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1 Problem description

A hypergraph H = (V,E) is a generalization of graphs, where E ⊆ 2V \ ∅, that is, a hyperedge
is a non-epmpty subset of the vertices. Clearly, a simple graph is a hypergraph where each
hyperedge is a subset of vertices of size 2. A hypergraph is a k-uniform hypergraph if each
hyperedge is a subset of size k (that is, simple graphs are 2-uniform hypergraphs). A hypergraph
H = (V,E) is a partite, k-uniform hypergraph if V is a disjoint subset of vertex sets V1, V2, . . . , Vk

and E ⊆ V1 × V2 × . . . × Vk. Partite, k-uniform hypergraphs are generalizations of bipartite
graphs. Indeed, bipartite graphs are partite, 2-uniform hypergraphs.

The first interesting1 partite, uniform hypergraphs are partite, 3-uniform hypergraphs,
where the edges are “triangles”, that is (v1,i1 , v2,i2 , v3,i3) triplets from V1 × V2 × V3, where V1,
V2 and V3 are disjoint sets of vertices. Partite, 3-uniform hypergraphs naturally appear in data
sience, especially in time series data. For example, (patient, disease, timepoint) triplets can nat-
urally be represented by partite, 3-uniform hypergraphs. Similarly, (user, tweet type, timepoint)
triplets also form a partite, 3-uniform hypergraphs. These time series can be subject of sta-
tistical analysis, and during statistical analysis, we would like to generate random partite,
3-uniform hypergraphs to empirically generate background distributions for hypothesis testing.
When generating random hypergraphs, we would like to preserve the degrees of the hypergraph,
that is, we would like to preserve for each vertex the number of incident hyperedges (triangles).
This statistical approach has been a standard way in network science. For example, random
ecological presence/absence matrices (adjacency matrices of (species, habitat) pairs forming a
bipartite graph) are generated to statistically test the hypothesis that there is a significant com-
petition in an ecological community [1]. The distribution of local subgraphs in real networks
can be compared with random networks, as well [2].

To conclude, the first algorithmic step in the above-mentioned statistical approach is to
construct a partite, 3-uniform hypergraph whose degrees are some given degrees. We will

1Partite, 2-uniform hypergraphs are the bipartite graphs, and are not considered as truly hypergraphs.
Partite, 1-uniform hypergraphs are simply the possible subsets of a set of vertices, and quite trivial in research
on hypergraphs.
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denote by d(v) the degree of the vertex v, that is, the number of hyperedges incident to v. We
can formulate the construction/existance problem formally as the following decision problem.

Problem 1 (Partite-3-uniform-degree-sequence).
Input A 3-partite degree sequence, D := (d1,1, d1,2, . . . , d1,n1), (d2,1, d2,2, . . . , d2,n2),
(d3,1, d3,2, . . . , d3,n3).
Output “Yes” if there is partite, 3-uniform hypergraph H = (V1 ∪V2 ∪V3, E) such that for all
i, j, d(vi,j) = di,j, and “No” otherwise.

When the answer is “Yes”, such an H hypergraph is called the realization of the degree
sequence D. If D has a realization, we say that D is a graphic degree sequence (“graphical
degree sequence” is an obsolate definition).

Surprisingly, the problem whether or not there is a partite, 3-uniform hypergraph with
prescribed degrees is already an NP-complete problem. However, there are special degree
classes for which it is easy to decide if a partite, 3-uniform hypergraph exists with those given
degreees.

The three main goals of the research class are:

1. Discover degree sequence classes for which it is easy to decide whether or not a hypergraph
with those degrees exists.

2. Set up Erdős-Gallai type inequalities for such degree classes (see details in the qualifying
problems).

3. For a given D, we can consider the set of realizations. On this set, we can define a
topology by defining the neighbors of a realization as “small perturbations” of it (see
details in the qualifying problems). We are interested in small perturbations that make
the solution space connected.

2 Qualifying problems

Please, read Chapter 14 in this electronic notes: https://www.renyi.hu/~miklosi/

AlgorithmsOfBioinformatics.pdf. Make sure that you understand the Havel-Hakimi theo-
rem (Theorem 14.1) and its corollary, Theorem 14.3. Make sure you understand what Theorem
14.3. says. It says that swaps are sufficient small transformations that make the solution space
of a (simple graph) degree sequence D connected.

Please, solve at least the first 5 of the following exercises. Exercises 6, 7 and 8 are hard,
that’s why they are marked with an asterisk.

1. Prove the Havel-Hakimi theorem for bipartite graphs, that is, prove the following. Let
D := (d1,1, d1,2, . . . , d1,n1), (d2,1 ≥ d2,2 ≥ . . . ≥ d2,n2) be a bipartite degree sequence. Prove
that D is graphic if and only if D′ := ((d1,2, d1,3, . . . , d1,n1), (d2,1 − 1, d2,2 − 1, . . . , d2,d1,1 −
1, d2,d1,1+1, . . . , d2,n2) is graphic.

https://www.renyi.hu/~miklosi/AlgorithmsOfBioinformatics.pdf
https://www.renyi.hu/~miklosi/AlgorithmsOfBioinformatics.pdf


Here the indexing is really horrible, but in narrative it is easy to explain: A bipartite
degree sequence D is graphic if and only if the degree sequence is graphic that can be
obtained from D by removing d1,1 from the first sequence, and subtracting 1 from the d1,1
largest degrees of the second sequence.

2. Prove the analogue theorem of Theorem 14.3. for bipartite graphs.

3. Let G1 and G2 be two realizations of the same bipartite degree sequence. Prove that
both the adjacency matrix of G1 and the adjacency matrix of G2 contain at least one
checkerboard unit.

4. In an n × n matrix of 0’s and 1’s, each row sum is the same, and there exists a column
sum that is neither 0 nor n. Prove that the matrix contains a checkerboard unit.

5. The Erdős-Gallai theorem is the following: Let D := d1 ≥ d2 ≥ . . . ≥ dn be a degree
sequence. Then G is graphic if and only if

(a)
∑n

i=1 di is even and

(b) for all k = 1, 2, . . . n− 1,

k∑
i=1

di ≤ k(k − 1) +
n∑

j=k+1

min{dj, k}.

Prove the ⇒ direction, that is, if G is graphic then the conditions necessarily hold.

6. ∗ A degree sequence is k-regular if each degree is k. Prove that a k-regular 3-partite
degree sequence on n + n + n vertices has a partite, 3-uniform hypergraph realization if
k ≤ n2.

7. ∗ Find further degree sequence classes for which it is easy to decide if a partite, uniform
hypergraph realization exists.

8. ∗ In this short paper: https://arxiv.org/pdf/1901.02272.pdf there is a proof that
constructing a 3-uniform hypergraph with a given degree sequence is hard. Extend the
proof that the problem remains hard in case of partite, 3-uniform hypergraphs.
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