Sample exercises from the 1st part of the course

1. Let \(U := \{ x \in \mathbb{C}^3 \mid x_1 + ix_2 = 0 \} \) and \(W := \text{Span}\{w\} \subset \mathbb{C}^3 \) where \(w_1 = w_2 = w_3 = 1 \). Verify that \(U \) and \(W \) are complementary and calculate the matrix (in the std. basis) of the projection onto \(U \) along \(W \).

2. Let \(P \) and \(Q \) be two projections of the vector space \(V \). Prove that \(P + Q \) is again a projection iff \(\text{Im}(P) \subset \text{Ker}(Q) \) and \(\text{Ker}(P) \supset \text{Im}(Q) \).

3. Let \(x_1, x_2, \ldots, x_{n+1} \in V \) be \(n+1 \) vectors in the scalar product space \(V \) and assume that \(\| x_k \| = 1 \) and \(|\langle x_k, x_j \rangle| < 1/n \) for all \(k, j = 1, \ldots, n + 1 \). Show that in this case \(x_1, \ldots, x_{n+1} \) must be linearly independent.

4. Let \(V \) be a finite dimensional vector space, and suppose that both \(\langle \cdot, \cdot \rangle \) and \(\langle \cdot, \cdot \rangle \) is a scalar product on \(V \). Prove that there exists a bases \(\mathcal{B} = (b_1, \ldots, b_n) \) such that the vectors of \(\mathcal{B} \) are pairwise orthogonal with respect to both scalar products.

5. Let \(A \in \mathcal{B}(\mathcal{H}) \) be such \(A^2 = 0 \) and \(AA^* + A^*A = 1 \). Show that \(\text{Sp}(A + A^*) = \{1, -1\} \) and that the dimensions of the two eigenspaces of \(A + A^* \) are equal.

6. Show that for an operator \(U \) on a finite dimensional Hilbert space \(\mathcal{H} \) the following three properties are equivalent:
 - \(U \) is invertable and \(\|U\| = \|U^{-1}\| = 1 \)
 - \(\|Ux\| = \|x\| \) for all \(x \in \mathcal{H} \)
 - \(U \) is a unitary operator.

7. Let \(A, B \) be two self-adjoint operators. Show that \(\text{Tr}((AB)^2) \in \mathbb{R} \) and \(\text{Tr}(A^2B^2) \in \mathbb{R}^+ \cup \{0\} \) and that
 \[
 \text{Tr}((AB)^2) \leq \text{Tr}(A^2B^2)
 \]
with equality holding if and only if \(A \) and \(B \) commute.

8. Let \(A, B \) be two positive operators. Prove that \(\text{Ker}(A + B) = \text{Ker}(A) \cap \text{Ker}(B) \).

9. Show, by example, that if \(A, B \) are positive operators such that \(A \geq B \), then it does not follow that \(A^2 \geq B^2 \). Decide if on the other hand the (weaker) inequality \(\text{Tr}(A^2) \geq \text{Tr}(B^2) \) follows.