i‘orx/{i,,j}-—i(),’l}.

(qua) A(X ] Z) -> 53’( Zo"yz] AyO(J:x’] Ay01 =x043x [x()“zz}zl /\xq '_'Zr] O/\A(U)J ) .

FIGURE 9

(Illustration of the proof of (13), and of Ax11, 12).

QED(Proposition 2.70.)
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Now we are ready to prove Theorems 1-2,

Proof of Thm.q(a): We prove more: ZILet A ={e<yR,0)> be any
nonmonadic language with o223, We will show that /s Thas
G.i. Since A is nonmonadic, there is i€ Fs =DoR such
thet @, >2. First we assuie that Ry=E and g,=2. ILater
we can repeat the proof with writing Ri(vO"’vgi-ﬂ) gvery-
where in place of E(vo,v,!) and conjuncting the formula

Ri(vo...vgi_,l)<->3v2...3vgi_,lRi(v0...vgi_,]) to ¢ Dbelow,
0

Let p;(x,y) €Fm§ (i€2) and A€  be fixed such
that 9 is inseparable and semantically consistent with J°.
(Such A and pi(x,y) exist by lLemma2.?7.) let % e
ﬁrﬂSimRA and let h : (‘% > 0w, be the homomorphism taking
the free generator of %, to 8 ¢ pair(x)AE(xOx,l) where
E(xox,l) d 3y32(z=ony=x,]AE(z,y)). Then h ; G.-» FmA, too,
since OraSPr' . Recall that = rfA+ Ty, €G and

/] =8

pair(x) 2 Iy Gy Adyp (x,5). Let @ € Adx A¥x(pair/x) <

h/? Y Adxpair(x). Below we will show that LPEFmA is |f=—-
yA

congsistent and that  cannot be extended to a decidable,

complete theory,

CLAIM 1, 5
IM 1 ’-ETF‘ 1Y
Proof, It is enough to show that fiE Y for some model,
since then by the soundness of the proof system F-i-.-m we will
?
have "i‘TL 7¢ . By our choice of A and p, (x,¥y) (i€2)
3

there is a model WL such that Pk A A4t . Then
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ke 'AACIIZAE:X by %" k& mwAAx. We will show that Wk
¥x(pair(x) ehnz)/\-:{xpair(x). Let Pair d $a€M : MWk
pair(x)[a]}. For every d€Pair liet 85,8, denote a ‘s

Po - and p,-image in ™ (i..e. its first and second "coordi-
nates"), For every Z§;2M define 32 d $ a€Pair :

(ao,a,l) €z}. Let R be the full relational set algebra with
base M (i.e. R 2R(M) in the notation of [J82]) and let
e 5 & M,€ >« Finally, for every LpEF‘m; define (.ng
ja€M : Wk (P[a]}. Now, using the definition of the ope-

rations in W one can prove .by induction that

(%) (hT )’ﬂ‘L = 'c,k( £) for every T €RAT,

By Wex, MWMEkL webave Mk £fA (cf. Lemma 2.2),
hence (r£X )R (£) = 2M by Lemma 2.3, i.e. (z£4)%(£) =
Pair. By (%) then (brf£) )™ = Pair. Let p £ r(py(x,7))
and q = r(pq(x,y))- Then by Lemma 2.3 faE-aM : ME
po(xy7)[eli= p(£) end (€M : Mk pa(x,y)[all = *(E).
Then by Mka  and by the definition of T, we have
‘JCRA'R' (&) = 21"1, hence by (%) again (th’u)m= Pair. Now,
hp = h(zf A -’.II:RA) = h(rf A )/\h(:ﬁ:m), hence (hoz)m= Pair
(by the above). This means that Wk ¥x(pair(x) < hnm).

Clearly, Mk Ixpair(x) by M kT . QED(Claim 1)

CLATM 2, Y cannot be extended to a decidable, complete theory.

A
Proof, AsSsume LPGT:TQ: iLPEFmA :T]—IT-KLP,’; and T is
?

decidable and complete. Define

e

R S$(T,5)€% : (hr ©hF)eTs.



- 57 =

We will show that R is & decidable congruence of %, ta~
king " to 1 such that factor f}/R is a nontrivial RA4;

these contradict Lemma 2.6,
. A
(1) R is a congruence on (3, since T = T

can be seen as follows. Define S d {(LF ,g)eaFm“ 3

(LP « q)) e1l, It is enough to show that S is a congruence
on %A. S is an equivalence relation and is a congruence
w.T.t. the Boolean operations V,A,1 by (1)e /\TA and (MP).
Let i€x., That S 1is & congruence w.r.t. 5vi can be seen
as follows. Assume (¢ > @)ET. Then, by 1, wp),

(-.(P - -19)6 T, then by (G), ¥vi(-|(|) - -19)6’1‘, then by (2),
(Vv ¢ > ¥vimp YET, then by (1), (-.vvi-,g -a-ﬁfving)ET,
hence by (9), (ﬂvig > Bviq; ) €T. The other direction,

(-JviLP - E{vig )ET can be seen analogously, Thus S is a
congruence on i » hence R is a congruence on (‘% (since
O¥0L is a generalized reduct of %A Yo

Clearly,
(2) R is decidable since T is decidable.
(3 f’j/ReRA by Ax €T and Proposition 2.10,

can be seen as follows, Let T,6 €G, Assume (hT ,u§)€=,_.
Then Axi-i-m hTt < h& , hence T ’r_,7\' hT < h6 by AxcT,
therefore (hT <> h6 )E€T by 6 = T, Therefore (7,6 )E€R,

We have seen that (hv ,hé )€ =), implies (t,6)€R, Thus
%/R is a homomorphic image of hxﬁ /an ‘.E—: Oi?ﬂ./sAx which is

a RA by Prop.2.10, Hence SJ/R E€RA, too.
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(4) me /R by (pair(x) e hy)eT,
since h1 = pair(x).

(5) 1/R # O/R by Ixpair(x)e€T,

since (pair(x)e>F)€T would imply ¥x+vpair(x)€T (by {1),
(MP),(G)).
Now (1)-(5) above contradict Lemma2.6. Therefore ¢

cannot be extended to a complete and decidable theoxy.

HEC(Claim 2)

Claims 1,2 show that A has Gddel’s incompleteness.

WiED(Theorem 1(2a))

Theorem 1(b) follows from Thm.2(a). 9QED(Theorem 1)

Proof of Thm,2(a): ZLet P?’l, 3£X< W, K=CA  and

A s F) » (x+1) be such that EqK is recursively enumerable
(r.e. from now on), ®f(K,x)€K for some infinite X and
A(3) 22 for some J'EF;:. We will show that WQ"PCA)K is
not atomic. If {5>/CD then " ZQ’.}?P(A) K is atomless" can
be proved analogously to [AMT]2.5.713 (the only change is that
we use c(“)g,,z instead of g,,z in that proof). Therefore we
may assume thet A<. Hence A is r.e. Let A =(6HRAD
be a language. By [HMT]4.3.1, 4.3.25, 4.3.56 there is a
recursive g 3 %Cﬂd ~.=.~FmA such that g induces an iso-
morphism between %M)CA \, and MA/EO. and in addition,
for any ’CEFI‘{?)CA&( and model WL for A if o['_‘im#'c=’l[m:[
then ATk gf(,' , Wwhere (lnfie-[?;)m(gi)=R;f.:l and gi(ie(b) are
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the standard free generators of :)"\?PC%X. Define Z‘:l.1 {S@' :
geq/CrFEA)KZ. Then 2 1is r.e. and %(A)K%’ m"/az .
Let A Vbe an inseparable formula such that A AT has a
model (in A). Such A AT exists by Lemma 2.7 and since
(3 ie(?a ) A1) 22, Let Y d Uvo...&_,l(Ax/\lix(pair(x) «hm)
Adxpair(x)) as in the proof of Thm.1(a). Then (/=€ wE
where ¢ d %Al,fzz . First we show that \p/sz £ 0. Leg
‘J)'[=<4(,R§_R)ie(5 be a model of A AX’. Then MEyp is
shown in the proof of Thm.1(a). It remains to show that
Wk > . Let (VieP)m(Si) d Rim. Then m : ]?'rﬁ.CA‘>< PO
satisfies A and o[fﬁmg. R.F(s(,oc)eK. Hence oJB" E1rt=1 for

all ’G’E‘I/Cr(A)K, therefore Mk 31;’ for all TE€ ’I/Cr(A)K

~ P
i.e. MEZ.
Assume that there is TEFmA‘O such that T/Ez is

an atom in ¥ below Y /=, . Define

[}

R ¢ {(v,6)€% : q/z; € (0 «rh6)/a5 3.

Then R is decidable since 2. is r.e. and '3"/5E is an
atom. Now »€1/R # O/R, ReCO%, and %/RGRA can be
seen exactly as in the proof of Thm.1(a)., QED(Thm.2(s))

Proof of Thm.2(b): First we give a proof using Thm.1(a).

Then we give a separate, direct proof for the case KCRA,
Let KSSA be such that EqK is r.e. and ®R(U)EK rox
some infinite U. We may assume that K 1is a variety.
Define Kk° & {OCGCA3 : ¥oud€X}. Then K'& CA3 is a va-
riety and EqK’ 1is r.e. By ®R(U)EK we have that

’R,F(lUI,Z»)E:K'. Let [521 and let A : P > %3 be such
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that (uiefsi'A(i)-z. Then W%(A)K' is not atomic, by
Thm.2(a). We will show, by using results from Maddux [Ma787,
that m%(d)x’ g %K. Let ¥ ¢ %P(A)K'. Let G be the
set of standard free generators of ¥ . Then GC_Zer.T' by
the definition of A . The class CA% QGA5 is defined in
[Ma78]p.127. Now K& CAé by that definition because KCBSA.
Hence %€ CAé, too. Then Sg(m§>G = Ra Sg(s:)(} = Ra¥ by
[#a78]Thm(7),p.133. Thus G generates W% . We will show
that every mapping from G into an element of K can be
extended to & homomorphism from ¥m¥F . This will show that
T F 'é‘gw?PK. Iet Y€K and let k : G > A Dbe arbitrary.
By [Ma?8]Thm(19),p.150, there is a a[:'EGA3 such that ¥Yudl=
fl. Then JL €K by definition and k : G > Nr,L. There-
fore k can be extended to a homomorphism k” : %P(A)K' >d.
Then kX’ : ®n¥ -> Rad = Ol also holds. We have seen that
¢ is not atomic. Then 'Rn"eg:' is not atomic either,
hence %K (¥ ¥ %) is not atomic, either. Thm.2(b) has
been proved,

Now we give a direct proof for the case K&CRA. Let
KSRA be such that EqK is r.e. and R(U)EK for some in-
finite U, Let ’)\éFm(% be an inseparable formula such that
AAT hag a model, Such a A exists by Lemma 2.7. Let
az d (rf A )-:Itm. Let H : 5} > Q{PPK be a homomorphism such
that H maps the free generator of q, to one of the free
generators, say g , of ﬁ(fbK. We will show that Hey # O
and there is no atom in %K below Ha. First we show
Hr? #0. By the Liwenheim-Skolem theorsms, AAT has a model

with universe U, say W =U,E>k AAT . For any LPEFmEO
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let meg i(a,bﬂzeU : MWk Lf[a,bjj. By Lemma 2.3(i) we
have pi(x,y)m= kH(rpi(JC,y)) for i€2 and (f) )m=
kH(rfA ). By MW EkX then MKH( ML) = UxU. By 0k AT
and Lemma 2.2(i), (£A ) = A''= UxU. Thus K% = UXU,

therefore Hfz £ O.

FIGURE 10
Assume now that 4 <Hp is an atom in .’E‘PK. Define T &
f_(PGFm% : T& Hri‘q)}; o Then T is decidable since 77 is
an atom and EqK is r.e. (c¢cf. the proof of Iemma 2.6).
Assume that A k (@ .+ Then RRA |k (Wp,-TfA)<rfp by
Lemmas 2.2,3, Therefore RA E (:IrRﬁ-rf’)\ )&rf@ by Tarski’s
representation theorem QRA ©€RRA, Hence T.é- rfy by
T € Mguorfd . Thus  (QET. Assume that A k 4. Then
T‘.Erf(-.cp) = -rf as before, hence T% rf(P since rb";éo.
Thus (9¢T. The above contradict the choice of A , hence

there is no atom in %F,K below H4 ., QED(Thm.2(b))

Theorem 2(c) 1is proved in [N85c]. QED(Thzorem 2)
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§3.  LOGICAL ASPFCTS, OUTLINE OF A PURELY LOGICAL FROOF,
ANSWERS TO A PROBLEM OF TARSKI, CONNECTIONS WITH
SEMI-ASSOCIATIVE RELATTION ALGEBRAS OF MADDUX

In this section, let our language A be A = {,Ry@) where
3< o<, (b SDeR, %2 §R(1) : ie(5}, and (¥iep) g;=2. Thus
the only di.;‘.‘fe:cence is that we allow arbitrarily many binary
relation symbols. We recall from $§2 the following:

RAT denotes the set of relation algebraic terms (written up
from the elements of X, ). If M is & set then ®W(M) de-
notes the relation algebra of all binary relations on M. The
algebra v was defined in Def.2.,9 such that Ora éFmg
and Owx is an algebra similar to RA“s. We also recall from
§2 that £, r, h are recursive functions for which the

focllowing hold:
2 2

£ : Fo, —-)Fm5 (Lemma 2.2)
o Fmg —> RAT (Lemma 2.3)
h : RAT —» Fm; (proof of Thm.1(a))

f,r, and h preserve "meaning" and Boolean structure®, i.e,

(1) Xk gyeoty forall @R,

(2) Mk @le,b)é=s <a,Byeud(re) for all @EFnS and

model ’53‘(_:(M,Rm ey, » Where n : RAT - R(M) is a ho-
momorphism such that mm(R)ng for all ReXR,

d
(3) n(R) = R(xox,l) d 3yz(z=x0}\ y=X, AR(z,y)) for ell ReX,
h : 3?{5 SimRA — 3@ is a homomorphism, and
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f(R(x,5)) = R(x,¥), f(-|q))==-|-F=p, f((PV(IJ)=foquJ, f((fﬁ;q))=ﬂpzt £y ,
r(R(x,7))=R, r(a@)=-r¢ , rQV)=rg+ry, r@AP)=2p- 1y,
h(R)=R(xyX,), h(-t)=pair(x)A-h(t), h(T+6)=btVhE, h(T:6)=hvAhE.
Cf. Remark 2.4 in §2.

DEFINITION %,1. We define X 8 Fma —)Ftn; as follows:

K > ¥x(pair(x) = J<,'q>) where x’Lp d hrf(t.P )

% 8 txy s cpeFmg},, D
LEMA 3,2, Let (@ € Fnl.
(1) l-3- j(,(tp/\q)) © (d((? A:Kt{)) and the same for V .

(11) = X@->y) > k@ = k@)
(iii) dxpair(x) bz~ x(2y) ¥ 1xy
(iv) K is decidable.

We omit the simple proof of Lemma 3.2, [

Recall that T, :IT,'EFmg, o, € RAT  and Ax.‘—’_-.]:"'mg were defi-

ned in §2 such that o  Ax and Ax is finite., Define
M5y € Ty (o350’ - @57 >17)  (where p=r(vy(x,5)), =
r(pq(x,y))) and assume that JIUAK’ (’lti-'\,_A)éAx where h’ @Ll'm)
d ¥(pair(x) & h(atl'm)). We note that & ,Xp, express that
P,q form a pairing function such that pairs are unique; and

% E n’ (‘Jtl?m) (hint: see the proof of Prop.3.3(i)-(ii)).

Notation: ILet TQFm?o 5 (_pE'FmS) « Then T 'ﬂ @ éi;

TUAX | and Thyz @ <it~,~, TUAX Py &
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PROPOSITION 3.3,  %: Fuo, —» Fus is @ recursive function

for which (i)-(iv) below hold.

(1) xk yexp for all (PEFa,

(i1) Axkq@ iff Axbgk@ for all (EFmy.

(111) Thgy it g kg for all TSEm()3g.
(iv) T = ¢ iff Thgz ¢ for all TcXaY,

Proof. Iet (peFmE) and N{ be amodel of A, WEX.
Let pp, BA° de the "pairing functions” in Wi, for all aeM

let &, ¢ pgz(a) and. a1g='p1,'l1(a) if they exist, and let Pair’*

g 1a€M : ag,a, exigtl. First we show that

() Wky an,a,,] iff MWk :-('Lp Lal, for all a €Pair’.

Let (pechzo be arbitrary. Then Wk L{)an,a,]'_l ife (by

WMeEx , Xk ¢ < £p) Nk fg[ag,a,] iff (by the
properties of r ) <ao,a,'>e :ﬁm(rfq;). Therefore it is enough
to show that

() <ag,8 > € 2(T) iff Wk ht[a) for all ERAT,

We prove (mx) by induction. Let Re€X.., Then {8g:84 Emm'(R)
«R™ iff Wk R(x,y)[a5,8,] iff Wk R(xgx )[a] iff
M E h(R)[a]. Assume that (=) holds for 7T and §&. Then
<a0,a1)(‘:mm(-'u') iff MWk h(-7)[r] and <a0,a,|>emm(1:‘+6) iff
T E h(t+6)[a] are easy to see. We check now T ;6.
<ao,a1>€mm('v; 6)=mmifc)|mm(€) ire (Fb)(<ag, e (T) A {bya
en'(5)) iff (by Wk, (@) ( Fed(agecoyAag=ecq, A=
¢io AME WTlegAME heie 1) iff Wk (ur®ho )[a] iff
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m E h(r;6)[al. The checking of %“ is completely analogous,
hence we omit it. (%) and (s=¢) have been proved.
Proof of (i): Let (€ Fugy, let o €Pair™ Then Wk
¥x(pair(x) = @) iff (¥a€Pair) WMp «plal if (by ()
(¥a € Pair’) Ml b Lf[ao,a,'] iff (by (PC:Fm?O, Pairm;lo) m#LP .
Proof of (ii): Ax l—T«gp > Ax k @ by soundness of l_T and
by Prop.3%.3(i). Next we prove Ax D—g—,‘ KP » Ax K p. Let
R, < C(m/gAx . (kecall that =, was defined in §2.) Then X€
RA by Prop.2.10, Recall that po(x,y) ,p1(x,y)EFm§, p=r(p0(x,y))
end q=r(py(x,3)). Tet 5 & n(p)/zpyy G & B(a)/mpye By Ax by
h’ Otfm) we have that

(1) Br Kpy=t L8/ /3],

(more precisely this means that (PY;P »1°)-(g%q = 173+ (3Y;3)
([p;p">q;9"] +1°)=1 in R,). Thus D,g are projection func-
tions in ‘R., hence R is representable by Tarskis theorem
(ct. [Ma?8a]). Assume Ax I-—;—,‘ «p. Then Ax l-;—;‘ (¥x)(pair(x)
-M(,’LP), hence Ax }-—-5—-/- pair(x) & K'CP , thus j('(.P/_:_Ax F
pair(x)/au = ’I‘R'. Then by R E€RRA there are a set U and a

homomorphism g : R = ®(U) such that

() s&ip/ep) £ TP

Let us fix such a g and U, Define mg <U'Rm>ReR_ where

ng g(R(xox,l)/an) for each R€EX,, We will show that Wik

Ax while WK @ . First we make an observation, For q)&lﬁni
define "¢ f<a,b> : Wk @La,b]}. Recall that m' : %y SimRA
= R(U) is a homomorphism such that 11.11".((]&):12er for every REXR
and (.Pmamm(mp) for all qJE:Fmg. Let REI’,: Then g;(hR/,:_Ax)=

g(R(xoxq)/sAx)zﬁm=ﬁm(R). Since g,h are homomorphisms, this
implies that
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() s(.h(rq,: )’/an) = nf"(rq)) = LPm' for all LP(:Fm%

see Fig.11 below Now we are ready to prove Wl k Ax and WK
$. By po(x.y),P,,(x,:f)GFﬁng and (%) we have that s(§)=po(x.y)7:"
and g('d):p,l(x,y)m, hence by (1) we have that Wik x'. Hence
MWk Ax by &'k Ax. By (2) w2 have g(h(rfcp)/zﬂx)#UxU, hence
(ftp)m;(UxU by (%), i.e. W ¥ £Q. Above we have seen that WU

h = g
T, SinRA ——> Chor A, % > R(U)
SR — o>

———mT
hence by Frop.3.3(i) we also have that WY . (i) has been
proved , Proof of (diii): T ELP implies Ax B AT =@
implies (by 3.3(ii)) 4ax |~'3— KT > ) implies (by L.3.2(i)-
(ii)) Axl-g—/\x,“T < X implies (by the deduction theorem)

Ax U x¥*p l-3- ¢ implies (by soundness of I-? ) AxUT | K
implies (by Ax T, Prop.3.3(i)) T %@ » Proof of (iv):

Let TEK3( . Then there are SSFmy 3y such that T=
'S and @=x¢. Now T gz means &3 e k¢ implies
(by AXx T , Prop.3.3(i)) Zﬁ ¢ implies (by Prop.3.3(iii))

* . . .
K3 bz xys i.e. T gz @ implies (by soundmess) T = .
(We note that we may assume |T|<w> by compactness.) QED

REMARK 3.4, One can prove Prop.3.3(ii) in a purely logical
manner, without using Tarski’s representation theorem [’&(:RA,
R ENg, % KERRAJ, as follows. Recall that k5~ is a
complete proof system (see Remark 1.2(a)). Let Ay, denote
the set of logical axiom schemes (1) - (9) of =5 . One proves
first that Ax I—T:KT for all logical axioms qe& /A o by
the methods of the proof of Prop.2.10, Iet now M= {TeFm%
¢ AX I—;—x*ﬁ‘l. Then [’ contains all the logical axioms Afw
and is closed under the inference rules since I-T K(tp >4 -
(p > 4¢) by L.3.2. Therefore [' contains all w-derivable,
hence all valid sentences i.e. (¥QE& Fm?o) [k ¢ P Ax )-3- xq’»].
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Next one proves that Ax }—3— #(Ax) (again, by using the
techniques of the proof of Prop.2.10). Now, Axky %

B AX > 3 Axl-—a—-x(Ax) >KQ P Ax}-z—éfcp. So we have
(¥cpeFm?o )[Ax Fyp & Ax ""ZT" 4(4.9]. But this is a completeness
theorem for RgX and 1—3—- Wer.t. gimulating ria & ) full
first-order logic, But then IT inherits all properties of
first-order logic (including Gddel’s incompleteness), To
finish the (second) purely logicsl proof of our main theorem,
Thm,1(a), next we show how Prop.3.3(ii) implies that Ly has
G.i. Iet He€Fm).
there is no decidable set TQ‘-_Fmg3 such that (HLPEFmg)[')\ #Lp

be an inseparable sentence, i.e. such that

> @eT) and ( Ak ay » @gT)]. There exist such sentences,
see e.g. [E72],[M76]. Let ) d ax Ax) , where Ax is de-
fined in §2. We will show that tl,'t?li'tn5 is not "completable™,
Assume that T°C Fmg is such that (€T’ T'=if{)&Fmg : T by,
(¥pEFmQ)( YET’ iff ~pET’) and that T’ is decidable, De-
fine T $ tpern) : x@eT Clearly, T is decidable.
Assume that A]:LP. Then h)e?,hence Axl—TxA-w,«P
by Prop.3.3(ii) and the properties of £, therefocre 5((?6’1"
since AX,XAE€T" by (YET', Thus €T, Assume that
AF . Then (4¢)€T’. By L.3.2 we have T }-3—4((-“?) -
AKipy thus -KQEL’, therefore X417, i.e. (T. The
above contradict the choice of A, hence ¢ is incomple-
table in Fm3. G.i, for L3 has been proved,

Tarski’s original proof for (RERA, R b JC,, > WERRA)
was similar to the above chain of thoughts, see [T53a],[TG].

However, today there exists a simple, purely algebraic proof

for Tarski’s above mentioned representation theorem, see
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Maddux[Ma?78q}. The question arises: if Tarski proved his rep-
resentation theorem from the snalogous logical theorem, can-
not one prove then an analogous representation theorem for the
wider class SA of algebras? (The reason to think so is that
while RA is the class naturally corresponding to IT~pro—
vability, SA is the class naturally corresponding to l?— ’
see [Ma78,82,83].) We shall return to this question later,
in Remarks 3.12,1%5. 0

In the next proposition we discuss Prop.3.3. We will

show that in Prop.3.3(i) one cannot replace E with }—T

and in Prop.3.3(ii) one cannot replace Ax with all T2Ax,

PROPOSITION 5.5, (i) Ax g (p +xy) for some (EFmg,

(ii) Ax}-;—/— (x¢ - @) for some ({J&Fmg.
(iii) Th¢ =k Tl %@ for some AxCT Q-.Fmg, (?eFmg.

(iv) 2Tk xQ => T I-;— @ for some Ax&T Q.Fmg, (?eFmg.

Proof. Recall the notations Q+CA3 and Fn¢l from Def.3.8
and from the beginning of the proof of Thm.3.7 respectively,
By the methods of the proof of Thm.3.7, one can prove the
following (the proof can be found in the appendix):

(%) There is a o€ Q"’CA3 generated by a single element
of NroL such that (3 f,g€FnL )f;g¢ Fad,

Let o€ Q+OA3, f,g €Fnd be as in (x) and let C=Sgiel
for e ENr,d . ILet t %3 <> 4 be the homomorphism
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for which t(E(x,y)) 5 e. Then t is onto JZ. Therefore
there are (,} € Fm§ such that t( P )=f and t(fb‘-)sg. Let
us fix such a ¢ and 4t - Llet 4§ be the formula (E-.Fmg)
expressing that " p and 7 are functions = ¢;f is a
function". More precisely: ILet Y, ; denote the operations

of Wty (ez. [HM]5.3.7 ), i.e. ¢ = 99;33553V2LP

and @;¢ d Elva(sgq)/\ sgq)) (recall the notation si_ij'qa from
the beginning of the proof of L.2.3.). Now yp is the

following formula:
¥y [ (¢ 59 > x=y) A Vsp > x=y)] - ny[(ty;y)u (057 >x=y] .

Then t(y)=0" by f,gEFnL, f£;6¢PnL.  Define

TgiJE Fmg 5 t{é):-‘lxj. Then -,q)(:T, W%T by the

A
above. Also AxST and [T}—;—g = o€T| i.e. T=T
by L€ Q+CA3, hence

(1 Axl—-z—sa =» ©@€ET for every S)&Fmg.

Clearly, Ax#tp. Hence Axl—rd(q) by Prop.3.3, thus
XY€T and 1j(q)¢'.[‘ by (1). By yér, Ax b5— %y end

(1) we have

(2) Ax l—BﬂL :KLP -> lP

hence (ii) has been proved. By Lemma 3,2 (and Ax l—;——
Ixpair(x)) we have Ax l—-;— j((-.q)) < axy. Hence by

-,f.(q)q-T we have x(qq))¢T. By -.q)eT and (1) we then

get

(3) Axbg7 -y >x(2p).
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A
(i) has been proved, Now T =T, -yw€T, :K,(-ll.lJ)¢T,
and &y € T, U‘J¢T prove (iii) and (iv). QED

¥We now show that Prop.3.5 immediately yields one of the
main decidability results of CA theory, due to Maddux [Ma80].
His theorem, Corcllary 3.6(a) below (EECA5 is undecidable),
solves a problem of Tarski which was open till 1977, see [HMT]
Part II p.(vi). We note that our proof of Cor.3.6(a) is
completely analogous to Tarski’s original proof of "EqRA is
undecidabie" which used statements snalogous to Prop.3.3(ii).
(¢f, [TGlp.0.10, Tarski’s theorem was announced in [T41] and
the proof was outlined in Lemmas I-IITI of [T53].)

Cor.3.5(b) is a slight generalization of Maddux’s result,
(His proof can be used to obtain a similar result with {119
replaced by the free semigroup with infinitely many free ge-
nerators.) By passing we note that in [N85b] a stronger un-
decidability result is= available (in this direction) which is
proved by a generalization of the methods herein, but which
can also be proved by generalizing Maddux’s original method,

To state tiae following, we recall that Bg, and the a-

xioms (Cy - O?) defining CA, are found in [HMT], and
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to any model T¥{, & cylindric algebra gt:smé CA, is associated
in [HMT]§4.3 (cf. also §1.5).

COROLLARY 3.6, ([Ma80]) (a) ‘EEGA3 is undecidable,

(b) Let 3<¢o<w. Iet KCBo, satisfy (02-04),(07).
Let M|l be any model of Peano’s arithmetic (PA). Assume
Lek, Then EQK is undecideble.

Proof, Before turning to the proof, we note that PA could
be replaced in 3.6(b) with the weaker (and finite) Apt T
where 5° is written up for the natural (or usual) arithmeti-
cal pairing functions PosPqe Actually, PA could be rep-
laced with any inseparable theory + °. (a) is clearly a
corollary of (b), First we prove (b) with the additional
hypothesis that KCCA  (and later we shall eliminate this
hypothesis), Recall from [HMT]S84.3 that there is 1:/.'1.: F&ng -
"GAa-terms" such that I—r gy  iff CA3 = j/u(gp)étfu(ky)
for every Lp,ni) € Fmg. Let 2 Dbe an inseparable formula
such that Mk QAT . Then N kE Ax AKX}, too. Define

2 fgemgy ;K kgu(axax)) STu(xy). Let GeFm) .

Assume that ) E ¢ o Then AxAD k (4 hence A.x/U(M—B— Kp
by Prop.3.3(iv). Therefore K g ’U/u,(Axnk?\).é’t}L(pr), i.e. tf&T.
Assume now N\ A . Then AxAKA }-3— <K@ Dby the above end
by L.3.2, hence K k '?l(Ax/\:KA) é_—*z;a(:kq)). By MWlk AxAK)
and JSVEK we have K K q;u(ﬁai:/ud‘}snoi hence K F’{;}{L(A“Mkﬁ)é
't,’u(J(Lp) by the above, i.e. LP¢T. We hawlre gseen that T
separates the theorems of 24 from the refutable sentences

of ), hence T is not recursive. Since TU and ¥ are
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recursive, this implies that EgqK is not recursive.

Assume now the hypotheses of Cor,3.6(b) (without assuming
KcCA ). Let § 2Z{(ciOGO)+(diie’l)+(dikocj(dijodjk)) s
i,jsk€e<, j%{i,k}i, where e denotes symmetric difference,
Then (¥Ol€Bo)[ Ok 6=0 iff Ok C14C50g | Let 48
-c(“)ﬁ' « Then rly€ Hofl for every @EK by [N80O]Thm.1(i)
since Y k cic(x)euc(OQE for every ieo< by W E 03’6""
Let #(€K, o@‘éfegﬁm. Then oZ€CA since & C,+C540
by & k=1, Also, Lk T=¢ iff Ok $t=3.g for any
terns T,g . Let K € Fri®et : flekl. Then K'C CA  and
(EGK decidable  FqK’ decidable). By & $XLs%kca, we have
that rlg&' =d_, hence KLEK’. Therefore EJK’ is undecid—

abls by our previous proof. Thus EqK is undecidable, too,

QED

The following theorem states that representability of QRA
does not carry over to "QSA" and "QCAa" no matter how we de-
fine the latter two classes (i.e. not even if we strengthen
the definition of pairing function elements p,q by adding
further postulates on p and q e.g. like in It°). Recall
that if OLESimRA then Pl € faen : a¥;a<13.

THEOREM 3.7, There are OLE€SA~RA and p,qeFnfl with pY;q
=1 such that (i)-(ii) below hold.

(i) There is @{Cz@[ with p,qé€ Fnel[, such that 0[,6 QRA
&RRA, Moreover (¥ is a “"standard" QRA in the following
sense: ¢f C R(U) for some set U and p—-p,jO[‘U and q=pJ,MU

where p.;'i is the standard set theoretic i-th projection
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DJ PJ
function (i.e. <a,bd !—3,‘ a and <a,bd i-——,lr b )« In other
words Doq = Dop = {(a,b) 3 a,beU% and (ﬁa,beU)[p<a,b>=a &

Q<a,b>=b |,
(i1) 0[4.—RRA, moreover (3 f,h €EFnfL)f;h %Fn@(,. i.e,

o1 ¥ "composition of functions is a function™,

Before proving Thm.3.7 we state some corollaries (and related

results).

DEFINITION 3.8, (i) Let KCSimRA., Let IEK. We define

OeQE iff (I p,q€Fn{l) p’;0s1 and
OeQ’® iff (Ip,qeMo)[pViq=1 and (p;p¥)-(a;qY)<1°].
(ii) Let < >3 eand K<Bg, o Then
Q*k € jeolek : B0l eqQtSimRA and A-SE Ve, 8. QK is de-
fined analogously.
(iii) A QSimRA U with p,q€Fnfl. 1is standard if to
Op‘f_—l @%”T{p,qg there is an isomorphism h : 0& > R{H,)
where Hy= UfH; : €0} with (¥new)H =B O2(H ) such
that h(p) and h(q) are the standard set theoretic projec-
tion functions,

(iv) OLGQCI},( is standard if Rl is such, [

Note that any standard QK is actually a Q"'K. Further, QK

corresponds to our formula ¢ and Q"'K corresponds to IU°,

COROLLARY 3,9. (i) The elements of QSA and Q_CA3 are not
representable in general,

(ii) There is OLEQCA5 such that %Rwdl is not rep-
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resentable,
(iii) Statements (i) and (ii) above remain true if we

strengthen the definition of QK the same way as it was done

in Thm.357(i)o

PROPOSITION 3,10, There is ¢{€ QCA; such that Hxlig sh,

Again a strengthened version like Thm.3.7(i) holds, too.

We shall return to tne procf later. In passing we note that

there is AN € Q"'SA with projections p,q such that p;p¢FnUL.

Proof of Thm.?,7: Notation{Ri~terms): dom(x)g(x;1)-ﬂ’,

rng(x)g(1;x)-1' and O'§-1'.

Iet O EQRA and p,q€ Fufl be arbitrary but satisfying (I)-

(III) below:

(1) pY;q=1 and dom{p)=don{q)

(II) there is e €At with e < (1 -dom(p))

(III) (3 f,g,h € AtO N Fndl)don(f)=dom(g)=dom(h)=rng(f)=rng(g)
=rng(h)=e and gV=g, fY%af, g:h=f.

We do not really need gV=g and fY=f, these only serve to
make some computations shorter. Let G o fe,g,f,h%. We shall
construct a nonrepresentable QSA out of ¥,

Remark: We note that condition (III) is not essential in our
method, we stated it only to have a few simple elements to
work with., Also e €Atdl is not essentisl. We could start
out with almost any structure S below e (mcre precisely,
below (e;1)-(1;e)) instead of G and then construct a
nonrepresentable version of S while leaving the rest of

unchanged.
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It is easy to see that such an ¢ exists. For example, Fig,
12 below illiustrates such a construction, where of course p
and q &re the standard set theoretic projection functions,

Further f£,g, and h are three functions on Hy, e=Id[H,

and the base of €L is H,.

FIGURE 12

Throughout the rest of the proof, we shall heavily use the
notation of [Ma82] concerning complex algebras and atom
structures for SA"s, Recall from §2 therein that an SA atom-
structure is a structure U =,C,k,I> where C _C=3U, keUU
and IcU., If U 4is an SA-atom-structure then LM UL is si-
milar to SA’s as defined in Def,2,1 in [Ma82]. On the other
hand, if U is a Bg, (i.e. CA-like) atom structure then

Jwll is a Bq, as defimed in [HM]. (These two definitions
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do not cortradict each other.) Thm.2.2(4#) of [Ma82] says that
JwULESA iff Ul satisfies conditions {a~-c),(e) formulated
therein, Therefore O ¥|C JIMUl €RA for some U=
{U,Cyk,I> by Thm.4.3(4) of [MaB82] since ¢LERA, For
simplicity, we assume Y CJdM UL and AtOLCAtdMUL. The
cycle [F,8,f]=i{E484L)+<8yL,fD,<{Lyf,g>1 was defined in [MaB82]
,(Mag4]. We define C* ¢ cU[f,g,£]. Let U &<u,c*,k,ID.
Clearly Wt satisfies (a)~(c) of the quoted Thm.2.2(4),

To check (e), let (v,w,x),(x,y,z)ec+, in figure Z‘i

NG

To satisfy (e), we need an u€U with <v,u,z5€C* that is
we need a cycle Z\}U; . If v,z €G then there is sucha
A

"u" by the original definition of UL . {(efdvézde $ u is the
remaining element of G, and eav % u=z, vV=z 3 u=e, and z=e >
u=v)., Therefore we may assure v &G 3> Z¢G. If (V,W,x),
{X,¥,2> €EC then we are done (since ¢C did satisfy (e) ori-
ginally. Hence we may assume (V,W,X>€[f,8,f] or (x,y,2>€

[f,g4sf]. Thus one of cases 1~-6 below holds,

‘V\
Cage 1 <(V,yW,x>=({f,8,fD. z\:! % Then u=y will do since
{£,7,2)EC already (since zéG hence (f,y,z>€EC).

g /N\¢
Case 2 (V,W,X)=(Z,L,L), i.e. N in ¢*. By our

assunption vEG » 2z #G, made before this case distinction,
we have z ¢G. Warning: we shall not repeat this argument in

f
the remaining cases., Thus 3@ is in C which satisfies
y

Z
w
(e), hence (3 uel) 32 ;L ig in ¢, This u will do.
Z
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.+q‘
)

¢ AN
. . +
Case 3 <(V,w,x>=(f,f,g8>, i.€. in C'. Then AW/
in C. Thus Vl\ for some u in C.
Z

Case 4 (XY 12)={E 48y, i.e. @ c¢*¥. Then vé(}, hence
V{ F E! in C, hence u=w will do,
W W

Y
Y
Cage 5 <X,¥,z)=(g,f,£), i.e. é}% . Then in 3,

V,fl w {:
hence for some u.

f Y
Case 6 <X,¥,2)=(f,T,8>, i.e. @ « Then
VT

/‘I
hence & for some u.

¥

Cases 1-6 above show that there is indeed a u€U with {v,u,z>

. TNW
€ CY that is filling in the diagram %} ‘W . Actually,
y_/

-l

—+=
+
=

£

we proved more, namely <v,u,z>EC already, that is v;u2>z
holds in €l. This proves that M* satisfies (a)-(c),(e).
Therefore &% S.tuw UYESA by Thm.2.2 of [Me82], Since ACB
we can ask how p,q behave in 5. ILet t = (e;1)-(1;e).
Since (¥x€G)x<t and p,q and p- and q¥ are disjoint from
t, A andg & agree on [p,q,7¥,q”"} (since the only new
cycle added to C was [f,g,f] which is below t ), Therefore

we proved
() p,q€EFnts and pU;q=1 in & . Hence JLcQSA,

On the other hand, & is not representable (see Claim 2 be-
low), so we proved part of what we wanted.- We want to prove

more:
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We want to prove that <i@§?{p,q3, p,q>- is "standard"

(or has a steandard representation). But for this we need more

assumptions on €l since
() (p3;p”)+(q;q®)<1° and (p+q)e1’=0 anmd p~.1"=0 (for néw)

do hold in standard QRA’s but do not hold in arbitrary QRA"s.
So let us assume that p,q of & is e standard pair of

projections, that is assume

(smee) OLCK(W) and w=ULH, : iewl and (¥n€wW)H_, =
HnLJ2Hn and Hy is an arbitrary set. Further,

pPya ¢ W=>W are the set theoretic projections,

Such an ¢ satisfying (I)-(III) in addition to (=) obvi-
ously exists., for example the algebra constructed below the
remark following (I)-(III) is such. ILet W and H as in
(s9m¢) be rixed for the rest of the proof. Let Q S SéW{P;QE-
Let T = (EXHy)~Id, Then T€Q since T = 5 (1°-(p;1))

where T(x) = (1;x)(x;1) - 1",
Claim 1 T 4is an atom af Q .

Proof. Let k : HO > HO be an arbitrary permutation of
Hoo Then there is a permutation f : W >%» W of W with
f2k such thet f(p)=p and ?(q):q where TR g{(fa,fb> :
<a,b)€R}. Thus the base-automorphism T €Is(&l,¢L) is such

that QJ¥CId. Thus
(+) (HxEQ)[fx=x hence ix=x].

Let <(a,h),{(c,d>ET. Then there is a permutation k : Hg e H,
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with <ka,kbd=¢(n,d)> (since afb and cfgd by T<£0"). Thus
(Ux&Q)[(a,b>€x = {c,d)Ex:‘l. This means that T is an atom
of Q. QED(Claim 1)

Thus p,q,TE€QCSull and T is an atom of Q. Clearly
QEACB = SbU, Is Q ESuds, too? The Boolean operations, v
and 1°c¢. the sawe in € and J5. The only operation that
is different is composition (;). Let x,y6A. Then xUyCU
and x;ay =$c : <a,b,cDEC and aex, bEy} while

| ¢a,b,c>eCT  and a€x, beyi, Assume x;my;éxggy.

x;'y = {e
Then there is <a,b,ePECTA~C with a€x, bey and ¢ E.(x;'ffy)w
x{'y. By the definition of C* then <a,b,c>€[f,g,f. Then

for g i in x and f or g is in y. But since feTE€

AtQ and x,y€Q, we have T<x and T<y. But then f,g€T
é_x;ay. Thus ¢ F_x;my. A con tradiction proving x;my=x;‘g .
Thus 2Q1 o= 2Q1 £ and hence Q€Suds. Then there is

@Lg_,@ with universe Q. Hence

(54) P,q€ 0;@.13 is a standard QRs, that is (Op,p,q) sa-

tisfies (ao&).

This is quite obvious, since (ss) does hold for <@,p,q)

and ¥JSUl. We proved the following

(++) <L ,p,q> is a standard QRs = (—30;Q£)<€}I/,p,q> is

a standard QRs, too.

We needed assumption (=€) onliy to prove (++). Therefore in

the rest of the proof we do not assume (dex).
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Claim 2 of§¢ RA, further J% ¥ "function;function=function",

Proof, g'®g=g";%% <1’ (by (III) saying g €Fnféf) and

b’ ;¥heh’ ;%h €17, Hence h,g€Fnfs. But hySg=h¥g=f. But
f?f}g%'l' hence 1‘¢an8. So "function;function=function"
fails in 44, But since this holds in every RA, J& is not

such. (Actually, f<(h;g);efh;(g;g)=h.) QuD(Claim 2)

By Claim 2 and (%) above we proved the following

Claim 3 For any choice of p,q€{LEQRA seatisfying (I)-(III)
adding the cycle [f,g,f] to the atom-structure of & yields
a 8 EQSA~RA in which composition of functions is not a
function in general. In more detail: there is U =({U,C,k,I>
with f£,g€U such that & ¥|{< Iull and & =Jw{U,CU[E,6,£],
k,I)ESA~VRA etc. [

By (++) we also proved the following

Claim & Let p,q ¥l and I8 be as in Claim 3. If p,q,0L
satisfy condition (s@e), i.c. form a standsrd QRs, then
(4 O cd&) with (f,psq) satisfying (ssx). I.e, & has
a standard QRs as a subalgebra. Moreover {’)L-?-@LQ{{. 1

Since the existence of {¢{,p,q satisfying conditions of

Claim 4 was indicated below the formulation of (I)-(I1I), we

are done, QEDgThm.ﬁ.jz.z

REMARK 3.%1. (on streangthening Thm.3.7.) (1) As indicated in

Claims 3~4, the above proof method is much more general than

the theorem it proves. Actually, it appears that every (or
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almost every) SA is embeddable into a relativization of a QSA
(and also of a standerd QSA).: Consider the element ¢t =
(e;1)+(1;e) EASB. (Within the proof of statement (++), t =
HyH, was its concrete meaning.) Let ol = &, 0L and o5 °
= Rl &. Then M°€RA and £°€SA~RA. The SA J5° was
obtained from ¢{° by adding a cycle [f,g,£] to its atom-
structure, But the proof did not really depend on which cycle
was added. The only property we used was that if the new
cycle is [a,b,c] then (¥r,s,q>€[s,b,c])Fu with the triple
{ryu,qd is in the old atom-structure. But this holds whenever
[dom(a)=dom(c) & rrgl(a)=dom(z) & rng(s)arng(q)} i,e. whenever
the new cycle is a "compatible" one. The present proof should
carry over to the case when oéo is obtained from O by
splitting atoms (below 0’ only), i.e. replacing an old atom u
with a set of new atoms having the same domain and range as u,
Thus for any B8A Y obtained from an Rs by adding new
compatible cycles and splitting atoms is < 'mt.,t{ for some
standard QSA & and te€B (such that RﬂtﬁESA, too).

(2) The present method seems to be combinable with those
in [Ma82], We start out with the atom-structure W for an
arbitrary SA O° (i.e. #°c JwUl). Then for every bE

ZINb
U~1 we add a new cycle Pe” \ with dom(p, )Y=dom(q )§!U
pa ; b b
Yo

and pb,qde. Then we add new cycles (in a "“free generation"
manner) to ensure condition (e) of Thm.2.2 of [MaB'_?.]. Repea~-
ting this step ) times and checking that each added pg
remains a function (same for q) aad letting p= Zpb, qQ= qu
we obtain an SA-atom-structure in which pY;q=1. The ori-

ginal 4{) is obtained back by relativizing with 2U (in
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the new big algebra). This way every SA seems to be embeddable
into a 1elativization of a QSA. For more on these freely ge-

nerated atom structures see the proof of WACRIRRA in [Ma82].[]

Proof of Cor.3.9. and Prop.3.10: Iet [KEQSA~'RA be as in
the proof of Thm.3.,7. By [Ma78]Thm.(19),p.150, SA Q—.MCAa.

Thus 5 C Rt d for some o€ CA; generated with Nrea[:.
Since o €QSA, (by definition), we have oL € QCA5. Since by
Claim 4, o% can be chosen standard, J_ is standard, too
(the Q-part of 4. , that is). This proves Cor.3.9.

Let p,g € OLEQRA satisfy (I)=(III) in the proof of Thm.
3.7. Instead of adding the cycle [f,f,g], let us add only
the triple <(f,f,g> to C. Let &5 be the algebra obtained
this way. Now £¢SA since the Peircean law lails (£3f>g
but fu;g%f). But GGGRULKQCAZ' can be seen as follows, Let
£ be the set algebra constructed below (I)-(III) for simpli-
city. Let £ECA3 with ®al =0l exists by above quotation
as well as by [HMT]§5.2. There is an atom-structure W€ Ca5
with A cluW and At & U (again incorrectly identifying
AtZwUL with U ). We use the method of dilation in 3.2.69
on p.86 of [HMT]Part II, to construct a new CAz from .
We use the notation aer introduced therein, We choose
8y < sgfva(BXB) and a,]ésgf-a"(,%xB) and a2$g-3(3x5)- Let
n be as therein (aO‘I'énlea,l etc.) and TL be the new Chz
obtained therein (as W =dl U where U’= UO{n} ete.). We
write ";®" instead of ;®¥€ etc., Then nef;nf hence by
cg{n'&:g we have f;f3>g in Tl. Since f-g=0 and aq ésgf,
we have ao$sgg, thus n%sgug, thus n¢(sgf°sgg), hence
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f:g is the same in 9 as in &£ . Thus (fu;g)ﬁ=f;g}f,
hence the Peircean law fails in Yl . Since the new atom is
below m & c1f-c0f-sgcqf and m is disjoint from p,q,p".q’
and also from their substituted versions (like sgp) we have
that pY;q=1 and p,q €Fn®nil in P ramains true. This
proves that QteQ°A5 with RHJU¢SA. To see that (Hull,
p,q) is stendard, the proof of (++) in the above proof of
Thme3.7 (with the obvious wodifications) works. QED(Cor.3.9

and Prop.3.710)

We note that dilation can be applied to other non-rep-
resentuble CA’s and therefore by modifying the above proof we
can extend those non-representable 0A3's to QCA;'B, too.
Here a similar remark applies as the one following the proof

of Thme%47

REMARK %.12.(Tarski’s problem) Let us return to the problem

in §3.10, p.3.78 of [TG]. In 41974 the manuscript of [TG]
contained a slightly different version of the probiem, na-
mely whether set theory can be formalized in a logic denoted
by Lo in [TG]p.3.77 which is roughly speaking eguivalent
with EqQRA’s without associativity, i.e., with the equational
theory of Maddux’s NA“s. By Thm.2(c), the answer is no be-
cause both EqNA and EqWA are decidable. Of course, it was
already known (following Maddux’s result NA%EWA;) SA%:)RA) that
the two systems o and Lw™ are not equipollent. What is
new here is that in the weaker system there is no way of

formalizing set theory. Motivated by Maddux’s result, the
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problem in [TG]§3.10 was changed and the new question asks if
set theory can be formalized in a logic denoted by c:ﬁJJ'x on
P.3.77 of [TG] which is equivalent with EqSA or almost equi-
valently in our version of L5 (i.e. in EabAa). Further, it
asks if the main objectives of [TG] can be carried through in
EqSA. The question is complex,\ﬁnd“go is the answer.

(1) Positive answer: By Prop.3.3, there is a computable
jc,:Fmi—)Fma with (¥ €Rn) [ax o &> A’f'E_“Pj\'

Hence full first-order logic Fm2> can be simulated in our L5

(hence in EqSA as well as in EECA5) via the translation
mapping X. To be precise, any theory of full first-crder
logic containing Ax can be simulated in L3 (hence in EqSA,
EECA3). Since set theory does contain Ax it can be built up
in L5 this way. BSince this was the main aim of §4 in [TG]
and this was the central question in the quoted problem in
§3.10 of [TG], we have a positive answer., However, when using
this simulated set theory (in our L3) one has to be careful to
use only those formulas which are in RgX . This aesthetic
shortcoming cannot be eliminated by Thm.3.7 above, This leads

to the negative answer,

Before turning to the negative answer, we have to say more
about the positive one., In §3.7 of [TG] Tarski’s original c55
is discussed which is weaker than that version of nI% which
is adopted in the rest of [TG]. The original cﬁé is also
much simpler, and therefore the problem is indicated in $3.7
if formalization of set theory could te carried through in this
simpler original 065. Since this original 053 is slightly

stronger than our Iy i.e. than EECAB, the answer is positive,
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by Prop.3.3 (as indicated above)., Thus the problems in §3.7
of [PG] also receive a kind of a positive answer (at least in
a sense i.e, modulo formalizability of set theory).

Further, using the terminology of §4 of [TG], there is an
equipollence between <{RgX., l—3—> (i.e. a subset of Tarski’s
original ,.53) and « relative to the axiom Ax , that is
relative to any strong pairing axiom. (Our IU corresponds
to Q,p of [TG] and our Ax could be denoted as Q,p to in-
dicate QIB - (QAB + some further facts true for real pairing
functions).) Recall that Rgx QFmg hence (Rg X, }—3-> is
a subsystem of our L5' Imitating the style oi° Thm.(x{) on

p.4.50 of [TG], we have
, r
(VCPERgK)L IQ"'_;LP &= l?-f LP].
AB® “AB

In our notation this is Prop.3.3(iv). The above is a complete-~

ness theorem for the logic <(RgK , Ax }-3—> .

(2) Let :—T be provability in "(L; + RA-axiom~schemes)"
This has the same power as BEqRA (using the terminology of [TG],
}—F and EqQRA are equipollent). On p.4.48, Thm.(xxxvi) of
[TG] proves a stronger version of our Prop.3.3(i) for \-37 ’
namely Prop.3.3"t says Ax I—;-; ((P o K&P) for all (.?emng,

This implies that all sentences of L3 can be used when

formalizing set theory with this stronger system |—3_F « This

result fails for lT , moreover it cannot be recovered by

adding more axioms on the pairing functions to Ax as Prop.
3.5 + Thm,3.7(i) in the preseat work show. Namely, there is a
standard @ €QSA~RA (that is in &{ all possible postulates

(true in the standard model) about p and q are satisfied).
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The relative equipollence ot of;+ and of,x stated on p.4.49

of [TG] (below (xooxvii)) implies equipollence of ot\(=Il(_o) with
L; relative to pairing axioms QAE i.,e. relative to our IC,
This equipollence does not carry over to o(w’x (occurring in the
problem in §3.10 of [TGI) in place of =C+. (Recall that afw'x
is slightly stronger than our L5 which in turn is slightly
weaker than Tarski’s original wesk n55 in §3.7 of [TG]. o(wl( is
equivalent with FqSA.) <0 is not equipollent with Lu rela-—
tive any Qupe Moreover, no matter how streng pairing axioms
QL'; (QQIB) we choose, o5 will not be equipollent with oCurx
relative to QE . More precisely, if QE is any set of sen-
tences about projection functions 4 and B such that QL; is true
in the standard model <H,,A,B) of projections (where Ala,bd=
a and B<{a,bp=b for any a,beH,) as described in Tef,3.8(iii) u-
bove, then o5 is not equipollent with 40 relative to QI_E.
This follows from Thm.3.7(i) above. It might be an interesting
contrast with this to recall that the subformalism <Rg!<, Ax |—3—)
is equipollent with < relative to QKB » @5 observed in item
(1) above,

(3) It was brought to our attention by Roger Maddux that
Terski used his "translation mapping theorem" (between L,y and
EQQRA) to represent first-order theories (containing Ax) as
QRA"s in such a fashion that every QRA represents some theory
and finite theories correspond to finitely presented QRA’s, By
the present results, the same can be done by Q+SA’S, too. In
one direction this is not surprising (since QRA S(SA) but
despite of vhe negative Thm,3.7 above, every Q"'SA represents
some theory. Hint: Tet 4NEQSA. Then there is a surjective

homomorphism k : & —» ¢l rfor some free SA ¥ . Select
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$,0€ F as some pre - k - images of p,q of Ol . It is not
hard to translate Ora (the universe of (¥ based on p,q)
such that it becomes a generalized reduct of the free S5A .
Let us project (this new) Ora into &l along k. Then i =
will be a generalized reduct of ¢ . BSince the operations of
(the new) (hoL are defined in terms of the operations of (o
which in turn are preserved by k we have k' (CWou) as a ge-
neralized subreduct of ¢l . But since €LEQSA and <k(p),
x(3)>=¢p,q> we conclude that 1 (Gwor) is a QRA, hence rep-
resentable. Now the theory corresponding to Ol is obtained

0 _K X 0

via Pm) —>—> Ora —=> A. Namely, T={@E€Fm" : kx(p =kx(T)}

is the theory comnnected to €. The same can be done for

Q"’CA in place of Q+SA. For more concrete information on the

>
subject matter of the pres' nt item (3) see Remark 3.13 below, (]

REMARK 3,13, We know that every CA4 gL has an RA as a re-
duct Wwll and we also know that for some LK€ CAz, 'RLX.K#‘RA

(see e.g. [Ma?8]). One might hope that the RA-reducts of

Q+CA3’3 would be RA"s, but this is not true by Thm.3.7, namely

%(_;{5¢RA for some Q+CA3 £ (moreover Q'sa $RA). Despite of
all these negative results, there is a way to associate a ge-
neralized reduct to every Q+CA3 which will always be an RA.
This goes by translating the definition of Gwot in Fma (see

§2) into the language of CA In §2 after proving L.2.7, we

3.
. . A
defined @KK/;AX as a generalized reduct of the QA3 %/sAx.

More precisely, in Def.2.9 we defined operations ©, u,’1,’l' on

the set Fmg.

6m/5ﬂx‘ By using the translation Vu': ]S‘m3 = "terms of CAB"

Later these became the operations of the QRA



introduced in §4.3 of [HMT]Part II p.171, we translate the de-

finitions of ©@ , u,'i,’i’ into cylindric terms. E.,g. we obtain

. e . . . d

the cylindric term defining v v, by letting V@V, =’_§1L(

RO(va'lve)@R'I(va’Iva)) where of course the occurrence of ©®

on the right side should be replaced by the formula in Def,2.9
U

defining it. So we obtained four Ci-terms &; _ ,1,17 ILet

O be a Q"'Cm5 with projections p,q€Fnfl., Of course the

cylindric terms 9_ etc. contain two parameters p and q, which

now in Yl can be fixed. So after fixing p,q, @ = _(:2“: aA >

A, 1 = imEA etc. We define 'ﬁujm 2(1&,{&&, e, 2,4,
Then we can apply a slight generalization o; Prop.2.10 (see
Frop.3.3 for generalizing %o many generators) to prove that
'PA@U(ERA. (Since we started out with a Q+CA5, we can prove
’&QQEQRA, too, and hence by Tarski§ representation theorem,
'RUJ'W.E QRRA). We bave outlined how to prove that for any
Q+CA3 its generalized reduct ‘MﬂUL is an RA. 0O
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LIST OF (SPECIAL) SYMBOLS

gymbol _page symbol page symbol bage
L. V) SA, WA, Na ,2024 h .5y
A=<t R > 4 Eqk A R(xy%,4) .55
Frh .1 FBx  mm R .62
T,F .1 (C=Co) ] o™ .62
restricted .1 E Y X .63
= v Ay Fm,  .22,25 .63
I:E;-K .3 Xy¥ 2 23 IO .63
I o3 (8) 23 Lo .63
b .2 Fnﬁf , Fmg 24 h’ (g, ) .63
m *~ Pi(x’y) Lt E -65
Ap 2 7 2% Fax -63
@y-¢ .2 £ .25 Bay »70
(mP), (6) .3 Rs 2F N .71
monadic 4 SimRA 2F Fn i .72
MGRGp) 5 RATy, RAT 2% standard .75
Fn .8 (%) 2 QSA, QCA; 73
T .8 base WEL Q"sa, Q+CA3 -7
Go.d. 3 T .28 Hi y Ha 075475
WeGois 8 sj:q;» .28 dom(x) P
By > B0 M igseparable .7 rog(x) - 74
Pz’\ i P,yq .33 o -4
I GO M L .33 Lu U 75
Aa(){) f‘f ,2— Y [£,8,f] . 76, [Ma82
: T 34 Ra L « [HMT]

2d.00 JH .
M, s G .26 %z =
c(1)-c(8) .o X4 =7 .38 QUp -85
Jar, w43 Puy .38 P .86
CA, .20 e, Ora 39
we, zaol 20 pair(x) o4
. K ..?.O G’L‘)l’]lﬁ’?; «33

K 4 o) .20 LV I, .40
R(U) .20 Ax .44
IG%( .2_0 "by FO" .42

RA, RRA .70 ACu,v) 4D
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