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1 Problem description

A degree sequence D = d1, d2, . . . dn is a series on non-negative integers. A degree sequence is graphical if
there is a vertex labeled simple graph G in which the degrees of the vertices are exactly D. Such graph
G is called a realization of D. Similarly, a bipartite degree sequence is a pair of series of non-negative
integers, D = {d1,1, d1,2, . . . , d1,n}, {d2,1, d2,2, . . . , d2,m}, which is graphical if a vertex labeled bipartite graph
realization exists whose degrees are exactly the given degrees.

A graph is a multigraph if more than one edges might go between two vertices.
Deciding if a simple graph or a bipartite graph realization exists for a degree or a bipartite degree

sequence is an easy algorithmic problem. That is, polynomial running time algorithms exists to decide if
a realization exists, and if so, the algorithm also constructs a realization. See the Appendix for such an
algorithm. Deciding if a multigraph realization exists for a degree sequence is an even easier problem.

However, if constraints are added to the degree sequence problems, then these problems might become
hard. This makes some puzzles challenging, of which we introduce three of them.

1.1 Hashi or Hashiwokakero

There are islands at some points on a 2D grid. Each island has an integer number between 1 and 8,
including. The aim of the game is to add bridges such that

1. Each bridge connects two islands, travelling a straight line either horizontally or vertically.

2. Bridges must not cross any other bridges or islands

3. There can be at most two (parallel) bridges between two islands.

4. The number of bridges connected to each island must match the number on that island.

5. The bridges must connect the islands into a single connected group.

An example puzzle with its solution is shown below:
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By Val42 at English Wikipedia, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=27632733

Clearly we can consider a solution as a multigraph with maximum two parallel edges. The numbers on
the islands are the degrees. However, it is restricted which vertices might be adjacent, furthermore, the
edges cannot cross each other and we are looking for a connected realization.

1.2 Kakurasu

Kakurasu is played on a rectangular grid. For each row and each column, a sum of weights is given. The
aim of the game is to make some of the cells black such that the sum of their weight is the given row and
column sums. The weight of a black cell at position (i, j) has a row weight j and a column weight i, that
is, it adds a weight j to the row sum in row i, and it adds a weight i to the column sum in column j. An
example puzzle with solution is shown below:

from http://www.curiouscheetah.com/Museum/Puzzle/Kakurasu

If each weight was uniformly 1 instead of a value based on the row and column index, then the prescribed
row and column sums would form a bipartite degree sequence, and any solution would be the adjacency
matrix of a realization with black cells equal 1 and white cells equal 0. Recall that the adjacency matrix
A(G) of a bipartite graph G = (U, V,E) with |U | = n and |V | = m is an n×m matrix of 0’s and 1’s such
that ai,j = 1 if and only if (ui, vj) ∈ E.

1.3 Nonogram

Nonogram is a picture logic puzzle. On a rectangular grid, a sequence of positive integers are given for
each row and each column. The aim of the game is to make some cells black such that for each row and
each column, the runs of consecutive black cells have lengths as the prescribed sequence of integers. An
example puzzle with solution is shown below:



If we replace each black cell by 1 and each white cell by 0, we get the adjacency matrix of a bipartite graph
whose degree sequence can be obtained by adding the sequence of numbers for each row and column. That
is, we can look at a nonogram puzzle as asking for a special realization of a bipartite degree sequence in
which the edges are grouped in a prescribed way.

1.4 Previous results and research plan

Hashi and nonogram puzzles are both known to be hard (NP-complete to decide if a solution exists) [1, 3].
Kakurasu is also suspiciously NP-complete. A special case of the nonogram puzzle problem where each
row and each column contains exactly one run of black cells is solvable in polynomial time [2].

The aim of this research class is to study what happens with these puzzle problems if some of the
constraints are modified: relaxed or even extended. Will the problems become easy or remain hard? For
example:

1. What makes Hashi hard? The connectivity? The forbidden crossing bridges? Parallel bridges? What
happens if bridges might cross and a solution might contain disconnected islands? What happens if
parallel bridges are not allowed?

2. What happens if the definition of the weights are modified in Kakurasu? For example, what happens
if each entry in the grid have some arbitrary prescribed weights, however, these weights are bounded?

3. Consider the weighted nonogram puzzle problem where instead of black cells, positive integers should
be written into the grid. The row and column sequences prescribes the sum of consecutive positive
integers. Is it a simpler or even harder problem?

Qualifying problems

Please, solve the following exercises:

1. Construct nonogram puzzles with multiple solutions. Particularly, construct a nonogam puzzle with
multiple solutions where each row and each column contains exactly one run of consecutive black
cells. Also, construct a nonogram puzzle with multiple solutions where some of the rows and/or
columns contain multiple runs of consecutive black cells.

2. Using pigeonhole principle, show that there are impossible n×n Kakurasu puzzles for any sufficiently
large n, that is, with no solution. We assume that the prescibed weights are between 1 and

∑n
i=1 i =

n(n+1)
2

. (No need to use the PHP in this exercise!)



3. Construct an impossible nonogram puzzle for which the sum of the given integer sequences form a
graphical bipartite degree sequence.

4. Construct a Hashi puzzle with multiple solutions.

5. Construct an impossible Hashi puzzle that could have a solution if crossing bridges were allowed.
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Appendix

Theorem 1 (Havel-Hakimi). A degree sequence D = d0 ≥ d1 ≥ d2 ≥ . . . ≥ dn is graphical if and only if
the degree sequence D′ = d1−1, d2−1, . . . , dd0−1, dd0+1, . . . , dn (with some possible reordering) is graphical.

Proof. The backward direction is trivial: if D′ is graphical, take a realization of it, and extend it with one
vertex, call it v, and add edges between v and the first d0 vertices. Then we get a graph whose degrees
are D, thus D is also graphical.

Proving the forward direction is done in an iterative way. Let the vertices be indexed by their degree
indices, namely, vi is the vertex with degree di. We show if D is graphical then such a realization also
exists in which vertex v0 is adjacent to the vertices v1, v2, . . . , vd0 . Assume that in a realization of D,
there is an index i such that v0 is not adjacent to vi, although i ≤ d0. Let i be the smallest such index.
Then there must be an index j such that j > i, and v0 is adjacent to vj. We know that di ≥ dj, therefore
amongst the neighbors of vi, there must be a vertex which is not a neighbor of vj. Let this vertex be vk.
Then edges (v0, vj) and (vi, vk) exist in the realization, and (v0, vi) and (vi, vk) do not exist. If we delete
the before mentioned existing edges and add the not existing edges, we get a realization of D in which v0
is adjacent to vi, thus the first index i for which v0 is not adjacent to vi is greater than i. We can repeat
this alteration such that eventually v0 is adjacent to v1, v2, . . . , vd0 . Then deleting v0 and its incident edges
leads to a realization of D′.

The proof is constructive, namely, it is also possible to construct a realization of D if such exists by
following the proof: take n+1 vertices, index it with v0, v1, . . . vn. Add edges between v0 and v1, v2, . . . , vd0 .
Then take the sequence d1 − 1, d2 − 1, . . . , dd0 − 1, dd0+1, . . . , dn, reorder it, moving the vertices together
with the degrees, so we get another degree sequence D′. Take the corresponding v0, connect it to the next
d0 vertices, modify the degrees accordingly, rearrange them, etc. In this way, either we construct a graph
with the prescribed sequence or at some point, d0 will be greater than the number of remaining vertices
with non-zero degrees, and thus, the degree sequence is not graphical.

Similar theorem is true for bipartite graphs and it is left as an exercise.


